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Beyond linear elasticity: jammed solids at finite
shear strain and rate

Julia Boschan,*a Daniel Vågberg,a Ellák Somfaib and Brian P. Tighea

The shear response of soft solids can be modeled with linear elasticity, provided the forcing is slow and

weak. Both of these approximations must break down when the material loses rigidity, such as in foams

and emulsions at their (un)jamming point – suggesting that the window of linear elastic response near

jamming is exceedingly narrow. Yet precisely when and how this breakdown occurs remains unclear. To

answer these questions, we perform computer simulations of stress relaxation and shear start-up tests

in athermal soft sphere packings, the canonical model for jamming. By systematically varying the strain

amplitude, strain rate, distance to jamming, and system size, we identify characteristic strain and time

scales that quantify how and when the window of linear elasticity closes, and relate these scales to

changes in the microscopic contact network.

Linear elasticity predicts that when an isotropic solid is sheared,
the resulting stress s is directly proportional to the strain g and
independent of the strain rate _g,

s = G0g, (1)

with a constant shear modulus G0.1 The constitutive relation (1)
– a special case of Hooke’s law – is a simple, powerful, and
widely used model of mechanical response in solids. Yet
formally it applies only in the limit of vanishingly slow and
weak deformations. In practice materials possess characteristic
strain and time scales that define a linear elastic ‘‘window’’, i.e.
a parameter range wherein Hooke’s law is accurate. Determining
the size of this window is especially important in soft solids,
where viscous damping and nonlinearity play important roles.2

The goal of the present work is to determine when Hooke’s law
holds, and what eventually replaces it, in soft sphere packings
close to the (un)jamming transition.

Jammed sphere packings are a widely studied model of
emulsions and liquid foams3–6 and have close connections to
granular media and dense suspensions.7–9 Linear elastic pro-
perties of jammed solids, such as moduli and the vibrational
density of states, are by now well understood.10,11 Much less is
known about their viscoelastic7,12 and especially their nonlinear
response.13,14 Yet the jamming transition must determine the
linear elastic window, because the shear modulus G0 vanishes
continuously at the jamming point, where the confining pressure
p goes to zero. Indeed, studies of oscillatory rheology15 and

shocks16–18 have shown that, precisely at the jamming point,
any deformation is effectively fast and strong, and neither
viscous effects nor nonlinearities can be neglected.

Because elasticity in foams, emulsions, and other amorphous
materials results from repulsive contact forces, microstructural
rearrangements of the contact network have signatures in the
mechanical response. Namely, they lead to nonlinearity and
irreversibility in the particle trajectories, and eventually to steady
plastic flow.19–24 Jammed packings of perfectly rigid particles
cannot deform without opening contacts; their response is
intrinsically nonlinear, and the number of contact changes per
unit strain diverges in the limit of large system size.25,26 Recently
Schreck and co-workers addressed contact changes inside the
jammed phase;27–31 specifically, they asked how many contact
changes a jammed packing undergoes before linear response
breaks down. They found that trajectories cease to be linear as
soon as there is a single rearrangement (made or broken contact)
in the contact network, and contact changes occur for vanishing
perturbation amplitudes in large systems. Their findings caused
the authors to question, if not the formal validity, then at least
the usefulness of linear elasticity in jammed solids – not just at
the jamming point, but anywhere in the jammed phase.

There is, however, substantial evidence that it is useful to
distinguish between linear response in a strict sense, wherein
particle trajectories follow from linearizing the equations of
motion about an initial condition, and linear response in a
weak sense, wherein the stress–strain curve obeys Hooke’s
law.32–35 Hooke’s law remains applicable close to but above
jamming because coarse grained properties are less sensitive to
contact changes than are individual trajectories. Agnolin and
Roux verified numerically that linearization captures the initial
slope of a stress–strain curve, while Van Deen et al. showed
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explicitly that the slope of the stress–strain curve is on
average the same before and after the first contact change.32,33

Goodrich et al. further demonstrated that contact changes have
negligible effect on the density of states.36 These results verify
the intuitive expectation that weak linear response remains
valid even after strict linear response is violated. This in turn
raises – but does not answer – the question of when Hooke’s
law eventually does break down.

Recent experiments,13,21 simulations,14,24,37,38 and theory39

provide evidence for a two stage yielding process, where
response first becomes nonlinear (stress is no longer directly
proportional to strain) and only later establishes steady plastic
flow (stress is independent of strain). To distinguish these two
crossovers, we will refer to them as softening and yielding,
respectively; our focus will be mainly on the softening cross-
over. It remains unclear precisely how rate dependence, non-
linearity, and contact changes contribute to the breakdown of
linear elasticity and onset of softening. In order to unravel
these effects, it is necessary to vary strain, strain rate, pressure,
and system size simultaneously and systematically – as we do
here for the first time. Using simulations of viscous soft
spheres, we find that Hooke’s law is valid within a surprisingly
narrow window bounded by viscous dissipation at small strain
and plastic dissipation at large strain. The size of the linear
elastic window displays power law scaling with pressure and
correlates with the accumulation of not one, but an extensive
number of contact changes.

The basic scenario we identify is illustrated in Fig. 1, which
presents ensemble-averaged shear stress versus strain. Shear is
applied via a constant strain rate _g0 at fixed volume. We identify
three characteristic scales, each of which depend on the initial
pressure p: (i) for strains below g*� _g0t*, where t* is a diverging
time scale, viscous stresses are significant and eqn (1) under-
estimates the stress needed to deform the material. A recent

theory associates this regime with a growing number of slow,
strongly non-affine eigenmodes.15 This strain scale g* vanishes
under quasistatic shear ( _g0 - 0, filled squares). (ii) Above
a vanishing strain g† the material softens and Hooke’s law
overestimates the stress. This crossover is rate-independent,
consistent with plastic effects. (iii) For strain rates above a
vanishing scale _g† (triangles), eqn (1) is never accurate and
there is no strain interval wherein the material responds as a
linear elastic solid.

1 Soft spheres: model and background

We first introduce the soft sphere model and summarize prior
results regarding linear elasticity near jamming.

1.1 Model

We perform numerical simulations of the Durian bubble
model,4 a mesoscopic model for wet foams and emulsions.
The model treats bubbles/droplets as non-Brownian disks that
interact via elastic and viscous forces when they overlap. Elastic
forces are expressed in terms of the overlap dij = 1 � rij /(Ri + Rj),
where Ri and Rj denote radii and -

rij points from the center of
particle i to the center of j. The force is repulsive and acts along
the unit vector r̂ij = -

rij/rij:

~f elij ¼
�k dij
� �

dij r̂ij ; dij 4 0

~0; dij o 0:

8<
: (2)

The prefactor k is the contact stiffness, which generally
depends on the overlap

k = k0d
a�2. (3)

Here k0 is a constant and a is an exponent parameterizing the
interaction. In the following we consider harmonic interactions
(a = 2), which provide a reasonable model for bubbles and droplets
that resist deformation due to surface tension; we also treat
Hertzian interactions (a = 5/2), which correspond to elastic spheres.

We perform simulations using two separate numerical methods.
The first is a molecular dynamics (MD) algorithm that implements
SLLOD dynamics40 using the velocity-Verlet scheme. Energy is
dissipated by viscous forces that are proportional to the relative
velocity D-

vc
ij of neighboring particles evaluated at the contact,

-

f visc
ij = �t0k(dij)D

-
vc

ij, (4)

where t0 is a microscopic relaxation time. Viscous forces can
apply torques, hence particles are allowed to rotate as well as
translate.

In addition to MD, we also perform simulations using a
nonlinear conjugate gradient (CG) routine,41 which keeps the
system at a local minimum of the potential energy landscape,
which itself changes as the system undergoes shearing. The
dynamics are therefore quasistatic, i.e. the particle trajectories
correspond to the limit of vanishing strain rate.

All results are reported in units where k0, t0, and the average
particle diameter have all been set to one. Each disk is assigned

Fig. 1 Ensemble-averaged stress–strain curves of packings sheared at
varying strain rate _g0. Close to the jamming point the linear stress–strain
curve (dashed line) predicted by Hooke’s law holds over a narrow interval
at low strain, with deviations due to viscous and plastic dissipation. The
crossover strains g* and g† are indicated for the data sheared at slow but
finite rate 0 o _g0 o _g† (open circles).
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a uniform mass mi = pRi
2, which places our results in the

overdamped limit.
Bubble packings consist of N = 128 to 2048 disks in the

widely studied 50 : 50 bidisperse mixture with a 1.4 : 1 diameter
ratio.42 Shear is implemented via Lees–Edwards ‘‘sliding brick’’
boundary conditions at fixed volume V (area in two dimensions).
The stress tensor is given by

sab ¼
1

2V

X
ij

fij;arij;b �
1

V

X
i

mivi;avi;b; (5)

where
-

fij is the sum of elastic and viscous contact forces acting on
particle i due to particle j, and -

vi is the velocity of particle i. Greek
indices label components along the Cartesian coordinates x and y.
The confining pressure is p = �(1/D)(sxx + syy), where D = 2 is the
spatial dimension, while the shear stress is s = sxy. The second
term on the righthand side of eqn (5) is a kinetic stress, which is
always negligible in the parameter ranges investigated here.

We use the pressure p to measure a packing’s distance to
jamming. Common alternatives are the excess volume fraction
Df = f� fc and excess mean contact number Dz = z� zc, where
fc and zc = 2D refer to the respective values at jamming.10,43,44

We prefer to use the pressure as an order parameter because it
is easily accessed in experiments (unlike z), and its value at the
transition, pc = 0, is known exactly (unlike f). Therefore, prior
to shearing, all packings are prepared at a targeted pressure.
The equilibration procedure includes the box size and shape in
addition to the particle positions as degrees of freedom, which
guarantees that the stress tensor is proportional to the unit
matrix and that the packing is stable to shear perturbations.45

At each pressure there are fluctuations in f and z, however for
a given preparation protocol the probability distributions of f
and z tend to a delta function with increasing N,41,43 and typical
values (e.g. the mean or mode) satisfy the scaling relation

p

k
� Df � Dz2: (6)

Here k is a typical value of the contact stiffness k(dij) in eqn (3),
which is simply the constant k0 in the harmonic case (a = 2). For
other values of a, however, k depends on the pressure. As the
typical force trivially reflects its bulk counterpart, f B p,
the contact stiffness scales as k B f/d B p(a�2)/(a�1). In the
following, all scaling relations will specify their dependence on
k and the time scale t0. In the present work t0 is independent of
the overlap between particles (as in the viscoelastic Hertzian
contact problem46), but we include t0 because one could imagine
a damping coefficient kt0 with more general overlap dependence
than the form treated here.

1.2 Shear modulus and the role of contact changes

In large systems the linear elastic shear modulus G0 vanishes
continuously with pressure,

G0/k B (p/k)m, (7)

with m = 1/2. Hence jammed solids’ shear stiffness can be
arbitrarily weak. The scaling of G0 has been determined multi-
ple times, both numerically43,47,48 and theoretically;15,49,50 it is

verified for our own packings in Fig. 3a and c, as discussed in
Section 2.

There are two standard approaches to determining G0. The
first, which we employ, is to numerically impose a small but
finite shear strain and relax the packing to its new energy
minimum.43,47 In the second approach one writes down the D
equations of motion for each particle and linearizes them about
a reference state, which results in a matrix equation involving
the Hessian; solutions to this equation describe the response to
an infinitesimally weak shear.15,45,48,50–52 The latter approach
allows access to the zero strain limit, but it is blind to any
influence of contact changes.

When calculating the shear modulus using the finite difference
method over strain differences as small as 10�9, double precision
arithmetic does not provide sufficiently accurate results.53 A
straightforward but computationally expensive approach is to
switch to quadruple precision. Instead we represent each particle
position as the sum of two double precision variables, which gives
sufficient precision for the present work and is significantly faster
than the GCC Quad-Precision Math Library. Since we are aware of
precision issues, we have taken great care to verify our results. The
shear modulus calculated using finite difference method agrees
with the corresponding shear modulus obtained using the Hessian
matrix,10 provided the strain amplitude is small enough that the
packing neither forms new contacts, nor breaks existing ones.

Van Deen et al.33 measured the typical strain at the first
contact change, and found that it depends on both pressure
and system size,

gð1Þcc �
ðp=kÞ1=2

N
: (8)

The inverse N-dependence is consistent with what one would
expect from a Poisson process. Similar to the findings of
Schreck et al.,27 who determined a critical perturbation ampli-
tude by deforming packings along normal modes, the strain scale
in eqn (8) vanishes in the large system limit, even at finite
pressure. Earlier work by Combe and Roux probed deformations
of rigid disks precisely at jamming; they identified a dimension-
less stress scale s(1)

cc /p B 1/N1.16. Naı̈vely extrapolating to soft spheres
would then give a strain scale g(1)

cc B s(1)
cc /G0 B ( p/k)1/2/N1.16, in

reasonable but not exact agreement with eqn (8).

2 Stress relaxation

We will characterize mechanical response in jammed solids
using stress relaxation and flow start-up tests, two standard
rheological tests. In the linear regime they are equivalent to
each other and to other common tests such as creep response
and oscillatory rheology, because complete knowledge of the
results of one test permits calculation of the others.2

We employ stress relaxation tests to access the time scale
t* over which viscous effects are significant, and we use flow
start-up tests to determine the strain scale g† beyond which
the stress–strain curve becomes nonlinear. We consider stress
relaxation first.
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In a stress relaxation test one measures the time-dependent
stress s(t,g0) that develops in a response to a sudden shear
strain with amplitude g0, i.e.

gðtÞ ¼
0 to 0

g0 t � 0:

(
(9)

The relaxation modulus is

Gr t; g0ð Þ � s t; g0ð Þ
g0

: (10)

We determine Gr by employing the shear protocol of Hatano.7 A
packing’s particles and simulation cell are affinely displaced in
accordance with a simple shear with amplitude g0. E.g. for a
simple shear in the x̂-direction, the position of a particle i
initially at (xi,yi) instantaneously becomes (xi + g0yi,yi), while the
Lees–Edwards boundary conditions are shifted by ĝ0Ly, where Ly

is the height of the simulation cell. Then the particles are
allowed to relax to a new mechanical equilibrium while the
Lees–Edwards offset is held fixed.

The main panel of Fig. 2 illustrates four relaxation moduli of
a single packing equilibrated at pressure p = 10�4.5 and then
sheared with strain amplitudes varying over three decades. All
four undergo a relaxation from an initial plateau at short times
to a final, lower plateau at long times. The character of the
particle motions changes as relaxation progresses in time.
While the particle motions immediately after the deformation
are affine (Fig. 2a), they become increasingly non-affine as the
stresses relax to a new static equilibrium (Fig. 2b and c).

For sufficiently small strain amplitudes, linear response is
obtained and any dependence of the relaxation modulus on g0

is sub-dominant. The near-perfect overlap of the moduli for the
two smaller strain amplitudes Fig. 2 indicates that they reside
in the linear regime. The long-time plateau is then equal to the
linear elastic modulus G0. In practice there is a crossover time

scale t* such that for longer times t c t* viscous damping is
negligible and the relaxation modulus is well approximated by
its asymptote, Gr C G0. For the data in Fig. 2a the crossover
time is t* E 104t0. In the following Section we will determine
the scaling of t* with pressure.

2.1 Scaling in the relaxation modulus

We now characterize stress relaxation in linear response by
measuring the relaxation modulus, averaged over ensembles of
packings prepared at varying pressure. We will show that Gr

collapses to a critical scaling function governed by the distance
to the jamming point, thereby providing a numerical test of
recent theoretical predictions by Tighe.15 In particular we test
the prediction that the rescaled shear modulus Gr/G0 collapses
to a master curve when plotted versus the rescaled time t/t*,
with a relaxation time that diverges as

t� � k

p

� �l

t0 (11)

for l = 1. Both the form of the master curve and the divergence
of the relaxation time can be related to slowly relaxing eigen-
modes that become increasingly abundant on approach to
jamming. These modes favor sliding motion between contacting
particles,48 reminiscent of zero energy floppy modes,54 and play
an important role in theoretical descriptions of mechanical
response near jamming.15,49,50,52,55 For further details, we direct
the reader to ref. 15.

We showed in Fig. 2 that a packing relaxes in three stages.
The short-time plateau is trivial, in the sense that viscous forces
prevent the particles from relaxing at rates faster than 1/t0;
hence particles have not had time to depart significantly from
the imposed affine deformation and the relaxation modulus
reflects the contact stiffness, Gr B k. We therefore focus hereafter on
the response on time scales t c t0.

To demonstrate dynamic critical scaling in Gr, we first
determine the scaling of its long-time asymptote G0. We then
identify the time scale t* on which Gr significantly deviates
from G0. Finally, we show that rescaling with these two para-
meters collapses the relaxation moduli for a range of pressures
to a single master curve. While we address variations with
strain in subsequent sections, the strain amplitude here is fixed
to a value g0 = 10�5.5. We have verified that this strain amplitude is
in the linear regime for all of the data presented in this section.

As noted above, at long times the relaxation modulus
approaches the linear quasistatic modulus, Gr(t - N) C G0.
We verify eqn (7) in our harmonic packings with two closely
related tests. First we fit a power law to data from systems of
N = 2048 particles; the best fit has a slope of 0.48 (Fig. 3a,
dashed line). Next, we repeat the finite size scaling analysis
of Goodrich et al.,56 who showed that finite size effects become
important when a packing has O(1) contacts in excess of
isostaticity, or equivalently when p/k B 1/N2 – cf. eqn (6).
Consistent with their results, Fig. 3a shows clear finite size effects
in G0. Data for different system sizes can be collapsed to a master
curve by plotting G � G0N versus the rescaled pressure x � pN2.

Fig. 2 The ensemble-averaged relaxation modulus Gr at pressure p = 10�4.5

for four values of the strain amplitude g0. In all four cases, Gr displays an initial
plateau corresponding to affine particle motion (inset a), followed by a power
law decay as the particle displacements become increasingly non-affine (b).
At long times the stress is fully relaxed and the final particle displacements are
strongly non-affine (c).
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The master curve approaches a power law xm consistent with
m = 0.5, as shown in Fig. 3c. The scaling of eqn (7), and
specifically the value m = 1/2, is verified by this data collapse,
together with the requirement for the modulus to be an intensive
property of large systems. To see this, note that G0 is intensive

only if G � x1=2 for large x.
Again referring to Fig. 2, there is clearly some time scale t*

such that for t o t* the relaxation modulus deviates signifi-
cantly from the quasistatic modulus. The relaxation time is
determined from the point where Gr, averaged over an ensem-
ble of at least 100 packings per condition, has decayed to within
a fraction D of its final value, Gr(t = t*) = (1 + D)G0. We present
data for D = 1/e, but similar scaling results for a range of D.38

Raw data for varying p and N is shown in Fig. 3b. Fitting a
power law to the data for N = 2048 gives an exponent l = 0.95.
We now again seek to refine our estimate by collapsing data to a
master curve. As t* and G0 are both properties of the relaxation
modulus, we require the rescaled pressure to remain x = pN2,
which collapses the G0 data. We then search for data collapse in
t* by rescaling the relaxation time as t*/N2l, which implies that
t* diverges in large systems in accord with eqn (11). As shown
in Fig. 3d, we find reasonable data collapse for the theoretical
prediction l = 1 (open symbols), but a better collapse can be
obtained with the larger value l E 1.13 (filled symbols). In
summary, the theoretical prediction l = 1 clearly falls within the
range of our numerical estimates,15 but on the basis of the
present data we cannot exclude a slightly different value of l. In
the remainder of this work we explicitly indicate the value of
l used in calculations wherever appropriate.

We now use the linear quasistatic modulus G0 and the
characteristic time scale t* to collapse the relaxation modulus
to a master curve RðsÞ. Fig. 3e plots R � Gr=G0 versus s � t/t*
for a range of pressures and system sizes; data from the trivial
affine regime at times t o 10t0 have been excluded. The resulting

data collapses well to a master curve and reveals two scaling

regimes:R ’ 1 for s c 1, andR � s�y for s { 1. The plateau at
large s corresponds to the quasistatic scaling Gr C G0.
The power law relaxation at shorter times corresponds to
Gr B G0(t/t*)�y for some exponent y. By considering a marginal
solid prepared at the jamming point, one finds that the
prefactor of t�y cannot depend on the pressure. Invoking the
pressure scaling of G0 and t* in the large N limit, identified
above, we conclude that y = m/l. Hence in large systems the
relaxation modulus scales as

GrðtÞ
k
�

t0=tð Þy 1� t=t0 � ðk=pÞl

ðp=kÞm ðk=pÞl � t=t0:

8<
: (12)

with y = m/l E 0.44 (using m = 1/2 and l = 1.13). The theoretical
predictions in ref. 15 give y = 1/2.

Anomalous stress relaxation with exponent y E 0.5 was first
observed in simulations below jamming7 and is also found in
disordered spring networks.57,58 It is related via Fourier transform
to the anomalous scaling of the frequency dependent complex
shear modulus G* B (io)1�y found in viscoelastic solids near
jamming.15 We revisit the scaling relation of eqn (12) in
Section 3.6.

3 Finite strain

When does linear elasticity break down under increasing strain,
and what lies beyond? To answer these questions, we now
probe shear response at finite strain using flow start-up tests.

3.1 Flow start-up

In a flow start-up test, strain-controlled boundary conditions
are used to ‘‘turn on’’ a flow with constant strain rate _g0

Fig. 3 (a) The linear shear modulus G0 in harmonic packings for varying pressure p and number of particles N. (b) The relaxation time t* for the same
range of p and N as in (a). (c) Finite size scaling collapse of G0. (d) Finite size scaling collapse of t*. We show both the best data collapse (l E 1.13, filled
symbols, left axis) and the theoretical prediction (l = 1, open symbols, right axis). (e) The relaxation modulus Gr collapses to a master curve when Gr and t
are rescaled with G0 and t*, respectively, as determined in (a) and (b). At short times the master curve decays as a power law with exponent y = m/lE 0.44
(dashed line), using the estimates from (c) and (d).
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at time t = 0, i.e.

gðtÞ ¼
0 to 0

_g0t t � 0

(
(13)

To implement flow start-up in MD, at time t = 0 a packing’s
particles and simulation cell are instantaneously assigned an
affine velocity profile -

vi = (_g0yi,0)T in accordance with a simple
shear with strain rate _g0; the Lees–Edwards images of the
simulation cell are assigned a commensurate velocity. Then
the particles are allowed to evolve according to Newton’s laws
while the Lees–Edwards boundary conditions maintain con-
stant velocity, so that the total strain g(t) grows linearly in time.

We also perform quasistatic shear simulations using non-
linear CG minimization to realize the limit of vanishing strain
rate. Particle positions are evolved by giving the Lees–Edwards
boundary conditions a series of small strain increments and
equilibrating to a new minimum of the elastic potential energy.
The stress s is then reported as a function of the accumulated
strain. For some runs we use a variable step size in order to
more accurately determine the response at small strain.

Fig. 1 illustrates the output of both the finite strain rate and
quasistatic protocols.

3.2 Quasistatic stress–strain curves

To avoid complications due to rate-dependence, we consider
the limit of vanishing strain rate first.

Fig. 4 plots the ensemble-averaged stress–strain curve s(g)
for harmonic packings at varying pressure. Packings contain
N = 1024 particles, and each data point is averaged over at least
600 configurations. Several features of the stress–strain curves
stand out. First, there is indeed a window of initially linear
growth. Second, beyond a strain of approximately 5–10% the
system achieves steady plastic flow and the stress–strain curve
is flat. Finally, the end of linear elasticity and the beginning of

steady plastic flow do not generally coincide; instead there is an
interval in which the stress–strain curve has a complex non-
linear form. We shall refer to the end of the linear elastic
regime as ‘‘softening’’ because the stress initially dips below
the extrapolation of Hooke’s law. (In the plasticity literature the
same phenomenon would be denoted ‘‘strain hardening’’.)
Moreover, for sufficiently low pressures there is a strain interval
over which the stress increases faster than linearly. This sur-
prising behavior is worthy of further attention, but the focus of
the present work will be on the end of linear elasticity and the
onset of softening. This occurs on a strain scale g† that clearly
depends on pressure.

3.3 Onset of softening

We now determine the pressure and system size dependence of
the softening (or nonlinear) strain scale g†.

Fig. 5 replots the quasistatic shear data from Fig. 4 (solid
curves), now with the linear elastic trend G0g scaled out.
The rescaling collapses data for varying pressures in the linear
regime and renders the linear regime flat. The strain axis in
Fig. 5b is also rescaled with the pressure, a choice that will be
justified below. The onset of softening occurs near unity in the
rescaled strain coordinate for all pressures, which suggests that
g† scales linearly with p in harmonic packings (a = 2).

Unlike the linear relaxation modulus in Fig. 3c, the quasi-
static shear data in Fig. 5 do not collapse to a master curve;
instead the slope immediately after softening steepens (in a
log–log plot) as the pressure decreases. As a result, it is not
possible to unambiguously identify a correlation g† B pn

between the crossover strain and the pressure. To clarify this
point, the inset of Fig. 5 plots the strain where s/G0g has
decayed by an amount D from its plateau value, denoted
g†(D). This strain scale is indeed approximately linear in the
pressure p (dashed curves), but a power law fit gives an exponent n
in the range 0.87 to 1.06, depending on the value of D. Bearing the

Fig. 4 Averaged stress–strain curves under quasistatic shear at varying
pressure p. Solid and dashed curves were calculated using different strain
protocols. Dashed curves: fixed strain steps of 10�3, sheared to a final strain
of unity. Solid curves: logarithmically increasing strain steps, beginning at 10�9

and reaching a total strain of 10�2 after 600 steps.

Fig. 5 (main panel) Data from Fig. 4, expressed as a dimensionless
effective shear modulus s/G0g and plotted versus the rescaled strain g/p.
(inset) The crossover strain g† where the effective shear modulus has
decayed by an amount D in a system of N = 1024 particles.
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above subtlety in mind, we nevertheless conclude that an effective
power law with n = 1 provides a reasonable description of the
softening strain. Section 2.1 presents further evidence to support
this conclusion.

3.4 Hertzian packings

In the previous section the pressure-dependence of g† was
determined for harmonic packings. We now generalize this
result to other pair potentials, with numerical verification for
the case of Hertzian packings (a = 5/2).

Recall that the natural units of stress are set by the contact
stiffness k, which itself varies with pressure when a a 2. Based
on the linear scaling of g† in harmonic packings, we anticipate

gy � p

k
� p1=ða�1Þ; (14)

which becomes g† B p2/3 in the Hertzian case. To test this
relation, we repeat the analysis of the preceding section; results
are shown in Fig. 6. We again find a finite linear elastic window
that gives way to softening. Softening onset can again be
described with a D-dependent exponent (see inset). Its value
has a narrow spread about 2/3; power law fits give slopes
between 0.63 and 0.74.

3.5 Relating softening and contact changes

Why does the linear elastic window close when it does? We now
seek to relate softening with contact changes on the particle
scale.21–24,27,33 Specifically, we identify a correlation between
the softening strain g†, the cumulative number of contact
changes, and the distance to the isostatic contact number zc.
In so doing we will answer the question first posed by Schreck and
co-workers,27 who asked how many contact changes a packing can
accumulate while still displaying linear elastic response.

We begin by investigating the ensemble-averaged contact
change density ncc(g)� [Nmake(g) + Nbreak(g)]/N, where Nmake and
Nbreak are the number of made and broken contacts, respec-
tively, accumulated during a strain g. Contact changes are

identified by comparing the contact network at strain g to the
network at zero strain.

In Fig. 7a we plot ncc for packings of harmonic particles at
pressure p = 10�4 and varying system size. The data collapse to
a single curve, indicating that ncc is indeed an intensive
quantity. The effect of varying pressure is shown in Fig. 7b.
There are two qualitatively distinct regimes in ncc, with a
crossover governed by pressure.

To better understand these features, we seek to collapse
the ncc data to a master curve. By plotting N � ncc/pt versus
y � g/po, we obtain excellent collapse for t = 0.45 and o = 0.95,
as shown in Fig. 7b for the same pressures as in Fig. 7a. The
rescaled strain y provides microscopic evidence for an intensive
crossover scale g† that is approximately linear in p/k.

The scaling collapse in Fig. 7c generalizes the results of Van
Deen et al.,33 who determined the strain scale g(1)

cc B (p/k)1/2/N
associated with the first contact change. To see this, note that
the inverse slope (dg/dncc)/N represents the average strain
interval between contact changes at a given strain. Hence the
initial slope of ncc is fixed by g(1)

cc ,

nccðgÞ ’
1

N

g

gð1Þcc

 !
(15)

as g - 0. We find g(1)
cc B po�t/N with o � t E 0.50, in agree-

ment with the results of Van Deen et al. From Fig. 7 it is
apparent that ncc remains linear in g up to the crossover strain g†.
We conclude that g(1)

cc describes the strain between successive

Fig. 6 (main panel) The dimensionless shear modulus of quasistatically
sheared Hertzian packings plotted versus the rescaled strain g/p2/3. (inset)
Pressure-dependence of the crossover strain g†.

Fig. 7 The contact change density shown for (a) varying system size and
(b) varying pressure. (c) Data collapse for pressures p = 10�2� � �10�5 in half
decade steps and system size N = 1024. Dashed lines indicate slopes of
1 and t/o E 0.47. Panels (b) and (c) share a common legend.
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contact changes over the entire interval 0 o g o g†. In the
softening regime the strain between contact changes increases;
it scales as ncc B gt/o with t/o E 0.47 (see Fig. 7c). This
corresponds to an increasing and strain-dependent mean inter-
val g1�t/o/N between contact changes.

Let us now re-interpret the softening crossover strain g† B Dz2

(cf. eqn (6)) in terms of the coordination of the contact network.
We recall that Dz = z � zc is the difference between the initial
contact number z and the isostatic value zc, which corresponds to
the minimum number of contacts per particle needed for rigidity.
The excess coordination Dz is therefore an important characteri-
zation of the contact network. The contact change density at the
softening crossover, n†

cc, can be related to Dz via eqn (15), while
making use of eqn (6) and taking g† B p/k for simplicity,

n†
cc � ncc(g†) B Dz. (16)

Hence we have empirically identified a topological criterion for
the onset of softening: an initially isotropic packing softens
when it has undergone an extensive number of contact changes
that is comparable to the number of contacts it initially had in
excess of isostaticity. Note that this does not mean the packing
is isostatic at the softening crossover, as ncc counts both made
and broken contacts.

3.6 Rate-dependence

To this point we have considered nonlinear response exclusively
in the limit of quasistatic shearing. A material accumulates strain
quasistatically when the imposed strain rate is slower than the
longest relaxation time in the system. Because relaxation times
near jamming are long and deformations in the lab always occur
at finite rate, we can anticipate that quasistatic response is
difficult to achieve and that rate-dependence generically plays a
significant role. Hence it is important to consider shear at finite
strain and finite strain rate. We now consider flow start-up tests
in which a finite strain rate _g0 is imposed at time t = 0, cf. eqn (13).

Fig. 8 displays the mechanical response to flow start-up for
varying strain rates. To facilitate comparison with the quasi-
static results of the previous section, data are plotted in terms
of the dimensionless quantity s(t; _g0)/G0g, which we shall refer
to as the effective shear modulus. The data are for systems of
N = 1024 particles, averaged over an ensemble of around 100
realizations each. Here we plot data for the pressure p = 10�4;
results are qualitatively similar for other pressures. For comparison,
we also plot the result of quasistatic shear (solid circles) applied to
the same ensemble of packings.

Packings sheared sufficiently slowly follow the quasistatic
curve; see e.g. data for _g0 = 10�11. For smaller strains, however,
the effective shear modulus is stiffer than the quasistatic curve
and decays as s/g B t�y (see inset). This is rate-dependence: for
a given strain amplitude, the modulus increases with increasing
strain rate. Correspondingly, the characteristic strain g* where
curves in the main panel of Fig. 8 reach the linear elastic plateau
(s/G0g E 1) grows with _g0. For sufficiently high strain rates there
is no linear elastic plateau; for the data in Fig. 8 this occurs for
_g0 E 10�8. Hence there is a characteristic strain rate, _g†, beyond

which the linear elastic window has closed: packings sheared
faster than _g† are always rate-dependent and/or strain softening.

To understand the rate-dependent response at small strains,
we revisit the relaxation modulus determined in Section 2. In
linear response the stress after flow start-up depends only on
the elapsed time t = g/ _g0,

s
g
¼ 1

t

ðt
0

Grðt 0Þdt 0: (17)

Employing the scaling relations of eqn (12), one finds

s
g
� k

t0
t

� �y
; t0 o to t�; (18)

as verified in Fig. 8 (inset). Linear elasticity s/g C G0 is only
established at longer times, when g 4 _g0t* B (k/p)l _g0t0. Hence
the relaxation time t* plays an important role: it governs the
crossover from rate-dependent to quasistatic linear response.
The system requires a time t* to relax after a perturbation.
When it is driven at a faster rate, it cannot relax fully and hence
its response depends on the driving rate.

We can now identify the characteristic strain rate _g† where
the linear elastic window closes. This rate is reached when the
bound on quasistaticity, g 4 _g0t*, collides with the bound on
linearity, g o g†, giving

_gy � ðp=kÞ
1þl

t0
: (19)

This strain rate vanishes rapidly near jamming, hence packings
must be sheared increasingly slowly to observe a stress–strain
curve that obeys Hooke’s law.

4 Implications for experiment

The time scale t*, strain scales g* and g†, and strain rate _g† all
place bounds on the window of linear elastic response. Which
of these quantities are most relevant depends on the particular

Fig. 8 The effective shear modulus during flow start-up for packings of
N = 1024 particles at pressure p = 10�4, plotted versus strain for varying strain
rates _g0. (inset) The same data collapses for early times when plotted versus t,
decaying as a power law with exponent y = m/l E 0.44 (dashed line).
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rheological test one performs. For example, in a flow start-up
test Hooke’s Law is accurate within the window g* o g o g†,
provided the strain rate _g0 o _g†. This is the scenario depicted in
Fig. 1; it is also illustrated schematically in Fig. 9. In a stress
relaxation test, however, the strain amplitude and test duration
can be varied independently. Hooke’s law is then accurate for g0

o g† provided one waits for a time t 4 t* for the system to relax.
(We have verified that the softening onset still occurs at g† when
the full strain g0 is applied in one step, as opposed to a
quasistatic series of small steps.) Similar parameter ranges
can be constructed for other rheological tests.

What experimental scales do these quantities correspond
to? Most importantly, one must collect data in the scaling
regime near jamming. Quantities such as the excess coordination
and moduli show gradual deviations from scaling when the excess
volume fraction exceeds Df E 10�1.59 Determining the volume
fraction with an accuracy better than 1% is difficult,44,60,61 hence
the experimentally accessible scaling regime is typically just one
decade wide in Df.

The onset of softening occurs at a strain scale g† B (p/k) B Df.
If we take the smallest experimentally accessible value of Df to be
10�2, then Hooke’s law can (potentially) be observed for strains
on the order of 1% and smaller.

To estimate the scales t*, g*, and _g†, one must know the
microscopic time scale t0, which arises from a balance between
viscous and elastic forces. Simple dimensional analysis then
suggests a time scale on the order of Zd/gs, where Z is the
viscosity of the continuous phase, d is a typical bubble size, and
gs is the surface tension.62 In dishwasher detergent, for example,
viscosities are on the order of 1 mPas and surface tensions
gs B 10 mN m�1, while bubble sizes can from 100 mm to
1 cm.63,64 Hence microscopic time scales fall somewhere in the
range 10�5� � �10�3 s. For Df on the order 10�2, the time scale
t* B t0/(p/k) B t0/Df (here we use theoretical prediction l = 1 for

simplicity) remains shorter than 0.1 s at accessible values of Df,
while _g† B Df2/t0 can be as low as 0.1 s�1.

We offer a note of caution when considering bounds involving
the time scale t0. First, experiments find power law relaxation at
volume fractions deep in the jammed phase.65 There is an
associated time scale that can be on the order of 1 s depending
on sample age, which is significantly longer than our estimates
of t0 above. This suggests that coarsening and details of the
continuous phase flow within thin films and Plateau borders may
play an important role – in addition to the strongly non-affine
motion associated with proximity to jamming15,66 – yet neither
are incorporated in Durian’s bubble model.4 Second, while we
have considered dissipation proportional to the relative velocity
of contacting particles, the viscous force law need not be linear.
In foams, for example, the dominant source of damping depends
sensitively on microscopic details such as the size of the bubbles
and the type of surfactant used.63 Often one finds Bretherton-type
damping proportional to (relative) velocity to the power 2/3.64,67

We anticipate that nonlinear damping would impact the
relaxation dynamics5,68,69 and alter the value of the exponents
y and l. For sufficiently long times or slow shearing above fc,
however, we expect particles to follow quasistatic trajectories
and the differences between various methods of damping to
become negligible.

5 Discussion

Using a combination of stress relaxation and flow start-up tests,
we have shown that soft solids near jamming are easily driven
out of the linear elastic regime. There is, however, a narrow
linear elastic window that survives the accumulation of an
extensive number of contact changes. This window is bounded
from below by viscous dissipation and bounded from above by
the onset of strain softening due to plastic dissipation. Close to
the transition these two bounds collide and the linear elastic
window closes. Hence marginal solids are easily driven into
rate-dependent and/or strain softening regimes on at volume
fractions and strain scales relevant to the laboratory. Fig. 9
provides a qualitative summary of our results for the case of
flow start-up.

While our simulations are in two dimensions, we expect the
scaling relations we have identified to hold for D 4 2. To the
best of our knowledge, all scaling exponents near jamming that
have been measured in both 2D and 3D are the same. There is
also numerical evidence that D = 2 is the transition’s upper
critical dimension.35,56

Our work provides a bridge between linear elasticity near
jamming, viscoelasticity at finite strain rate, and nonlinearity at
finite strain amplitude. The measured relaxation modulus Gr is
in good agreement with the linear viscoelasticity predicted by
Tighe,15 as well as simulations by Hatano conducted in the
unjammed phase.7 Our findings regarding the crossover to
nonlinear strain softening can be compared to several prior
studies. The granular experiments of Coulais et al. show soft-
ening, although their crossover strain scales differently with the

Fig. 9 In a flow start-up test, quasistatic linear response (G E G0)
occupies a strain window g* o g o g† (shaded regions). For smaller strains
the response is rate-dependent, with a crossover strain g* that depends on
both pressure and strain rate. Softening sets in for higher strains, with a
crossover g† that depends only on the pressure. The intersection of the
rate-dependent and softening crossovers (filled circles) defines a strain
rate _g† above which there is no quasistatic linear response, i.e. the shaded
region closes.
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distance to jamming, possibly due to the presence of static
friction.13 The emulsions of Knowlton et al. are more similar to
our simulated systems, and do indeed display a crossover strain
that is roughly linear in Df, consistent with our g†.21 A recent
scaling theory by Goodrich et al.,39 by contrast, predicts a
crossover strain g† B Df3/4, which is excluded by our data.
Nakayama et al.37 claim agreement between their numerical
data and the theoretical exponent 3/4, although they note that
their data is also compatible with a linear scaling in Df.
A recent study by Otsuki and Hayakawa14 also finds a strain
scale proportional to Df in simulations of large amplitude
oscillatory shear at finite frequency. The agreement between
the crossover strains in our quasistatic simulations and these
oscillatory shear simulations is surprising, as most of the latter
results are for frequencies higher than _g†, where viscous stresses
dominate. There are also qualitative differences between the
quasistatic shear modulus, which cannot be collapsed to a
master curve (Fig. 5), and the storage modulus in oscillatory
shear, which can.14,38 We speculate that there are corresponding
microstructural differences between packings in steady state
and transient shear,20 similar to those which produce memory
effects.70

Soft sphere packings near jamming approach the isostatic
state, which also governs the rigidity of closely related materials
such as biopolymer and fiber networks.71–74 It is therefore
remarkable to note that, whereas sphere packings soften under
strain, quasistatically sheared amorphous networks are strain
stiffening beyond a crossover strain that scales as Dz,75 which
vanishes more slowly than g† B Dz2 in packings. Hence non-
linearity sets in later and with opposite effect in networks.76 We
expect that this difference is attributable to contact changes,
which are absent or controlled by slow binding/unbinding
processes in networks.

We have demonstrated that softening occurs when the
system has accumulated a finite number of contact changes
correlated with the system’s initial distance from the isostatic
state. This establishes an important link between microscopic
and bulk response. Yet further work investigating the relationship
between microscopic irreversibility, softening, and yielding is
needed. The inter-cycle diffusivity in oscillatory shear, for
example, jumps at yielding,21,24 but its pressure dependence
has not been studied. Shear reversal tests could also provide
insight into the connection between jamming and plasticity.

While the onset of softening can be probed with quasistatic
simulation methods, rate dependent effects such as the strain
scale g* should be sensitive to the manner in which energy is
dissipated. The dissipative contact forces considered here are
most appropriate as a model for foams and emulsions. Hence
useful extensions to the present work might consider systems
with, e.g., lubrication forces or a thermostat.
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46 R. Ramrez, T. Pöschel, N. V. Brilliantov and T. Schwager,

Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip.
Top., 1999, 60, 4465.

47 H. P. Zhang and H. A. Makse, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2005, 72, 011301.

48 W. G. Ellenbroek, E. Somfai, M. van Hecke and W. van
Saarloos, Phys. Rev. Lett., 2006, 97, 258001.

49 M. Wyart, Ann. Phys., 2005, 30, 1.
50 A. Zaccone and E. Scossa-Romano, Phys. Rev. B: Condens.

Matter Mater. Phys., 2011, 83, 184205.
51 L. E. Silbert, A. J. Liu and S. R. Nagel, Phys. Rev. Lett., 2005,

95, 098301.
52 M. Wyart, S. R. Nagel and T. A. Witten, Europhys. Lett., 2005,

72, 486.
53 A. Tanguy, J. P. Wittmer, F. Leonforte and J.-L. Barrat,

Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 66, 174205.
54 S. Alexander, Phys. Rep., 1998, 296, 65–236.
55 C. Maloney, Phys. Rev. Lett., 2006, 97, 035503.
56 C. P. Goodrich, A. J. Liu and S. R. Nagel, Phys. Rev. Lett.,

2012, 109, 095704.
57 B. P. Tighe, Phys. Rev. Lett., 2012, 109, 168303.
58 M. Sheinman, C. P. Broedersz and F. C. MacKintosh, Phys.

Rev. E: Stat., Nonlinear, Soft Matter Phys., 2012, 85, 021801.
59 C. Zhao, K. Tian and N. Xu, Phys. Rev. Lett., 2011, 106,

125503.
60 K. W. Desmond, P. J. Young, D. Chen and E. R. Weeks, Soft

Matter, 2013, 9, 3424–3436.
61 I. Jorjadze, L.-L. Pontani and J. Brujic, Phys. Rev. Lett., 2013,

110, 048302.
62 R. Höhler and S. Cohen-Addad, J. Phys.: Condens. Matter,

2005, 17, R1041.
63 M. Le Merrer, R. Lespiat, R. Hohler and S. Cohen-Addad,

Soft Matter, 2015, 11, 368–381.
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