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The creation of fractal clusters by diffusion limited aggregatibhA ) is studied by using iterated stochastic
conformal maps following the method proposed recently by Hastings and Levitov. The object of interest is the
function ®(™ which conformally maps the exterior of the unit circle to the exterior ohguarticle DLA. The
map®(" is obtained fromn stochastic iterations of a functiah that maps the unit circle to the unit circle with
a bump. The scaling properties usually studied in the literature on DLA appear in a new light using this
language. The dimension of the cluster is determined by the linear coefficient in the Laurent expadsidn of
which asymptotically becomes a deterministic functiomoiWe find new relationships between the general-
ized dimensions of the harmonic measure and the scaling behavior of the Laurent coefficients.
[S1063-651%9907301-9

PACS numbd(s): 64.60.Ak

I. INTRODUCTION in the mathematicalv plane onto the complement of the
cluster ofn particles in the physicat plane.®(™ is unique
The diffusion limited aggregatiofDLA) model was in- by the Riemann mapping theorem, provided that it satisfies
troduced in 1981 by Witten and Sandédi. The model has the boundary condition
been shown to underlie many pattern forming processes in-
cluding dielectric breakdown2], two-fluid flow [3], and O (w)~F{"w as w—e. ey
electrochemical depositidd]. The model begins with fixing ") . . . .
one particle at the center of coordinatesiidimensions, and HereF;i™ is a real positive coefficient, fixing the argument of
follows the creation of a cluster by releasing random walkerd ®™(w)]’ to be zero at infinity ®™(w) is related to the
from infinity, allowing them to walk around until they hit complex electric potential ("(z) by
any particle belonging to the cluster. Upon hitting they are
attached to the growing cluster. The model was studied on ¥(z)=Inh"(z), @
and off lattice in several dimensios=2; here we are only n _ M1—1/ o . . .
interested in the off-lattice versions in two dimensions. wheo!e.h(é(z)z[?_( g (Z)t IS thg 'Trl]eisg rr;applnlg. Letting
DLA has attracted enormous interest over the years sincg """ a. (1) itis easy to verify that Eq(2) implies
it is a remarkable example of the spontaneous creation of
fractal objects. It is believed that asymptoticallyhen the
number of particlesi— ) the dimensiorD of the cluster is s it should be atl=2.
very close to 1.715], although there exists to date no ac-  The equation of motion fob(™(w) is determined recur-
cepted proof for this fact in spite of several interesting at-sjyely. The choice of the initial ma@©(w) is rather flex-
tempts[6,7]. In addition, the model has attracted interestipje, and in this paper we sele@rbitrarily) an initial condi-
since it was among the fir$8] to offer a true multifractal  jgp PO(w)=w. We expect the asymptotic cluster to be
measure: the harmonic measiwéhich determines the prob- independent of this choice. Then suppose th&t D(w) is
ability that a random walker from infinity will hit a point at given. The cluster of “particles” is created by adding a

the'bbcc)jundary ?ﬁh'b'tslt.‘;’mg;“?r;t'es tlhat areN usel‘ﬁllyl/ de- new “particle” of constant shape and linear scalg, to the
scribed using the multifractal formalisii]. Nevertheless . cluster of i—1) “particles” at a position which is chosen

DtI)‘A st|lltr|?otses mo:e unsolve_d prol?jle(rj'n_s th%n atnSV\lllers.fIU andomly according to the harmonic measure. We denote
obvious that a new language Is needed in order 1o allow Weshyintg o the boundary of the cluster Bys) wheresis an

a.ttempts dtct)hexplalltr_\f thet ?rOWth ptatterr:cst,htheh fractal_ dlmenélrc-length parametrization. The probability to add a particle
sion, and the muilliiractal properties ot th€ harmonic Meay, an infinitesimal arals centered at the poirg(s) on the

v((z)~Inz when z—» 3

sure. :
Such a new language was proposed recently by HastingcsIUSter boundary is
and Levitov[10,11]. These authors showed that DLA in two P(s,ds)~|V¥(s)|ds. (4

dimensions can be grown by iterating stochastic conformal

maps. We adopt their basic strategy and will see that it proThe preimages af(s) andds in thew plane aree'’ andd#,
vides a new formulation of the problem which may lead torespectively. Clearlyds=|[®"~ 1]’ (e'?)|d6. From Eq.(2)

new insights and results. we conclude that
The basic idea is to follow the evolution of the conformal
mapping® (™ (w) which maps the exterior of the unit circle P(s,ds)~|V¥(s)||®'|do=d8, (5)
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 plane Z plane We note that in the physical plane the “particles” are
roughly of the same size. To achieve this the linear scales
J\,, vary widely as a function oh and 6. We will see that
the distribution of\\,, and their correlations for different
values ofn determine many of the scaling properties of the
resulting cluster. In particular, their moments are related to

There are many functiong, , which conformally map
the unit circle to the unit circle with a bump. A simple choice
is a function which behaves linearly for largeand has a

(ONN]
U the generalized dimensions of the harmonic measure.
simple pole inside the unit circle which will induce a bump
(O] in the image. The pole has to bewj=1—\ in order to
localize the bump near=1 and make it of linear size of the

ordery/\. The residue has to be*’?, in order for the bump’s
height to be also of the ordefx. Consider then

3/2

: . . . d(w)=(1+N)w+ :
FIG. 1. Diagrammatic representation of the mappifdgand ¢. W—Wp

Gareful thinking leads to the conclusion that this function
and other similar functions are inappropriate: they have long
“tails.” In other words, the unit circle is slightly distorted

so the harmonic measure on the real cluster translates to
uniform measure on the unit circle in the mathematical

lane. . . ) .
P everywhere. This small global distortion may result in a loss

The image of the cluster af particles undeh((z) is, { conf itv o in th h of oant o ticl
by definition, just the unit circle. On the other hand, the 0! conformaiity-or in the growth of nonconstant size particles

image of the cluster of particles undeh®™ 1(z) is the " ﬁ??,vgzysr'galogle%nien'gg#%ﬂf:tl :F)Cﬂgigofgf' w
unit circle with a small bump whose linear scale is prop ! d”\nﬁn( )

\/)\—O/|q)/(n—1)(ei0n)| wheree!® is the image(underh®~1) that is free of global distortion is given by
of the pointz, on the real cluster at which the growth oc-

1+\
curred. _ _ _ by (W) =wi 2 ( )(1+w)
Let us define now a new functloapxnﬁn(w). This func- ' 2w
tion maps the unit circle to the unit circle with a bump of 12 a
linear scale \\, around the point ', For w ol el 10 221N
— 00, ¢xn'9n(w)~w (with positive real proportionality w2 WI1+A '
coefficien}. Using ¢kn,0n(w) the recursion relation 9)
for ®(M(w) is given by(see Fig. 1 _ _
by (W) =¢€""%, (e w). (10

P (W)=Y w)). 6
(W) (g0, (W) © The parameter is confined in the range ©a<1. As a
decreases the bump becomes flatter, with the identity map

obtained fora=0. As a increases towards unity the bump
becomes elongated normally to the unit circle, with a limit of
_ Ao % becoming a ling‘‘strike” in the language of{10]) whena
|q)(nfl)’(ei oy |2 =1. Naively one might think that the shape of the individual
particle is irrelevant for the large scale fractal statistics; we
so the right-hand side of E¢p) is determined completely by Will see that this is not the case. The dependencads
®™-D(w): Eq. (6) induces the recursive dynamics of important and needs to _be taken into account. Notice that this
DM (w). map_ha_s two branch points on the unit C|_rcle. The advantage
The recursive dynamics can be represented as iterations 8f this is that the bump is strongly localized. On the other
the mapd, o (W), hand, .repeated iterations of this map lead to rather complex
n:°n analytic structure.
(Mo The aim of this paper is therefore to investigate the scal-
PW) = by 00 Dny.0° 0P 0, (@) ®  ing and statistical properties of such iterated stochastic con-
formal maps with a view to discovering the scaling proper-
This composition appears as a standard iteration of stochastiies induced by the dynamics which any analytic theory must
maps. This is not so. The order of iterations is inverted—thaultimately explain. In Sec. Il we present the numerical pro-
last point of the trajectory is the inner argument in this itera-cedure used to generate the fractal clusters, and in Sec. Ill
tion. As a result the transition fro®(™(w) to ®(""(w) is  give the necessary mathematical background to describe
not achieved by one additional iteration, but by composingsuch mappings. In particular, we discuss the Laurent expan-
the n former maps Eq.(8) starting from a different seed sion of the conformal map from the unit circle to time
which is no longerw but N (w). particle cluster; the coefficients of the Laurent series have

n+1

According to the above discussian, is given by

n
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FIG. 2. Typical clusters of
a=1/2 ; a=2/3 a=4/5 10000 particles. The black re-

I gions represent the interiors of the
images of the unit circle under the
map ®°%9 for three values of
a. The large enclosed areas for the
a=3 cluster are the unwanted
“fillup” events discussed in Sec.
Il. However, the black area in the
a=§ cluster is only a numerical
artifact; that region is not resolved
by double precision arithmetic.

interesting scaling behavior with the size of the cluster whichapproximately constant in the plane around the “bump”
is intimately related to the fractal dimension of the clusterof ¢. If the particles are elongated along the cluster, then the
and to the generalized dimensions of the harmonic measurgariation of the field along the cluster affects the shape: large
In Sec. IV we present numerical results regarding the scalingtherwise deeply invaginated regions, whérkis large, are
properties of averages of the Laurent coefficients and of théilled up with a single particle, and the resulting cluster tends
size parametek,. The results are accompanied by a theo-to be more compact. This effect, slightly noticeable even at
retical analysis and interpretation. In Sec. V we concludea=2/3, is quite significant at the otherwise natural choice of
with some remarks on the road ahead. a=1/2, where the particles are half circles. In Fig. 2 we
show such a cluster and point out the area filling dark regions
which represent such unwanted events. The other extreme,
Il. NUMERICAL PROCEDURE when the particles stick out of the cluster, leads to sensitivity

The algorithm simulating the growth of the cluster is t(_) var_iations in _the field going_vvayfrom the cluster. Esp_e-
based on Ref[10]. The n-“particle” cluster is encoded by cially if a bump_ is grown on a tip of a branch, whe.re the field
the series of pair§(6; ,\;)}"_, . Having the firsm—1 pairs, de,c.reases rapu;ily as one goes away from thésjch that
the nth pair is found as follows: choos@, from a uniform ~ ®' increases significantly then the map of the bump gets

distribution in [0,27r], independent of previous history. magnified, resulting in particles of very unequal sizes.

Then camputa, rom Eq. (7). where the derivative of the - & IEERRER 8 S L e ruetires, he prob
iterated function®™~Y involves ¢, , , ¢ '

i ] n-2%n-2"  |em of fill-ups does not go away: in a few rare cases the
P\, 3.0,_, ©LC., computed, respectively, at the pointSparticle—if it happens to land on a place where”| is
el ¢y o (€', ¢y o (&r .4 (€'), etc. large—is significantly distorted. The net effect is that large
n-1'n-1 n—-2'"n-2 n-1'Yn-1 .
Notice that the evaluation of both’ and® after the addi- areas surrounded by the clusterhere the growth probabil-
tion of one particle involve®(n) operations since the seed ity is smal) are filled up entirely by one distorted particle.

changes at everg. This translates intm? time complexity ~ For the value ofa=1/2 it appeared that the errors may be
for the growth of am-particle cluster. This is inferior to the unbounded. Our numerics indicates thatder2/3 the errors

best algorithms to grow DLAusing hierarchical maps2], ~ Were bounded for the cluster sizes that we considered. We do
with close to linear efficiendy but the present algorithm is NOt have a mathematical proof of boundedness of the errors,

not aimed at efficiency. Rather, it is used since the Laplacia@nd our disregard of this danger _is only based on the sensible
field and the growth probability which is derived from it are @Ppearance of our clusters at this valueaof

readily available at every point of the cluster and away from

it. The typical time to grow a 10 000-particle cluster is 8 . MATHEMATICAL BACKGROUND

minutes on a 300 MHz Pentium-II.

Naively one would expect that any choice ok@<1
would yield DLA clusters, sinca only determines the shape
of the particledthe aspect ratio iga/(1—a) for small\],
and the microscopic details of the particlescept their lin-
ear size should not affect the global properties. Three typical
clusters with particles of various aspect ratioare shown in Since the function$>((w) and ¢, ,(w) are required to
Fig. 2. We mark in black the interior of the image of the unit be linear inw at infinity, they can be expanded in a Laurent
circle under the conformal mag™(w). The objects look series in which the highest poweris
very much like typical DLA clusters grown by standard off-
lattice techniques, and in the next section we demonstrate @™ (W)=F{Pw+F{"+FMw 1+ FMw 2+ ..,
that they have fractal dimensions in close agreement with the (13)
latter. Fora significantly different from 2/3, disadvantages of
the algorithm get amplified. Since the functional form¢ofs
fixed (only the size and position of the “bump” change

X . . -, Where
particles of constant shape and size are obtained only if the

magnification factorf®™~1’| (the inverse of the fieldis fi=(1+\)3,

In this section we discuss the Laurent expansion of our
conformal maps, and introduce the statistical objects that are
studied numerically in the next section.

A. Laurent expansion

¢)\’9(W)=flw+f0+f_1W_1+f_2W_2+~-~, (12)
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2anel? We found that for a range of spanning the interval
fo=————, [1/3,8/9 the dimension is constant, around 1.7.
(1+n)t2 We can infer from Eq(16) that the sum in Eg(15) which
_ subtracts positive contributions frofi{"|? contains terms
2ane?” [ 2a-1 that cancel the behavior of® (remember thab < 2), leav-
*1_(1+)\)2—a\ 1+ 2 ' ing a power of unity for the scaling d,. Indeed, we will

show below both numerical and theoretical evidence for the

. i i (M2 ich ig i -
2anedi? 282—3a+1 , scah{]g _:)hehggnor of th¢F'")|* for k>6 which is in agree
o= 1T 2(@- ) ————\ ment withn®=. o ,
(1+N) We can give a direct physical interpretation for the coef-

_ _ N ficients F{") by comparing them to the coefficients of the
The recursion equations for the Laurent coefficients Ofseries forwr (™, cf. Eq. (2):

®(M(w) can be obtained by substituting the seriesboind
¢ into the recursion formul&6). We find

o Ui
TM(z)=In(z)—In(rg)+ >, —. 1
FIN =D 13 (2)=In(2)~In(ro)+ 2 = (17)
FV=p~ VW = The coefficient of Ing) is unity so that the electric flux is

unity. This corresponds to the normalization of the probabil-
F@i: |:<l”*1)f<,”;+ FQ”{”/f(l”), (14) ity. The constant is the Laplace radius which is the radius
of a charged disk which would give the same field far away.

£(n) The rest of they,’s are conventional multipole moments.

FM_p-Dfn) _p-1_0 4 £(n-1) The relations between the Laurent coefficientsof

-2 1 -2 -1 F(N)y2 -2 flny2* (n)
(f1") (f1") and®'™ are
We note that then dependence of" follows from the de- ro=Fi,

pendence on the randomly chosénat thenth step, from

which follows the dependence &f, onn. The latter is, how- _
ever, a function of all the previous growth steps, making the g
iteration (13),(14) rather difficult to analyze.

A general relation between the Laurent coefficients is fur- _
nished by the so-called area theorem which applies to univa- V2=
lent mappings. Since our maps solve the Laplace equations
with boundary conditions only at infinity and on the cluster 1
boundary where the potential is zero, they mapuhglane 3= _|:72|:§_2|:0|:71|:1_ -
uniquely (and with a unique invergeo thez plane. In other 3
words, the pressure lines and the stream lines are nondegen-
erate. Such mappings have the prop¢it$] that the area of 3 1
the image of the unit disk in theth step is given by Y4=—F _3F3— 5F%1F§—3F1F3F—1—3F72F0F§— ZFé-

Fo. (18)

F3,

S,=|FM]2- > KFM)2. (15) The first line shows thalF,=r,, the Laplace radius, in
k=1 accordance with the one-fourth theorem.
The second line shows that the dipole momentis

A second theorem that will be useful in our thinking is a —F,. We can interpret this coefficient as a distance, the
consequence of the so-called one-fourth theorem, see Appefandering of the center of charge due to the random addition
dix A. There a statement is proven that the interior of theof the particles. We will take the point of view that this
curve{z:z=®™(e'%)} is contained in the plane by a circle  quantity is less “intrinsic” than the others to the dynamics
of radius 4{". Now as the are8, is obtained simply from  of the DLA growth. In fact, if we seFy= ;=0 (we could
the superposition af bumps of roughly the same argg, it imagine shifting the cluster as we grow, itve can rewrite
has to scale aS,~n\g, for largen. On the other hand, any the rest of the equations:
typical radius of the cluster should scalerd® )\, whereD

is the dimension of the cluster. We can thus expect a scaling —F_1~,lrg,
of F{" that goes as
—F _,~ylr3, 19
(Y~ s (16) 2~ P3lrg (19
We note in passing that this scaling law offers us a very —F73~(l//4+§¢§)/f8,

convenient way to measure the fractal dimension of the

growing cluster. Indeed, we measured the dimenBidor a  etc. This leads to the interpretation Bf | in terms of the
range ofa in this way by averagindf(l") over 100 clusters. multipole expansion of the electric field.
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B. Statistical objects and the relations 1.3 . — T T
to generalized dimensions [
Our growth process is stochastic. Accordingly, it is natu- 1215 [ ]
ral to introduce averages over the randomness. In our think- 2,1_71/ J
ing there are two important averages, one over histories of 11 } ]
the whole random trajectofys;}(_,, and the other only over
the random choice of), at thenth step. To distinguish be- 1.0 - 1 1
tween the two we denote the first by angular brackets and <
refer to it as “history average,” while the second is denoted 0.9 1L
by an overbar and referred to as a “cluster average.” There
is a possibility that for very large clustera{«) the two 08 L i
averages result in the same numbers. We will refer to such a
property as “self-averaging.” 07 b |
The cluster average of moments Xof offers a relation-
ship to the generalized dimensions of the harmonic measure 06 L L
[14]. The latter are defined by dividing the plane into boxes T 4 0 1 2 3 4 5 6 7 8 9 10
of sizee, and estimating the probability for a random walker k
to hit the piece of the boundary of the cluster which is in- £ 3. The scaling exponents of the Laurent coefficients:
cluded in theith box by (|F_y/?~n* The values are obtained by averaging 400 indepen-
pi(e)=|Eile, (20 dent realizations of 10 000 particle clusters.
IV. NUMERICAL RESULTS
where|E;| is the modulus of the electric fiel¥¥;| at some AND THEIR INTERPRETATION
point in theith box. The generalized dimensions are defined ) ) )
by the relation In this section we present results on three topics.
(i) The coefficients of the Laurent expansion. The scaling
N(e) €\ (@=1)Dg behavior of these quantities is described and discussed in
121 p?(e)~(§) : (2)  sec. IVA.

(il) The microscopic fluctuations in the conformal map.
We show that the assumption of self-averaging is valid for
Eq. (25 and that the multifractal exponents are in a good
_agreement with the known ones.

whereN(e) is the number of boxes of sizethat are needed
to cover the boundary, aridis the linear size of the largest
possible box, which is of the order of the radius of the clus

ter. Substituting Eq(20) we find (iii) Dlstrlbutl_on functlons_ of the Laurent coe_fﬂCIents. We
analyze numerically the width of those functions and find
N(e) | (@-1Dg that F{" tends to a deterministic function of We attribute
eq*12 |Ei|qe~(§> (22)  this effect to nontrivial temporal correlations in the field, and
=1

give some evidence of their existence.

Taking e very small, of the order of/\o, and assuming that
the field is smooth on this scale we have

A. Laurent coefficients of (™

All the coefficients of the Laurent series & (w) are
L B B complex numbers except; which is real by the choice of
fo |Ei[%ds~(YAg)* ™9 n(*~9Pa’®, (23)  zero phase at infinity, see E¢L). Most of our discussion
below pertains to the amplitudes of the coefficielRfs We
whereL is the length of the boundaryls is an arc-length need to stress, however, that the phases_ are not_irrelevant. If
differential, and we have used the scaling law-S,/e2  We attempted to use th_e correct amplitudes with random
~(Rl )P, phases, the resul_tlng series W|II_ in general not pe cor)fprmal.
The connection to our language is obtained by consider- One of the main results of this paper is that in addition to
ing the cluster average of powers f. We grow a cluster the expected scaling behavior of the linear coefficiekY
of n—1 particles, perform repeated random choices ofgiven in Eq.(16)] the rest of the amplitudes of the Laurent
growth sites(without growing, and computex,, for each  coefficients|F"| exhibit also a scaling behavior. We find
choice. The cluster average can be represented as an integfgimerically that in the mean the magnitudes of the Laurent

over the unit circlerd, and is given by coefficients scale as powers waf
2 (IF1?)y=ayn™. (26)
Aﬁz(l/ZW)J \l(0)dé. (24 , o . .
0 The exponentx, are given in Fig. 3. We first discuss the

consequences of the scaling behavioF§P .
Recalling Eq.(7) we observe thak3(6)=\JE(6)|?%. The
last relation, Eq(5), and Eq.(23) imply the scaling relation 1. Scaling of F;
= 24Dy 1 /D The scaling behaviof16) has immediate consequences
Ap~n 2ar1te, (25 for the scaling behavior of the bump aregs. The connec-
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4

tion appears from the recursion E4.3) of F{" which to- 10 : :
gether withf;=(1+\)? reads

slope = 0.7

F&“)=kH [1+N ]2 (27)
=1

Taking history averages we find

<F<1“>>=<kH1 [1+xk]a>, (28)
In(F)~a2 (W), (29)
dIn(F{M)y/dn~a(\,). (30) n

The last two equations are obtained by expanding the loga- FIG- 4. The scaling of |F{”|?) (thick lines and the sum of

rithm and keeping only divergent sums: both the mean offiagonal termsthin lines, see Eq51)] with sizen. Clearly the two

F(M and the mean of the sum af increase as a function of have different scaling exponents. The solid lines are averages over

nlAII other sums of powers o, converge as a function of 400 clusters of size 10 000, the dashed lines are averages over 30
: k

lust f size 100 000.
n, cf. Sec. IV B. Thus, if we assume thi&{")«n'P, cf. Eq. clusters ot size
(16), fractal scaling of the radiutsee below implies that |, \riting the second line we assumed that the main contri-
[10] bution to the correlation function is short ranged,
(Apy=1/naD. (3D , ’ _ ,
" (2(8)2(s")* [E(9)|E()])~NoRPE(S)[P8(s~8").
In the next subsection we show that this is indeed supported (35)

by the simulations. Note thd® ) is inversely proportional o o o .
to n for any value of the fractal dimensidb. On the other  The justification for this is that the field is expected to exhibit

and the fractal dimensioB. Comparing Eqs(25) and(31)  the support of the harmonic measure where the radius is of

leads immediately to the relation the order ofR. From the estimaté34) and Eq.(23) we then
find
D,=D/2. (32)
2_ Dz
This scaling relation was derived by Halgé5] using much Xo=—p —~064 (36)

more elaborate considerations. We see that in the present
formalism this scaling relation is obtained very naturally. In
fact the present formulation is more powerful since B1)
predicts not only the exponent of the third moment of the
electric field, but also the prefactor. It is also noteworthy tha
the scaling relatiori32) results simply from the existence of
a power law behavior for the radiu&" . 3. Scaling of F_,

in agreement with our measurement>gf. (We used here
D,=0.90 in correspondence with the numerical finding re-
orted in Sec. IV C. Any of the values &, quoted in the
iterature would yieldx, in the range 0.20.1.)

2. Scaling of F, The exponentsx, for k<O are smaller than B but ap-
proach it asymptotically, see Fig. 3. This behavior is ex-
pected from the area theorem, and also from a direct estimate
of the integral representation of the coefficients for lakge

We found the exponent dfF,|?) to bex,=0.7+0.1, see
Fig. 4. To estimate the scaling behavior 6§ theoretically
we note that

1 [L
1 2m 1 L 2__
- (n) - |F_ul ——zf ds

Fo wao o"M(9)de 277foz(s)|E(s)|ds. (33 472],

L
Accordingly we can write xf ds'z(s)z(s')*|E(s)||E(s")|eKL(s)~ o)),

0
L L 3
|F0|2=(1/4w2)f dsf ds'z(s)z(s')*|E(s)|[E(s")] (37)

0 0

. In Appendix B we show that this integral can be estimated
N)\Osz ds/E(s)|2. (34) u§ing the_ multifractal formalism of the harmonic measure
0 with the final result
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FIG. 5. Scaling of the moment&\J) with powers ofn. The
curves from top to bottom correspond tp=0.5,1,1.5,2,2.5, 3,
and 3.5. The exponents 2qD,,,/D are in agreement with the-
oretical predictions(see text and with numerical values for the
generalized dimensions in the literature.

|F_k|2~(R/4k)2f da(2k/ )@/ (39)

where @ and f(«) are the strength of singularities of the

FIG. 6. The rescaled standard deviatiefi’ of the Laurent co-
efficients of the mayisee definition in teyt For k# 1, o{" fluctu-
ates around unity, corresponding to broad distributions kK=ot it
tends to zero an—, demonstrating the asymptotic sharpness of
the distribution ofF;. The solid lines are averages over 400 clus-
ters of size 10 000, the dashed lines are averages over 30 clusters of
size 100 000.

ical prediction ofDy=D~1.71 andD;=D/2. This agree-
ment is a strong indication for self-averaging at least for the

harmonic measure and the dimension of the sets of pointgurpose of computing moments bf, (i.e., (\&)~A9).

that exhibit these singularities, respectivgd)}. For our pur-
poses the important consequence of Bp) is the scaling
relation (assuming self-averaging
(IF-d?=xon?Pg(k), (39
with g(k)~1/k?fda k'(@'® One knows from the theory of
multifractals thatf(a)/@<1, and therefore we can bound
g(k) from above and from belowAk 2<g(k)<Bk™ 1. This

is in accord with our numerical simulations in the range 3

<k=10, although the calculation in Appendix B is only
valid for large values ok. We found agreement with Eq.
(26) with x,—2/D anda,~k™ ¢ with 1<a<?2.

C. Fluctuations of the averages

We previously discussed the scaling behavior ®Bf)|2
and showed that their history averages obey (26). How-
ever,|F")| are random variables with broad scaling distri-
butions. Figure 6 describes the rescaled standard deviation
o™ of the Laurent coefficients,

o= VAR = (FDRDP), (40

for k=1,0,—1,—2 as a function of the cluster size As is
seen clearly from the graphs the widths of the distributions

Note that this scaling behavior has important consefor all k<0 tend asymptotically to a finite value. This is the

quences for both the area theorem and for conformality. Abnormal behavior for scaling distributions. The exceptional
solute convergence of the SLE’E:]_HF(,“HZ in the area theo- case isk=1. Even though it exhibits a scaling law of the
rem requirese>2, which is not the case. The situation is type (26) (see Sec. Ili, with

even more serious for the existence of conformality. To en-
sure the latter the surB;_,k|F")| must exist. This would
requirea>4. The reason that the sums exist in the theory is
only due to the ultraviolet cutoff ai/\o. This cutoff intro-

2
Xl:6~ 118,

duces a highest in the Laurent expansion which we esti-
mate as 2rk,e~L/\Ao~n WhereL is the perimeter of the
cluster.

the rescaled distribution width ¢F{™|? tends to zero as
goes to infinity. This means that the rescaled distribution
function of F{" tends asymptotically to @ function. The

importance of this result for the evaluation of the fractal
dimension of the cluster warrants an immediate discussion of
this sharpening phenomenon.

Here we test Eq(25. In Fig. 5 we display double-  The conclusion of the numerics % is that there exists
logarithmic  plots of (\}) vs n for =05, a universal constart()\,) such that
1, 1.5, 2, 2.5, 3, and 3.5. The values of the exponents de-
rived from our simulations agree very wédllithin the un-
certaintieg with the generalized dimensior, obtained in
the pasf5] for D,, ... ,Dg using standard methods. In ad- wherec(\,) is cluster independent. Moreover, we found that
dition we reproduce numbers in agreement with the theorete(\o) =c+/\o, Which is in accordance with the role played

B. Multifractal exponents

n~YPEM_c(Ng), (42)
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1

by VAo as an ultraviolet inner length scale, which is the only 10 .
length scale that appears in the mappings. Note that the con-
stantc in Eq. (41) depends on the parame&rWe measured

c values of 0.6, 0.87, 1.2, and 1.8 farvalues of 1/3, 1/2,

2/3, and 4/5, respectively.

The observed sharpening is not obvious since we know
that F{" is built from a product of random variables, ,
whose moments change within multifractal manner ac-
cording to Eq.(25).

One could attempt to connect the sharpeninE@? to the
existence of other sharp functions mf Considering the full
expansion of Eq(27) we find

10

[ <A 8 s £ (<A > <A )

1 n
“InFP=> In(1+\))
a i=1

10° 10 ?

n 1 n 1 n
n
=D N— 2 NS N (42
i=1 i=1 i=1 FIG. 7. Time-angle correlations of the field. In order to reduce
statistical noise, the values plotted are averaged in [in.1n].

10

We could understand E¢1) easily if all the sums of all the

powers of\; converged to constants, L . ) - .
The second line is obtained becau'-'sl“é1 is proportional to

n 2 the radius of the whole cluster and should not be correlated
2 N— Blnnecl, (43)  with \,. The crucial approximation comes next:\if, and
=1 Am Can be treated as independenttior m’, then(sinceé,,
and 6., are independehtq. (45) simplifies to

n
G (O )y () 2
= <)\m}\m’e m-om >N<}\m>5m,m’ (46)

with ¢; cluster independent. In fact, this is not the case. The

sums of powers are not cluster independent. A clear demon- n

stration of this is a simulation that we performed in which  ([F§V12~ X ((F{™)2)(AZ)~n1*2P~4Ps/D_ 03
the initial condition was very far from a circle. The indi- m=t 47)
vidual sums in Eq(42) were very different from the average
values, but neverthele&_;In(1+\;) converged to the right
value. It is our conclusion that each of the sums in &§)

is not cluster independent, and yet somehow the resumm
form is cluster independent.

This remarkable sharpening calls for further discussion; it
appears that its interpretation requires better understandi
of the time correlations of the field: an independent choice of™" ' ) ) )
random realization of a series af according to their mul-  ~ " 9). Their equations of motiof14) differ, fO{nﬁrlr;gIIAn,
tifractal distribution can only generaf™ with the proper PY WO terms only. The first one is the tenpF=; * in the

scaling exponent but cannot trivially yield a highly peaked9ht hand side of the equation fér-, which is absent in the
distribution ofF(ln). Therefore we consider now some evi- quation forFo. We checked numerically that neglecting

dence for the existence of temporal correlations. this term leads to a very small change in the exponent. The

. . i(0 — 6, ) .
The first outstanding evidence appears in the context Oﬁgopd d|frererc11cg is that t@ﬁjﬁrﬂ"ky—freh " hn ‘ n Eqr.]
the scaling behavior ofy, which was discussed in Sec. ) is replaced bynh, e . - The change in the

IVA. We show that if we assume that there exist no corre-£Xponent can therefore be directly attributed to the existence

lations between different growth stages, the exporgntill of Wpclryagtttlme-argle correle_ltlolrl\s.th i | |
be very different from the measured and calculated value. € tned to analyz€ numerically the lime-angie correla-

From the recursion relations of the Laurent coefficidig. ~ 1ONS (Nphp- €™ %)), The results for somd’s are
(14)] we can estimate, in the limit of largewhen\,, is very shown in Fig. 7. It ail(%piagrs )that as we increase thielglze of the
small on the average, ensemble{\ A ,_ €' "™ fn-k )_—>0 with the usuaN de-
pendence on the ensemble size. If we believe these numerical
n n results(doubts may exist due to the relative smallness of the
(FM~ > X (FIMEMIN A el Om om)) ensembles analyzgdthen the previous results must be re-
m=1m'=1 lated to more subtle correlation of higher order nature.
noon Lastly we would like to discuss the importance of early
Nmzzl mzl (FSMEMY 0\ el Um0y (45) j\}:ges of the growti{F{™) might be written in the following

The numerical simulation resulted in an exponent of the or-
r of 0.7, in serious disagreement with E47). We think
that the assumption of independence, &®), is the culprit.
Another fact which illustrates the importance of the time-
gle correlation Eq46) is the difference between the ex-
onents ofFy, and F_; ({|Fo|?)~n%7" whereas(|F _,|?)



1376 BENNY DAVIDOVITCH et al. PRE 59

1.04

k=10

<Ah > [ {<h> <h,,>)

FIG. 8. The ratio ofF; approximated by neglecting time corre- % 0 PP 0 10
lations and the fullFy: I ((1+N\)®/I 1 (1+ X)) (thick n
line). The quantities(IT¥_ 1(1+)\ YO ((1+X)?) are also ) ) i
plotted fork=10, 100, and 1000. FIG. 9. Correlations of the field. In order to reduce statistical

noise, the values plotted are averaged in pmd.0In].

n)> <H (1+\) > (48) paper we examined carefully the numerical procedure used
to generate the conformal maps, and pointed out the advan-
tages and the shortcoming of the algorithm.
[see Eq.(13)]. Neglecting the correlations in time in the  The results of this paper pertain to the scaling behavior of

above product one may approximate the Laurent coefficients,| of the conformal maghb™ and
n n of the moments oh,, which are related to moments of the
field. We presented a theoretical discussion of the exponents
. a ~ . a
<iH1 (1+X0) > H ((1+2)%. (49 characterizing moments ¢oF,| and\,. We pointed out the

relations to the multifractal analysis of the harmonic mea-
Numerical evaluation of the two objects in E@9) shows sure, and derived scaling relations. Of particular interest is
that they differ by a few percerisee Fig. 8 The numerics the scaling relatioD ;=D/2 that was derived by Halsey and

indicate the scaling laws which appears here as a very natural consequence of the
, formalism.
B 20 One important result which is not adequately interpreted
<1:[ 1+)) > CAon (50 in this paper is the sharpness of the distributiorFef This

coefficient is proportional to the radius of the cluster, and its
n sharpness is directly related to the existence of a universal
H ((1+1)¥= ci\gn?P, (51) fractal dimension independently of the details of the shape of
i=1 the cluster. Understanding the sharpness appears to be con-
nected to understanding the existence of universal fractal di-
mension, and we believe that it poses a very worthwhile and
focused question for the immediate future.

wherec,/c=1.06.
To gain further insight we checked also the object

<H (1+>\i)a> IT «@a+n® ACKNOWLEDGMENTS
=1 i=k+1

This work has been supported in part by the Israel Science
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and late stages of the growth are much more important thaGrant No. DEFG-02-95ER-45546, and they would like to
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We checked also two-point time correlatiofs,\,,_)

for somek’s. The results are plotted in Fig. 9. As it turns out APPENDIX A: CONSEQUENCES

from this graph, (\pXp-i)~(Nn){(Xn-k) UP to statistical OF THE ONE-FOURTH THEOREM

fluctuations.
In this appendix we prove that every univalent function of
V. SUMMARY AND DISCUSSION f[he type(1l) is bounded ina c?rcle of rgdiusFL]L. Thi; fact
is based on two basic properties of univalent functipi.
The language proposed by Hastings and Levitov appears (1) There is one-to-one correspondence between univalent
to offer many appealing features. It generates DLA clustergunctions of the formf(w)=a;w+a,w+ --- (S clasg and
in such a way that the conformal mdg" from the circle to  univalent functions of the formg(w)=a,w+a_;/w
the boundary of the cluster is known at every instant. In thist a_,/w?+ - - - (3 class. This correspondence is given by
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g(w)—g(1iv) 2. (A1) singularity « to the integral and the number of such contri-
butions,(k,n) [9], then one can write

(2) The Koebe one-quarter theoreihe image of the unit
disk under every function of class S contains the di$k| z
<4|a,|.

Consider a function®(w) of the form (11). This is a (FM2)~ > |14 (k,n)|?
3 -class function with linear coefficierft; . Let us denote its ! :
conjugatdby Eq.(Al1)] Sclass function a®(w). The linear
coefficient ofP is 1/F,. Consider now the smallest circle in ~f da N, (k,n)[l 4(k,n)|?, (B5)
the z plane which bounds the image of the unit circle under
®, {z:|zZ]=R}. From Eq.(Al) it is clear that the circle
{z:|z|=1/R} is the largest circle which is contained in the
image of the unit disk unde?. Thus the Koebe one-quarter
theorem ensures that R#1/(4F;), which implies R
<4F;.

where

Ia(k,n)Ef(AS) |E(s)|z(s)ds. (B6)

APPENDIX B: ESTIMATE OF THE SCALING

(n))2 . L
BEHAVIOR OF (|FZy|*) To estimateV,(k,n) we recall that by definition

To estimate the largk and largen dependence of "),
the components are first written as integrals over the bound-
ary of the cluster

s+As
Aezf |E(s")|ds'~(As/R)“. (B7)
S
o o From Eq.(B4)
F&“§=(1/2w)f dM(e'%)edg
0 (As),,~R(r/2k) Y. (B8)

L .
=f z(s)e* S| E(s)|ds, (Bl)  Using Eq.(B8) and the fact that the fractal dimension of
0 singularities of sizex is f(«), we can now also estimate the
number of singularities of sizee which contribute to the

where .
integral as

S
0(5)=J |E(s)|ds'. (B2)
° N (K)~[RI(As) ]/~ (2k/ )@, (B9)
For the purposes of Sec. IV we are interestediAff’|%:
To estimatgl ,(k,n)|? we note that the major contribution to
IF(M|2= JLsz(s)z*(s’)e‘kla(s)‘a(s'” Eqg. (B6) comes from the support of the harmonic measure
K 0Jo where|z(s)|~R. Accordingly

X |E(s)||E(s)|ds dS. (B3)
2
For a given value ofn (or equivalently, ofR~nP), an II,|2~R2 f IE(s)|ds| ~R2(A6)2~R3(27/k)2,
examination of Eq(B3) shows that for largé the fluctua- “ S
tions in the values of the integrands depend more crucially (B10)

on the phase variations than on the field and radius varia-
tions. The phase varies appreciably whénchanges an where we have made use of E¢B2), (B4). Combining Eq.
amount (B5) with the estimate$B9) and (B10) then yields

A O~ (m/2k) (B4)
M2y, 2 f(a)la

and therefore it is useful to split up the integral Eg1) into (P~ (Rik) f da(2kim) ' (B11)
a sum of essentially independent contributions coming from
the electric field singularities with exponerds This expo- We note that the approximation adopted in this appendix
nent is determined by the scaling law relating the measuréiffers from thes-function assumptioni35) in asserting that
(which is proportional toA#) of a box to its size for high values ok the variation of the phase dominates the
(AS),:A0~[(As),/R]* [9]. The integral is split into con- decay of the integrand compared to the rapid decorrelation of
tributions made of contour sections of different lengthsthe field. One would guess that fhiof the order of unity the
(As), dependent on the singularity but each giving rise tofield decorrelates faster due to the rapid variation over the arc
the same chang& 6. If one can estimate both the magnitude length. For high values ok the phase decorrelation is
of the contribution of a specific multifractal electric field strongly amplified and we adopt the assumption used here.
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