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We explore the macroscopic consequences of lattice anisotropy for diffusion limited aggregation �DLA� in
three dimensions. Simple cubic and bcc lattice growths are shown to approach universal asymptotic states in a
coherent fashion, and the approach is accelerated by the use of noise reduction. These states are strikingly
anisotropic dendrites with a rich hierarchy of structure. For growth on an fcc lattice, our data suggest at least
two stable fixed points of anisotropy, one matching the bcc case. Hexagonal growths, favoring six planar and
two polar directions, appear to approach a line of asymptotic states with continuously tunable polar anisotropy.
The more planar of these growths visually resembles real snowflake morphologies. Our simulations use a new
and dimension-independent implementation of the DLA model. The algorithm maintains a hierarchy of sphere
coverings of the growth, supporting efficient random walks onto the growth by spherical moves. Anisotropy
was introduced by restricting growth to certain preferred directions.
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I. INTRODUCTION

The diffusion limited aggregation �DLA� �1� model has
been the focus of a great deal of research due both to the
fractal �2–4� and multifractal �5–7� properties of the clusters
it produces, and to its underlying mathematical connection to
diverse problems including solidification �8,9�, viscous fin-
gering �10�, and electrodeposition �11,12�. Its key feature is
that the surface irreversibly absorbs an incident diffusive
flux, and growth velocity is locally proportional to that flux
density.

The problem is mathematically ill-posed unless the
growth is constrained to remain smooth below some “ultra-
violet cutoff” length scale, which in most simulation studies
has been supplied by a particle size or lattice scale. Experi-
mentally the cutoff scale can be more subtle, for example in
solidification regulated by surface tension it varies with the
local incident flux density raised to power − 1

2 . Interest has
also focused on the more general dielectric breakdown
model �13� cases where growth velocity is proportional to
the incident diffusive flux raised to some power �.

A feature of real solidification patterns is that they mac-
roscopically strongly favor growth in specific directions, cor-
responding to microscopic crystal lattice directions. The ten-
dency of snow crystals to grow six arms is well known, and
lately this has been replicated in controlled laboratory studies
�14�. Cubic crystalline anisotropy also produces striking an-
isotropic “dendrite” growth: succinonitryl is the classical ex-
ample �15,16�, and lately colloidal crystal exemplars have
been observed in growth under microgravity �17,18�.

The manner in which surface tension and its anisotropy
select the morphology of growing tips has been the subject
of intense analytical study �19�. Full numerical simulations

of the continuum growth equations have confirmed the
theory and extended the spatial range out to growths with
significant side-branching �20,21�, but none of these studies
could claim to reach the asymptotic regime of fractal growth.

Simple lattice and particle-based simulations differ by
having fixed cutoff scale and lacking realistic local detail, but
they can reveal the limiting behavior of highly branched
growth. In two dimensions, a range of different angular
anisotropies has been shown to be relevant both by theory
�22,23� and through simulations yielding self-similar den-
dritic morphologies. Our principal objective in this paper is
to deliver the same level of understanding for three-
dimensional simulations, which have not been systematically
explored in the literature to date. In a paper to follow, we
build on this to investigate what happens under the analogue
of surface tension control �24�.

We first introduce a new implementation of the DLA
model that involves enclosing the aggregates with a series of
coverings, each made up of a set of spheres, and show that it
can successfully grow large, three-dimensional DLA clusters.
This algorithm entails no intrinsic lattice or orientational
bias, giving us a well-posed isotropic reference. It is the
combination of this flexible new algorithm with advances in
computing power which makes it feasible to study more than
just the isotropic case of DLA in three dimensions.

We show how anisotropy can be introduced to the algo-
rithm by confining growth to certain preferred directions, and
combine this with a noise reduction technique in which
growth is only permitted after H�1 random walkers have hit
a growth site on the cluster. We characterize growths using
anisotropy functions which are sensitive to the growth of
fingers along the possible favored directions. We present a
systematic comparison of the evolution of growths within
cubic symmetry, in particular the respective cases where
growth is favored along the nearest-neighbor directions of
one of the simple cubic, body-centered-cubic, and face-
centered-cubic lattices. We also study growth with uniaxial
bias, where growth in polar and planar directions is inequiva-
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lently favored, particularly including the three-dimensional
hexagonal lattice.

We show that sc and bcc aggregates approach universal,
anisotropic asymptotic states independent of the level of
noise reduction, and that the approach to each of these states
follows a single mastercurve. fcc anisotropy is much slower
to emerge, and we show that while high noise reduction clus-
ters appear to approach an anisotropic fixed point in the same
fashion, the existence of a different fixed point�s� for low
noise reduction growths cannot be ruled out. For growth with
uniaxial bias, we observe limiting polar-to-planar aspect ra-
tios of the clusters which depend continuously on the level of

input bias. Thus for the three-dimensional hexagonal lattice
there appears to be a tunable continuum of asymptotic states.

II. GROWTH ALGORITHM

The original DLA model takes as its starting point a single
fixed seed particle. A random walker is released from some
distance away and diffuses freely until it hits the seed, at
which point it sticks irreversibly. Further particles are re-
leased one at a time and a fractal cluster is formed. Early
simulations were done on �mostly cubic� lattices, since this
reduced the computer run-time required, and cluster sizes
were limited to N�104 particles.

Modern DLA simulations are performed off-lattice and
use a number of algorithmic tricks to speed up the growth, to
which we describe a new contribution below. Since a diffus-
ing particle should first approach the aggregate from a ran-
dom direction, each new walker can be released from a ran-
domly chosen point on a sphere that just encloses the cluster.
When a walker is far from the cluster it is allowed to take

FIG. 1. �Color online� A three-dimensional DLA cluster grown
using the new algorithm containing N=106 particles, and the fractal
dimension Df plotted against the deposition radius Rdep obtained by
averaging over a sample of 100 such clusters. Df converges to a
value of �2.5, in agreement with previous results.

FIG. 2. �Color online� Anisotropic DLA clusters grown by the
new method: �a� simple cubic case, and �b� body-centered cubic
case. Each contains 3.16�104 sites, grown under noise reduction
such that sites were grown after capturing H=100 walkers.
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larger steps than when it is nearby, as long as it never takes a
step larger than its current distance to the nearest point of the
cluster. A major development was the Brady-Ball algorithm
�25�, which involves covering the cluster with a series of
coarse “mappings,” to give a lower bound on the distance to
the cluster without looking up the position of every cluster
particle. A further refinement was invented by Tolman and
Meakin �26�, whereby the coarse mappings cover the cluster
in a manner constrained to give a margin of safety: this en-
ables much simpler �e.g., spherical� moves to be taken. Clus-
ter sizes of N�107 are easily obtainable by these methods.

A. New data structure

Our new algorithm is a fundamentally off-lattice and
dimension-independent development of the Brady-Ball-
Tolman-Meakin algorithm. We represent the cluster in terms
of a set of zeroth level spheres, and we maintain a hierarchy

of coarser scale sphere coverings of these labeled by higher
levels. For simplicity of exposition, we describe the case
where the physical cluster particles are monodisperse, in
which case it is convenient to choose the radius r0 of the
zeroth level spheres to correspond to the center-to-center dis-
tance between contacting particles �“sticking diameter”�.

Higher level coverings, n�0, each consist of a set of
spheres of radius rn such that every zeroth level sphere is
safely covered, in the following sense: all points within dis-
tance �rn of �the surface of� every zeroth level sphere lie
inside the covering. Each covering is also simply contained
by all higher level coverings. To make this structure easier to
maintain, we further required that each zeroth level sphere
was safely covered by a single �not necessarily unique�
sphere at all levels n�0. We chose the coverings to have a
geometric progression of size, with rn=�1−nr1, and termi-
nated the hierarchy when safe covering of the whole cluster
was achieved by a single sphere.

FIG. 3. Anisotropy function A4 evaluated for �a� simple cubic
and �b� body-centered cubic growths at various levels of noise re-
duction H as a function of the number of sites grown N. Each curve
is based on the average over 10 clusters. Comparing to reference
values in Table I, these confirm quantitatively the visual impression
from Fig. 2 that the respective sc and bcc anisotropies are self-
sustaining under growth.

FIG. 4. �Color online� Mastercurves of the evolution of
A4 for �a� simple cubic and �b� body-centered cubic growths.
These suggest a universal approach to respective sc and bcc
fixed points. The gray curves are fits of the right tail of each
mastercurve to a power-law correction to scaling form, for
simple cubic A4�N ,H�=0.66�1+1.56�k�H�N�−0.14� and for bcc
A4�N ,H�=−0.52�1+0.87�k�H�N�−0.09�. The insets show how the
shift factors k�H� applied to N vary systematically with noise re-
duction parameter H.
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Each sphere at level n�0 carries a full set of downlinks.
These consist of a pointer to every “child” sphere at level
n−1 which overlaps the parent. In addition, we gave each
sphere �below the highest level� one uplink, pointing to one
of its parents; this is only required for the random walks �see
later for choice�.

B. Efficient random walks

The above construction is designed to support efficient
moves for our random walkers. At each step we need only

determine the highest level covering that the walker is out-
side to give a lower bound on the walker’s distance from the
cluster. This in turn entails tracking one �generally not
unique� “enclosing” sphere which the walker does lie inside
at the next level up.

Given that the walker lies inside an enclosing sphere at
level m but outside the lower coverings, we first determine
the nearest distance d from the walker to either the enclosing
sphere or any of its children. The walker can then make a
spherically distributed move of distance d+�rm−1, because
the nearest point of the cluster must be at least this far away.

After making the above move, we first check whether the
walker is now outside the previous enclosing sphere: if so,
we follow uplinks until we find a new enclosing sphere. We
then recursively replace that sphere by any of its children
which enclose the walker, until a lowest level enclosing

TABLE I. Values of anisotropy functions A4 and A6 for growth
along the nearest-neighbor directions of simple, body-centered, and
face-centered-cubic lattices.

Simple cubic Body-centered cubic Face-centered cubic

A4 1 −2/3 −1/4

A6 −8/13 −128/117 1

FIG. 5. �Color online� �a� Anisotropy function A6 evaluated for
fcc growths, based on the average over 10 clusters per curve. Only
at higher noise reduction levels is there a clear indication that the
fcc anisotropy is sustained under growth. �b� Mastercurve for fcc
growths at H�14, which do appear to exhibit a common evolution,
with the corresponding shift factors inset. The gray curve is a fit of
the right tail to power-law correction to scaling form, A6�N ,H�
=0.49�1+3.15�k�H�N�−0.16�.

FIG. 6. �Color online� fcc clusters grown by the new method:
�a� low noise reduction H=6, and �b� high noise reduction H
=100. Both clusters contain 3.16�104 sites grown. The low noise
reduction case appears to show some growth bias to the bcc lattice
directions �corners� as per bcc lattice growth in Fig. 2. The high
noise reduction cluster exhibits growth in all 12 fcc lattice direc-
tions, which correspond to the mid-edges of the box drawn.
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sphere is found again as required for the next move of the
walker.

To ensure that walkers can ever actually hit the cluster, we
impose a very small minimum move distance, typically
10−3r0, when the calculated nearest distance to the cluster is
less than this. Walkers are deemed to have hit the cluster
when they thereby land inside a cluster particle. For standard
off-lattice DLA growth, they are then “backed up” to the
cluster perimeter �by linear interpolation of trajectory� and
added to the cluster.

C. Data update and constraints

When each new particle is added to the cluster, we must
assure that they are safely covered at each level n�0. We
start at the maximum level, and create new maximum levels
above it if required. Then we move down levels to n=1
checking for safe coverage at each, noting the sphere that
provided this. A level n sphere that safely covers our new site
will necessarily overlap that which did so at the previous
level n+1, so the search at each level can be restricted to the

children of the previous safe container. If none of these give
safe coverage, we must add a new sphere at level n, ensuring
that the integrity of the data structure is maintained and all
the required new links are put in place.

The safe container at level n+1 is made the parent of the
new sphere at level n; this is the uplink used by our random
walkers. The new sphere could simply be centered on the
particle we wish to add; however, in an attempt to maximize
the efficiency of our coverings, we offset the new sphere by
a distance �rn in the direction of local growth. This offset
is constrained by our safe coverage requirement to obey
r0+�rn+�rn�rn, which is most severe for n=1 leading to

r1�1 − � − �� � r0. �1�

FIG. 7. �Color online� The relative fluctuation in cluster radius
�at fixed N�, plotted against each of the anisotropy measures A4 and
A6 as clusters grow. Increasing N corresponds to moving generally
downwards in these plots, and the symbols are the same on both
panels.

FIG. 8. �Color online� �a� The evolution of clusters in the plane
of A4 and A6 for bcc and fcc clusters at various noise reduction
levels �always averaging over samples of 10�, with arrows to indi-
cate the direction of trajectories. The inset shows the well separated
evolution of sc clusters in the same plane. �b� The same data can be
interpreted as renormalization flows for how effective parameters
evolve as a function of length scale, leading to the inferred fixed
points shown �crosses�. It is an assumption here that the lowest
relevant angular harmonics A4 ,A6 do capture the key distinction
between the three different applied anisotropies. Bold arrows show
observed evolution whereas gray arrows show the presumed flow
from other starting points. The symbols on both panels are the same
as those in Fig. 7.
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We must now find all the spheres which may need a
downlink to or from the new sphere. To facilitate this, we
impose that each level covering is simply �but with no re-
quired margin� contained within those above it. In terms of
our parameters, this requires rn�1+����rn+1+r0, and
choosing a geometric progression of radii rn=r1 /�n−1 with
��1 and no limit on n then requires

1 + � �
�

�
. �2�

This constraint ensures that our new sphere is completely
covered by the level n+2 safe container, whose child list will
hence contain all the level n+1 spheres that need linking to
the new sphere. Similarly, our new sphere is also covered by
the level n+1 safe container, and so any level n−1 spheres to
which the new sphere needs downlinks are guaranteed to be
children of the children of that safe container. Thus by re-
membering the spheres which provided safe coverage at the
previous two levels and selecting parameter values subject to
the constraints �1� and �2�, we can insert all the necessary
new links, and ensure the integrity of our data structure re-
mains intact as the cluster growth proceeds.

D. Parameter optimization and standard off-lattice results

Taking r0=1 for convenience, a somewhat ad hoc optimi-
zation scheme suggested the following parameters to mini-
mize the run-time of our program in three dimensions:
r1=2.1, �=0.29, �=0.4, and �=0.3. We observe that the
order of the algorithm is close to linear in N, consistent with
the earlier discussion of Ball and Brady �25�. Figure 1 shows
a large off-lattice DLA cluster grown in three dimensions by
the new scheme and the convergence of measured fractal
dimension Df to a value �2.5, in good agreement with pre-
vious simulations �26,27�.

In terms of absolute computational performance, our al-
gorithm which is dimension-independent comes, in two di-
mensions, within a factor of 2 of the speed of the code used
in Ref. �2� which is two-dimensionally specific. So far as we
know, the latter is the most efficient descendent of the Ball-
Brady-Meakin-Tolman codes.

III. ANISOTROPY AND NOISE REDUCTION

We introduce anisotropy to our simulations by restricting
growth to a set of preferred directions, effectively growing
our clusters on a lattice. To this end, we changed the local
relationship between walker capture and cluster growth, so

FIG. 9. �Color online� Clusters
grown favoring six planar direc-
tions and two polar directions.
The parameter p is a measure of
the relative ease of planar growth
compared with polar, with high
values of p favoring planar
growth. Shown are �a� p=1, �b�
p=1.5, and �c� p=4; �d� shows the
p=4 cluster viewed from above,
highlighting the complex six-
armed morphology of these
growths.
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that each zeroth level sphere was a site of walker capture.
Only when such a “sticky site” had captured a set threshold
number of walkers H was growth implemented, and this
growth consisted of new sticky sites offset in each of the
�ungrown� lattice directions.

Requiring H�1 walkers for growth gives better averag-
ing over the diffusion field, amounting to a noise reduction.
Noise reduction has been widely used for on-lattice planar
DLA simulations �28�, where it was found to considerably
accelerate the approach to asymptotic morphology. We ex-
ploit it both for that reason and as a probe of universality by
the concordance of asymptotic behavior between growths at
different H.

A. Cubic symmetry lattices

We have first grown aggregates favoring growth in the
local simple, body-centered, and face-centered cubic lattice
directions, which are relatively straightforward in having all
their nearest-neighbor directions geometrically equivalent.

To characterize the macroscopic anisotropy of these cubic
symmetry lattice growths, we use functions

AK =
1

N
	
i=1

N

aK�xi,yi,zi� ,

where �xi ,yi ,zi� are the coordinates of the ith of N particles
relative to the seed of the growth, and aK are functions with
cubic symmetry constructed out of angular harmonics of or-
der K, with minimal order to distinguish the different lattice
responses of study.

Growth biased toward the direction of simple cubic axes
�relative to the cluster seed� is signaled by a positive average
to the following harmonic of order 4:

a4 =
5

2r4 �x4 + y4 + z4� −
3

2
,

where r2=x2+y2+z2 and the normalization is chosen such
that A4=1 for growth exactly along the lattice axes. Like-
wise, growth along the nearest-neighbor directions of an fcc
lattice gives A6=1 based on

a6 =
112

13r6
x6 + y6 + z6 +
15

4
�x4y2 + x2y4 + x4z2

+ x2z4 + y4z2 + y2z4�� −
120

13
.

The combination of these two enables us to distinguish by
sign growth along sc, bcc, or fcc directions as summarized in
Table I, where values given are for the extreme case of
growth confined to the corresponding nearest-neighbor direc-
tions from the central seed.

B. Lattices with planar-polar bias

Lattices where the natural growth directions are geometri-
cally inequivalent present a greater challenge, because there
is then no natural equivalence to the corresponding local
growth rules. We have focused here on the hexagonal pris-
matic lattice with six equivalent planar directions and two
polar directions of growth. Because the polar directions are
inequivalent �by any symmetry� to the planar ones, we were
naturally led to explore growth with different values of H in
the two classes of direction, with

Hz = pHxy .

The physical significance of p is that it globally biases the
ratio of local growth velocities in the two classes of direc-
tion. We also explore the corresponding planar-polar bias
imposed on simple cubic lattice clusters as a reference.

We found the clearest characterization of the correspond-
ing growth response of these clusters simply by measuring
their aspect ratios, which we calculate using extremal radii in
each lattice direction, that is, c /a in terms of crystallographic
notation.

IV. CUBIC SYMMETRY RESULTS

We grew aggregates favoring sc, bcc, and fcc lattice di-
rections at several levels of noise reduction H from 1 to 100,

FIG. 10. Aspect ratios of �a� hexagonal growths and �b� sc
growths, both with tunable input polar anisotropy p. The data are
from five clusters of each type for each value of p; using both polar
arms and the six �hexagonal� or four �sc� planar arms means each
cluster provides 12 or 8 measurements, respectively, of an aspect
ratio at size N.
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and measured their response using our anisotropy functions
AK. The clusters were grown to size N=3.16�104 particles,
where a site was included in this tally only when it had been
hit H times.

Figure 2 shows an example sc and bcc clusters grown at
the highest level of noise reduction H=100. Both clusters
have major arms in the appropriate lattice directions, and
each arm exhibits secondary growth along the remaining fa-
vored directions.

The measured anisotropy A4 for sc and bcc growths at
various H is shown in Fig. 3. Both sets of clusters appear to
approach universal asymptotic values of A4 independent of
noise reduction: A4�	��0.66±0.02 for sc growths and
A4�	��−0.52±0.02 for bcc growths. These values can be
approached from both above and below, depending on H.

The consistency of the shapes of the anisotropy curves
suggests that for these types of growth there may exist uni-
versal late stage evolution of A4 toward its asymptotic value,
as a function of rescaled N. To test this hypothesis, for each
value of H we shifted the curve along the N axis by a factor
k�H� until, by eye, they appeared to follow a single master
curve. Figures 4�a� and 4�b� show the success of this proce-
dure for both the sc and bcc growths. For each case, we have
used only the results for N�102 in order to be sure of the
correct general trend, and we could not use the very low H
curves because they vary too little across the simulation
range to give sufficient vertical overlap. The figure shows
simple power-law relationships between the noise reduction
H and the shift factors k�H� in both cases, further evidence
that a coherent universal scaling underlies the asymptotic
evolution of sc and bcc growths.

In the sc case, Fig. 4�a�, the shifted curves for values of H
from 3 to 16 are shown. The interpretation of this coherent
behavior corresponding to a single dominant asymptotic cor-
rection to scaling suggests the fitted form shown,

A4�N,H� = A4�	��1 + a�k�H�N�−
� .

Our estimate is that 
sc=0.14±0.02. For H�16, the aniso-
tropy curves lie close to the asymptotic value of A4 and are
rather flat, so the curve-shifting process fails. The curves for
very high values H�28 are increasingly dominated by the
earlier regime of steeper approach to the asymptotic value
from above, which is beyond the master curve and presum-
ably corresponds to a different correction to scaling.

For the bcc case, Fig. 4�b�, the anisotropy is much slower
to emerge from the noise and the curves for all values of H
except the very highest H=100 approach the asymptotic
value from the same direction, and the mastercurve includes
all values of H from 5 to 24. We estimate that the correction
to scaling exponent governing the asymptotic approach of A4
is given in this case by 
bcc=0.09±0.04. Above H=24, the
mastercurve procedure for bcc degenerates in the same fash-
ion as the sc case at large H.

Anisotropy curves A6 for fcc growths are shown in Fig.
5�a�, and it is immediately apparent that their behavior is not
as straightforward as the sc and bcc cases. For high H
growths, A6 appears to be increasing in a fashion similar to

that previously observed, suggesting the existence of a fixed
point of anisotropy for fcc growth at A6�	��0.49±0.02. All
the curves approach this value from below, suggesting that
the fcc anisotropy is much slower to emerge from the noise
than the sc and bcc anisotropies. This seems reasonable
given that the fcc anisotropy has significantly more compet-
ing growth directions than the other growths, and we have
verified that the H=100 clusters do indeed appear to have a
full set of 12 arms �see Fig. 6�b��. A mastercurve for these
higher values of H is shown in Fig. 5�b�, and seems to de-
scribe these results fairly well with a correction to scaling
exponent 
fcc=0.16±0.06.

For low noise reduction clusters H�8, however, A6 does
not increase over the course of the growth, and if anything
appears to be decreasing at large N toward a value of about
zero, suggesting the possible existence of another fixed
point. Visualizations of these low H fcc clusters appeared to
indicate some growth along the bcc lattice directions; Fig. 6
shows an example of this for a low noise reduction H=6
cluster, and for comparison a high noise reduction H=100
cluster exhibiting some growth in all 12 fcc lattice directions.

We were hence led to apply the bcc anisotropy function
A4 to the fcc aggregates, and for comparison A6 was also
evaluated for the bcc and sc clusters. Studies of two-
dimensional anisotropic DLA �29� have had some success
focusing on the interplay between anisotropy and noise in the
growth process, and in this spirit we measured ��R� /R,
where R is the deposition radius of a cluster and ��R� is the
standard deviation of this measurement. This quantity offers
a simple measure of fluctuations due to noise during cluster
growth; ��R� /R is plotted against A4 in Fig. 7�a� and against
A6 in Fig. 7�b� for clusters of each type at various H.

Figure 7�a� shows that for all clusters, the noise decreases
reasonably monotonically as growth proceeds. sc and bcc
growths for all H can be seen to converge toward their re-
spective fixed-point values for A4 of approximately 0.66 �sc�
and −0.52 �bcc�. The fcc growths are all grouped around
A4�−0.2, and this plot fails to explain the behavior of the
low H fcc clusters. However, Fig. 7�b� gives us an idea of
what may be happening: whereas the higher H growths head
toward the same final value �A6�0.49�, the curves for the
low H fcc clusters have not turned toward this value and
appear to be following similar trajectories to the low H bcc
clusters. All the sc and bcc clusters appear to be approaching
common asymptotic values of A6 of approximately −0.2 and
−0.35, respectively.

Further evidence for this explanation of the fcc cluster
behavior is given by plotting A4 against A6 for bcc and fcc
growths in Fig. 8�a�. This clearly shows the bcc clusters
evolving �in a direction dependent on H� toward a fixed
point. The high H fcc growths also head to their own fixed
point, whereas the low H growths are moving in a different
direction, toward the bcc fixed point. The inset of Fig. 8�a�
shows the position of the sc growths in the A4 ,A6 plane; they
can also be seen to approach a fixed point from different
directions depending on H.

This information allows us to build what we believe to be
a consistent picture of the evolution of all three types of
growth, interpreted in terms of how the parameters A4 and A6
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evolve as a function of increasing lengthscale. This is shown
in Fig. 8�b�. Our anisotropy curves have shown the existence
of stable fixed points, for each of sc, bcc, and high noise
reduction fcc clusters: assuming that the variables A4 and A6
capture the key distinction between the different anisotropies
studied, these directly imply the three separate stable fixed
points shown in Fig. 8�b�. There should by symmetry be a
fixed point located at �0, 0� in the A4 ,A6 plane corresponding
to isotropic growth, and it must have one unstable direction
driving the separation of evolution between sc and the other
clusters. The differing trajectories of the fcc clusters depen-
dent on H imply the existence of another fixed point, with
unstable direction separating the flow of low H fcc clusters
following bcc from the flow of high H fcc clusters toward
their own fixed point. The remaining directions in the A4 ,A6
plane associated with all these fixed points we infer to be
stable because of how strongly the simulations at different H
conform to common curves rather than filling the plane. The
scheme of fixed points shown in Fig. 8�b� is thus the simplest
compatible with all the data, and amounts to a qualitative
prediction of the ultimate fate of growths from any transient
combination of A4 and A6.

While selected clusters could be grown a decade larger,
we do not believe it likely that the ultimate behavior of low
noise reduction fcc will be readily clarified by brute force in
this way. Real space renormalization group methods such as
developed in Ref. �29� may contribute given some ansatz to
coarse grain the anisotropy measures; however, our data in
Fig. 7 suggest that the fixed points may be at inconveniently
large renormalized values of noise reduction, H�104.

V. PLANAR-POLAR ASYMMETRY

We next turn our attention to growth on the hexagonal
prismatic lattice and the analogous polar-planar anisotropy
imposed on simple cubic lattice growth. For economy of
computation, we fixed the value Hxy =100 for growth in the
locally planar directions and then varied the corresponding
value for locally polar growth through Hz= pHxy with values
of p ranging from 0.5 to 4. The lowest values of p produce
columnlike growths while the highest resulted in virtually
flat aggregates, and example clusters from the hexagonal
prismatic lattice are shown in Fig. 9.

Measured aspect ratios of the hexagonal clusters are
shown in Fig. 10�a� and exhibit puzzling trends. The results
are from five clusters of size N=105 �sites grown� at each
value of p, although since a cluster possesses six planar and
two polar arms each provides us with effectively 12 mea-
surements of an aspect ratio. Strikingly, the aspect ratios re-
main almost constant for N�103, that is, for two orders of
magnitude, at values tunable by selection of p.

To investigate this interesting result further, we tuned the
polar growth of some sc clusters in the same way. Since
these clusters possess fewer competing arms than the hex-
agonal growths, for the same size N we might expect that
they should be more converged toward their asymptotic
states. The aspect ratios of these clusters are shown in Fig.
10�b�, and they appear very similar to the hexagonal results.

The behavior of aspect ratios at intermediate p is surpris-
ing. The simplest expectation would have been that the ob-
served behavior at extreme p corresponded to two stable
fixed points with c /a→0,	 respectively. These should then
most simply be separated by a single fixed point at finite c /a,
unstable with respect to variations in p in the sense that our
plots of aspect ratio versus N for different p should diverge
around it. In the cubic case, any such single intermediate
fixed point would, by symmetry, have to be at p*=1.

Our results are more compatible with the existence of a
continuous spectrum of fixed points at intermediate aspect
ratio, which depend directly on the input anisotropy. Under
this scenario, the input anisotropy �presumably in combina-
tion with other microscopic parameters� remains relevant to
the fixed point. One can still then have breakaway to simpler
fixed points at extreme values of p, as we appear to see for
p=0.5 and p=4, if the fixed point stability is sensitive to the
input parameters.

VI. CONCLUSIONS

Our dimension-independent numerical implementation of
the DLA model has enabled us to explore the effects of a
range of lattice anisotropies on three-dimensional diffusion
limited aggregates, leading to a mixture of expected and un-
expected results. As in two dimensions, noise reduction
proves a crucial aid toward asymptotic behavior.

For cubic anisotropies, the two lowest-order relevant an-
gular harmonic amplitudes, A4 and A6, appear jointly to pro-
vide an effective probe of the cluster evolution. Simple cubic
and bcc growths then behave simply, approaching universal
trajectories as evidenced by our mastercurves, toward respec-
tive simple fixed points in the A4 ,A6 plane.

Face-centered-cubic anisotropy is subtle. High noise re-
duction clusters appear to approach a common asymptotic
state, distinct from but analogous to those found for sc and
bcc. By contrast fcc growths at lower noise reduction appear
to evolve toward the bcc fixed point, although the final ap-
pearance of these clusters remains an open question. The
minimal interpretation of all the observed sc, bcc, and fcc
growth as a flow in the A4 ,A6 plane involves at least five
fixed points.

For hexagonal anisotropy in three dimensions, the key
challenge presented is the inequivalence of planar and polar
directions. The simple positive result is that moderate favor-
ing of planar growth locally coupled to three-dimensional
diffusion controlled growth does lead to clusters with mark-
edly planar morphology. This confirms a possible mechanism
behind near-planarity of snow crystals.

The apparently tunable and stable aspect ratios of clusters
at intermediate input polar-planar anisotropy are an unex-
pected surprise. It appears robust in that both hexagonal and
cubic cases showed this behavior. At face value it suggests
fixed points depending continuously on some asymptotically
relevant combination of input anisotropy parameters, which
prompts a theoretical framework in which to model this.

This paper leaves unresolved the ultimate behavior of low
noise reduction fcc or the apparently tunable polar-planar
anisotropy of hexagonal clusters. We do not expect that extra
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numerical efforts would be decisive; instead, one is tempted
to turn to real space renormalization group techniques �see,
e.g., Ref. �29��—though technical difficulties, such as very
large values of the renormalized noise reduction, hinder
progress there. These issues seem ripe to benefit from new
theoretical ideas.
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