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Diffusion-limited aggregation and viscous fingering in a wedge: Evidence for a critical angle
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We show that both analytic and numerical evidence points to the existence of a critical apgt®0f —70°
in viscous fingers and diffusion-limited aggregates growing in a wedge. The significance of this angle is that
it is the typical angular spread of a major finger. For wedges with an angle larger #haw@ fingers can
coexist. Thus a finger with this angular spread is a kind of building block for viscous fingering patterns and
diffusion-limited aggregation clusters in radial geomef{§1063-651X98)10506-9

PACS numbd(s): 61.43.Hv, 02.50-r, 47.53+n

The diffusion-limited aggregatio(DLA) [1,2] model is a  the boundary condition set implicitly by the finite size of the
simple idealization of a common natural process, the formaaccreting particles, and by the fact that the patterns are af-
tion of natural objects where the rate-limiting step is diffu- fected by shot noise. Some authors have arddéthat nei-
sion. In the simplest examplésay, solidification from solu-  ther of these facts affect the large-scale features of the pat-
tion, or diffusion-limited electrochemical depositlon tern, and that radial viscous fingering patterns are identical to
particles random walk and then stick to a growing aggregateDLA clusters in a coarse-grained sense. We adopt this point
Diffusion-limited growth of this type gives rise to remark- of view.
able morphologies which are ramified, disorderly, and, in the  This idea is attractive because the theory of viscous fin-
case of infinite diffusion length, fractal. It is this complexity gering is quite well developefb]. In particular, it is clear
which is the major interest in the model. Despite more than ahat viscous fingers in a channel geometry are not frg6ial
decade of work in this fiel@2], very little theoretical under- and attain a steady state of a single finger. The striking dif-
standing has been achieved. In this paper we attempt to coference from the radial case, where there is no indication that
tribute to such understanding by demonstrating the existencg steady state is ever achieved, led Ben-Afiatto investi-
of a kind of building block for the pattern: there seems to begate the wedge geometry. The general result is that in a
a characteristic angular spread for the fingers which make u@edge of any angle the selected finger grows in a self-similar
the structure. way. For fixed surface tension they are stable for a finite

The fundamental origin of the complexity of DLA pat- time, and they then become unstable against tip splitting.
terns has been known from the outset: it is ifiregering  This idea was used by Sark@@] to give an estimate for the
instability: diffusion-limited growth is generically linearly fractal dimension of DLA by counting the tip splittings.
unstable for flat growing surfaces, and forms fingers. The However, we think that Sarkar’s estimate left out a crucial
proliferation of the fingers gives rise to the fractal pattern ineffect: that of finger competition. Our view is that this is the
a way which we seek to clarify here. Another physical sys-key to the whole problem: if fingers split in a wedge that is
tem that displays the fingering instability is the displacementoo narrow, they will compete, and one will die. The result
of an inviscid fluid by a viscous one, the viscous fingeringwill be a finger with sidebranches. On the other hand, if the
problem. It has been suspected since the work of Pat¢8jon wedge is wide enough, then the fingers will not compete, and
that the large-scale features of DLA patterns are similar tqhere will be two branches to the pattern. The wedge angle
those in radial viscous fingering. They both obey lth@lac-  at which this begins to happen will be twice the typical angle
ian growthequations between fingers, which we ca#j. As a pattern grows the

V24—0 B fingers will split until they form channels of angigfor their
- neighbors. There is some experimental support for this idea
. L . [9] in the mode of tip splitting seen for various angles. How-
n-Veé=n-v. (2)  ever, the experimental evidence is ambiguous because the
o , . dynamic range of a real fingering experiment is limited. Here
Here ¢ denotes the diffusing field, i.e., the probability den-\ye will try to verify our ideas by giving an analytic estimate
sity ever to find a random walker at pointin the case of o ,, and then show that these are reasonable by considering
DLA or the pressure at in viscous fingering. The normal gjmulations of DLA clusters in a wedge.
velocity of growth of the pattern is-v. The boundary value To begin, consider two steady-state viscous fingers side
on the surface of the growing patter#,, is given by the by side in a wedge with periodic boundary conditions at the
Gibbs-Thomson relatiogs= y« for the case of viscous fin- sides. We will attempt to estimate how large the angle must
gering wherey is the surface tension. DLA differs by having be so that there is no competition between them. For ex-
ample, fora=2 the fingers grow independently.
We now look at the stability of the two finger solution in
*Electronic address: Isander@umich.edu order to see if there is competition. We prepare one finger
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slightly longer than the other, and ask, in the linear regime, iso that the needle goes fromL to L by putting w=u
there is a different growth rate for the two. We can see how-[I#—15]/2. Then we can map the line segment onto the
the calculation goes by using the mapping, due to Ben-Amagnit circle by puttingw=[Li/2][Z+1/Z]. Now the two
and Brenel10], between the wedge problem and the prob-needles have been mapped onto points on the exterior of the
lem of diffusive(i.e. not Laplaciangrowth in a channel. We unit circle #;=1,%7,=—1).
first map the wedge to a strip usiidg-[ 2/a]In z. This trans- It is now clear that the potential can be writtef
forms a wedge of angla centered around theaxis inthez ~ =Re y; = ¢,In(Z), whered, is proportional to the incom-
plane to a strip of width 2 in th plane. Since the transfor- ing flux. This potential satisfies periodic boundary condi-
mation is conformal, the field is Laplacian in the new vari- tions. To obtain the growth rate, it is sufficient to fidg/dz
ables. Equatiort2) becomes becausédy/dz|?=|V ¢|?. By a straightforward computation
s e we can write down the growth rate of tip
n-Veé=expax)n-v. (3
HB_l |i['B_1]/2

The Gibbs-Thomson condition on the interface is compli- dyldZ;=|dd/dZ= (6)
cated in the new coordinates except for small surface tension,

in which case it becomes

o .
[Lliﬁfla]lIZ [l'f‘f‘l'g]llz

Whenever one finger is longer than the other, the longer
one will receive more flux, and, it seems, grow faster. How-
ever, we know from the computation above that there is a
. ~ o point at which fingers cease competing. Physically this is
If we define®= ¢ exp(-ax) thend satisfies, up to terms  pecause the difference between a needle and a finger is that a

b=y exp— ax/2). (4)

of order @ a quasistatic diffusion equation in the frame finger must grow irareaif it is self-similar. Thus even if the
moving with Peclet numbe: integrated flux to two fingers is theame the fatter one will
4o grow more slowly since it will advance according to
V2<D+2a—=a2(l)%0. (5) dA,/dt“d(l?)/dt“l,dl,/dt“e, Wh-ere Gi is the flux that
dx fingeri receives in competition with the other. We estimate

. G;=Il#~12 from the needle calculation. That idl;/dt

Equation(3) now readsn-Vd=n-v. Thus we have two o|d®/dZ/I;. Thus
steady-state fingers growing in a channel with finite diffusion
constant and with boundary condition on the interfades dly/dt IR e
=yk exp(~3ax/2). This equation implies a space- di/dt -2 '
dependent effective curvature. Thus our problem is not ex- . _
actly the same as that of dendrites in a channel, but it is Wheng=3, that is, whenx=120°, the two fingers stop
qualitatively the samgl11]. For the question of competition, competing. Thus each finger occupigs-60°. We should
the exact form of the surface tension is probably not imporote that this is exactly the criterion of Derrida and Hakim
tant. From Eq.(5) it follows that 1k plays the role of a [12] who obtained it in a different way, namely, by demand-
diffusion length: the field is screened over distances largeind that, for some fixeds, the ratio of the lengths of two
than 1k, and two fingers that are separated by larger disSPikes remain smalithough the difference can be lajge
tance cannot compete. This is an indication that a criticall hat is, forl;>1, they made this quantity decrease:
angle exists. d |

We have verified this insight by a numerical stability “ _ 1 _
analysis. We found that for small (weak screeningfingers arl/12)= IZ[(llll)dqjlldz (Uz)dd,/dz],  (8)
compete, and for a large wedge angle they do not. The nu-
merical value for the threshold that we compute in this waywhich is our estimate.
(a=~0.5) is too large to be trusted because of the small We can use this estimate in another way. Suppose that the
approximation. fingers are fractal, so that we have<I®, whereD is the

In order to go further, we do a different estimate which isfractal dimension. Now repeating the calculation above, we
more qualitative, but not restricted to small angles. Considermnust have §—1)/2=D — 1 at the operating point. However,
again, two viscous fingers in a wedge of opening angle Turkevich and Schel3] gave another criterion: if the clus-
We now replace the problem with a simpler one that we carier grows so that it has major branches, then the growth and
solve analytically, that of twmeedlesn the wedge. In com- the fractal dimension will be dominated by the tip angle. The
plex notation, the tips of the needles arezat1,e'** and  result of this consideration, in our notation, amounts to say-
z,=1,€%" The Laplacian fieldp vanishes on the needles, ing thatD =1+ /(7+ 7). Using B= /5 we find thaty
and we suppose that there is a cutdfhite tip sizeé a and  satisfies a quadratic equation, whose solutionyis (12
that the growth rate of the needles is given by the flux of the—1)#, which corresponds taj~75°. ThusD=1+1/\2

)

Laplacian field V¢ at the tips: z=z+a€’i=z+ 6z =1.71, which is exactly the observed fractal dimension. This

601,=al4,3al4. estimate was given by Ba[ll4] some years ago using a
We solve by a series of conformal maps. First we map thalifferent argument.

z plane into theu plane withu=2z# and 8=2m/a. The two To verify these estimates we turn to numerical calcula-

needles are now one needle along the imaginary axis. Nowons for DLA in a wedge. We grew a large number of off-
center the needle. Defife=[15+15]/2, and arrange things lattice DLA clusters in wedges of different opening angies
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FIG. 1. (8 Angular correlation functiorc(¢)/c(0) for DLA
clusters in a wedge of angte as a function ofp/«. (b) Correlation
functions using the measuhd;.
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FIG. 2. DLA clusters grown in wedges fer=30° and 144°.

sponds to the matter being clustered in one branch.d~or
between 90° and 144°, the nature of the correlations
changes. The appearance of a second peak and the positive
correlation function indicates that there are now two coexist-
ing branche$16].

We have examined the individual realizations that make
up the average. The appearance of the second peak corre-
sponds to structures which sometimes have one, and some-
times two(or more, large branches. In the case of 120° and

For greater efficiency we used the method of hierarchicali44° there is considerable fluctuation in the correlation func-
maps[15] adapted to the wedge geometry, so that our wedg€ions (and the visual appearancef each individual realiza-

was subdivided into sectors whose radii were in geometrigion. This is a further indication that for sonaein this range
ratios. The data which we will report involve averages overthere is a critical point.

25 realizations for each, and the number of particlel], in
the wedge was determined so tHdt=10°a/27. That is,

We have seen no indication that the correlation functions
depend on the cluster size. For the case of 30° we grew

each wedge acted like a slice from a million-particle clusterclusters ten times larger than those described above to check

We report results forr=30°, 60°, 90°, 120°, and 144°.

this, with the result that the correlations were the same. The

We measured the fractal dimension of our clusters andorrelation function depends on the angular spread of the

find that it depends weakly, if at all, o@. This allows us to

wedge, not on the space available to spread out, which indi-

understand the remarkable accuracy of the estimate of fractahtes that the branches are self-similar in shape. If we take
dimension above. The Turkevich-Scher calculation implieghe point at which the(a/2) crosses 0 as the criterion for
that the fractal dimension of a finger would depend only ondeterminings, we find that the typical distance between dif-
the tip velocity, which in turn depends on the tip structure.ferent major branches is= a/2~60°—70°. This is in rough

The invariance of the fractal dimension withindicates that

agreement with our analytic estimates, and we take this as a

the tip structure is not affected by boundaries, and thus probyerification of our basic idea.

ably not by the presence of other fingers. However, in the \We made another check by trying to quantify exactly

radial case, the large-scale structiitee number of main what we mean by a “major branch.” We focus on the idea

surviving branchesadjusts via finger competition to be con- that for asymptotic behavior the most important feature is
sistent with the local growth rate. In our estimate we gave ahat some branches die, and some survive competition. To
representation of the tip which is valid only far away—we see this quantitatively we introduce a measure on DLA clus-
replaced the cluster by a needle—but then used selters which we call thedescendent measure M For this

consistency to find the fractal dimension.

guantity we weight each point according to the number of

In this work our main interest is not the fractal dimension descendents it has in the last fractiomf the growth. Thus
but the overall shape. To see this, we computed the density1, measures the total number of points that grow from a

density correlation function for two sectors separatedpby

c(d)=[{p(0+ $)p(8))—(p)?]l,. 9)

given one, and, sayMq o, the number of descendent points
in a tiny active zone on the outside of the cluster. The ap-
pearance of major branches derived this way is quite robust,
and does not depend much wnClusters withM ; weighting

Here p(0) is the density of particles in the cluster in a 1° are shown in Fig. 3, and Fig.(ld) illustrates that the corre-
sector around), and we average over the starting angle. All lation functions near the critical angle are not much different

of the angles are taken as periodic with perigdso that the
function is reflection-symmetric around?. In Fig. 1(a), we

with the M, weighting. The critical angle is robust, but for
small angles the measure clearly localizes the main branch

show the correlation function averaged over 25 realizationsmuch more cleanly than the measure that uniformly weights

and in Fig. 2 a typical cluster for small and large angles.

the mass since it prunes sidebranches. Wheweighting

There is a very clear difference between large and small could be interesting in other contexts, since it provides a
in the behavior oft:(¢). For small angles there is an anticor- definition of a backbone for DLA.

relation between the origin and other angles. This corre-

Some aspects of the idea that we have proposed here has
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T We think that we should follow up our idea by checking it
for radial viscous fingering in direct simulations. We hope
that sophisticated methods such as the vortex sheet technique
N [18] could allow us to do this, though this is a computation
intensive approach. The effect of the exact form of the sur-
face tension can also be checked, although in our opinion the
; role of the surface tension is only to regularize the equations;
S ¢ its exact form(e.g., the finite size of the DLA particles acts
N , as an effective surface tensjois unimportant. Ideally we
T i should also try to put this idea of a structure made up of
building blocks with some typical angle into a more general
theoretical context. However, we do not see any obvious
FIG. 3. DLA clusters plotted with gray level equal M, and  re|ationship between what we have done and the other theo-
@=30° and 144°. retical approaches to Laplacian groWt9)].
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