
PHYSICAL REVIEW E JUNE 1998VOLUME 57, NUMBER 6
Diffusion-limited aggregation and viscous fingering in a wedge: Evidence for a critical angle
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We show that both analytic and numerical evidence points to the existence of a critical angle ofh'60° –70°
in viscous fingers and diffusion-limited aggregates growing in a wedge. The significance of this angle is that
it is the typical angular spread of a major finger. For wedges with an angle larger than 2h, two fingers can
coexist. Thus a finger with this angular spread is a kind of building block for viscous fingering patterns and
diffusion-limited aggregation clusters in radial geometry.@S1063-651X~98!10506-8#

PACS number~s!: 61.43.Hv, 02.50.2r, 47.53.1n
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The diffusion-limited aggregation~DLA ! @1,2# model is a
simple idealization of a common natural process, the form
tion of natural objects where the rate-limiting step is diff
sion. In the simplest examples~say, solidification from solu-
tion, or diffusion-limited electrochemical deposition!,
particles random walk and then stick to a growing aggreg
Diffusion-limited growth of this type gives rise to remark
able morphologies which are ramified, disorderly, and, in
case of infinite diffusion length, fractal. It is this complexi
which is the major interest in the model. Despite more tha
decade of work in this field@2#, very little theoretical under-
standing has been achieved. In this paper we attempt to
tribute to such understanding by demonstrating the existe
of a kind of building block for the pattern: there seems to
a characteristic angular spread for the fingers which make
the structure.

The fundamental origin of the complexity of DLA pa
terns has been known from the outset: it is in afingering
instability: diffusion-limited growth is generically linearly
unstable for flat growing surfaces, and forms fingers. T
proliferation of the fingers gives rise to the fractal pattern
a way which we seek to clarify here. Another physical s
tem that displays the fingering instability is the displacem
of an inviscid fluid by a viscous one, the viscous fingeri
problem. It has been suspected since the work of Paterso@3#
that the large-scale features of DLA patterns are simila
those in radial viscous fingering. They both obey theLaplac-
ian growthequations

¹2f50, ~1!

n̂•¹W f5n̂•vW . ~2!

Heref denotes the diffusing field, i.e., the probability de
sity ever to find a random walker at pointr in the case of
DLA or the pressure atr in viscous fingering. The norma
velocity of growth of the pattern isn̂•vW . The boundary value
on the surface of the growing pattern,fs , is given by the
Gibbs-Thomson relationfs5gk for the case of viscous fin
gering whereg is the surface tension. DLA differs by havin
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the boundary condition set implicitly by the finite size of th
accreting particles, and by the fact that the patterns are
fected by shot noise. Some authors have argued@4# that nei-
ther of these facts affect the large-scale features of the
tern, and that radial viscous fingering patterns are identica
DLA clusters in a coarse-grained sense. We adopt this p
of view.

This idea is attractive because the theory of viscous
gering is quite well developed@5#. In particular, it is clear
that viscous fingers in a channel geometry are not fractal@6#,
and attain a steady state of a single finger. The striking
ference from the radial case, where there is no indication
a steady state is ever achieved, led Ben-Amar@7# to investi-
gate the wedge geometry. The general result is that i
wedge of any angle the selected finger grows in a self-sim
way. For fixed surface tension they are stable for a fin
time, and they then become unstable against tip splitt
This idea was used by Sarkar@8# to give an estimate for the
fractal dimension of DLA by counting the tip splittings.

However, we think that Sarkar’s estimate left out a cruc
effect: that of finger competition. Our view is that this is th
key to the whole problem: if fingers split in a wedge that
too narrow, they will compete, and one will die. The res
will be a finger with sidebranches. On the other hand, if
wedge is wide enough, then the fingers will not compete,
there will be two branches to the pattern. The wedge angla
at which this begins to happen will be twice the typical ang
between fingers, which we callh. As a pattern grows the
fingers will split until they form channels of angleh for their
neighbors. There is some experimental support for this i
@9# in the mode of tip splitting seen for various angles. Ho
ever, the experimental evidence is ambiguous because
dynamic range of a real fingering experiment is limited. He
we will try to verify our ideas by giving an analytic estima
for h, and then show that these are reasonable by conside
simulations of DLA clusters in a wedge.

To begin, consider two steady-state viscous fingers s
by side in a wedge with periodic boundary conditions at
sides. We will attempt to estimate how large the angle m
be so that there is no competition between them. For
ample, fora52p the fingers grow independently.

We now look at the stability of the two finger solution i
order to see if there is competition. We prepare one fin
6913 © 1998 The American Physical Society
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6914 57D. A. KESSLERet al.
slightly longer than the other, and ask, in the linear regime
there is a different growth rate for the two. We can see h
the calculation goes by using the mapping, due to Ben-Am
and Brener@10#, between the wedge problem and the pro
lem of diffusive~i.e. not Laplacian! growth in a channel. We
first map the wedge to a strip usingz̃5@2/a# ln z. This trans-
forms a wedge of anglea centered around thex axis in thez
plane to a strip of width 2 in thez̃ plane. Since the transfor
mation is conformal, the field is Laplacian in the new va
ables. Equation~2! becomes

n̂̃•¹̃f5exp~a x̃! n̂̃• ṽW . ~3!

The Gibbs-Thomson condition on the interface is comp
cated in the new coordinates except for small surface tens
in which case it becomes

fs5gk̃ exp~2a x̃/2!. ~4!

If we defineF[f exp(2ax̃) thenF satisfies, up to terms
of order a2, a quasistatic diffusion equation in the fram
moving with Peclet numbera:

¹2F12a
dF

dx
5a2F'0. ~5!

Equation~3! now readsn̂̃•¹̃W F5 n̂̃• ṽW . Thus we have two
steady-state fingers growing in a channel with finite diffus
constant and with boundary condition on the interfacesFs

5gk̃ exp(23ax̃/2). This equation implies a space
dependent effective curvature. Thus our problem is not
actly the same as that of dendrites in a channel, but i
qualitatively the same@11#. For the question of competition
the exact form of the surface tension is probably not imp
tant. From Eq.~5! it follows that 1/a plays the role of a
diffusion length: the field is screened over distances lar
than 1/a, and two fingers that are separated by larger d
tance cannot compete. This is an indication that a crit
angle exists.

We have verified this insight by a numerical stabili
analysis. We found that for smalla ~weak screening! fingers
compete, and for a large wedge angle they do not. The
merical value for the threshold that we compute in this w
(a'0.5) is too large to be trusted because of the smaa
approximation.

In order to go further, we do a different estimate which
more qualitative, but not restricted to small angles. Consid
again, two viscous fingers in a wedge of opening anglea.
We now replace the problem with a simpler one that we
solve analytically, that of twoneedlesin the wedge. In com-
plex notation, the tips of the needles are atz15 l 1eia/4 and
z25 l 1e3ia/4. The Laplacian fieldf vanishes on the needle
and we suppose that there is a cutoff~finite tip size! a and
that the growth rate of the needles is given by the flux of
Laplacian field ¹f at the tips: z5zi1aeiu i5zi1dzi ;
u1,25a/4,3a/4.

We solve by a series of conformal maps. First we map
z plane into theu plane withu5zb andb52p/a. The two
needles are now one needle along the imaginary axis. N
center the needle. DefineL5@ l 1

b1 l 2
b#/2, and arrange things
if
w
ar
-

-
n,
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so that the needle goes from2L to L by putting w5u
2@ l 1

b2 l 2
b#/2. Then we can map the line segment onto t

unit circle by putting w5@Li /2#@ z̃11/z̃#. Now the two
needles have been mapped onto points on the exterior o
unit circle (z̃151, z̃2521).

It is now clear that the potential can be writtenf
5Re c; c5foln( z̃), wherefo is proportional to the incom-
ing flux. This potential satisfies periodic boundary con
tions. To obtain the growth rate, it is sufficient to finddc/dz
becauseudc/dzu25u¹fu2. By a straightforward computation
we can write down the growth rate of tipi :

dc/dzu i5udF/dzu}
l i
b21

@Ll i
b21a#1/2

}
l i
[b21]/2

@ l 1
b1 l 2

b#1/2
. ~6!

Whenever one finger is longer than the other, the lon
one will receive more flux, and, it seems, grow faster. Ho
ever, we know from the computation above that there i
point at which fingers cease competing. Physically this
because the difference between a needle and a finger is t
finger must grow inarea if it is self-similar. Thus even if the
integrated flux to two fingers is thesame, the fatter one will
grow more slowly since it will advance according
dAi /dt}d( l i

2)/dt} l idl i /dt}Gi where Gi is the flux that
finger i receives in competition with the other. We estima
Gi} l i

[b21]/2 from the needle calculation. That isdli /dt
}udF/dzu/ l i . Thus

dl1 /dt

dl2 /dt
5@ l i / l 2# [b23]/2. ~7!

Whenb53, that is, whena5120°, the two fingers stop
competing. Thus each finger occupiesh560°. We should
note that this is exactly the criterion of Derrida and Hak
@12# who obtained it in a different way, namely, by deman
ing that, for some fixeda, the ratio of the lengths of two
spikes remain small~though the difference can be large!.
That is, for l 1. l 2 they made this quantity decrease:

d

dt
~ l 1 / l 2!5

l 1

l 2
@~1/l 1!dF1 /dz2~1/l 2!dF2 /dz#, ~8!

which is our estimate.
We can use this estimate in another way. Suppose tha

fingers are fractal, so that we haveA} l D, whereD is the
fractal dimension. Now repeating the calculation above,
must have (b21)/25D21 at the operating point. Howeve
Turkevich and Scher@13# gave another criterion: if the clus
ter grows so that it has major branches, then the growth
the fractal dimension will be dominated by the tip angle. T
result of this consideration, in our notation, amounts to s
ing that D511p/(p1h). Using b5p/h we find thath
satisfies a quadratic equation, whose solution ish5(A2
21)p, which corresponds toh'75°. Thus D5111/A2
51.71, which is exactly the observed fractal dimension. T
estimate was given by Ball@14# some years ago using
different argument.

To verify these estimates we turn to numerical calcu
tions for DLA in a wedge. We grew a large number of of
lattice DLA clusters in wedges of different opening anglesa.
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57 6915DIFFUSION-LIMITED AGGREGATION AND VISCOUS . . .
For greater efficiency we used the method of hierarch
maps@15# adapted to the wedge geometry, so that our we
was subdivided into sectors whose radii were in geome
ratios. The data which we will report involve averages ov
25 realizations for eacha, and the number of particles,M , in
the wedge was determined so thatM5106a/2p. That is,
each wedge acted like a slice from a million-particle clust
We report results fora530°, 60°, 90°, 120°, and 144°.

We measured the fractal dimension of our clusters
find that it depends weakly, if at all, ona. This allows us to
understand the remarkable accuracy of the estimate of fra
dimension above. The Turkevich-Scher calculation impl
that the fractal dimension of a finger would depend only
the tip velocity, which in turn depends on the tip structu
The invariance of the fractal dimension witha indicates that
the tip structure is not affected by boundaries, and thus p
ably not by the presence of other fingers. However, in
radial case, the large-scale structure~the number of main
surviving branches! adjusts via finger competition to be con
sistent with the local growth rate. In our estimate we gav
representation of the tip which is valid only far away—w
replaced the cluster by a needle—but then used s
consistency to find the fractal dimension.

In this work our main interest is not the fractal dimensi
but the overall shape. To see this, we computed the den
density correlation function for two sectors separated byf:

c~f!5@^r~u1f!r~u!&2^r&2#uu . ~9!

Here r(u) is the density of particles in the cluster in a 1
sector aroundu, and we average over the starting angle.
of the angles are taken as periodic with perioda, so that the
function is reflection-symmetric arounda/2. In Fig. 1~a!, we
show the correlation function averaged over 25 realizatio
and in Fig. 2 a typical cluster for small and large angles.

There is a very clear difference between large and smaa
in the behavior ofc(f). For small angles there is an antico
relation between the origin and other angles. This co

FIG. 1. ~a! Angular correlation functionc(f)/c(0) for DLA
clusters in a wedge of anglea as a function off/a. ~b! Correlation
functions using the measureM1.
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sponds to the matter being clustered in one branch. Foa
between 90° and 144°, the nature of the correlatio
changes. The appearance of a second peak and the po
correlation function indicates that there are now two coex
ing branches@16#.

We have examined the individual realizations that ma
up the average. The appearance of the second peak c
sponds to structures which sometimes have one, and so
times two~or more!, large branches. In the case of 120° a
144° there is considerable fluctuation in the correlation fu
tions ~and the visual appearance! of each individual realiza-
tion. This is a further indication that for somea in this range
there is a critical point.

We have seen no indication that the correlation functio
depend on the cluster size. For the case of 30° we g
clusters ten times larger than those described above to c
this, with the result that the correlations were the same.
correlation function depends on the angular spread of
wedge, not on the space available to spread out, which i
cates that the branches are self-similar in shape. If we t
the point at which thec(a/2) crosses 0 as the criterion fo
determiningh, we find that the typical distance between d
ferent major branches ish5a/2'60° –70°. This is in rough
agreement with our analytic estimates, and we take this
verification of our basic idea.

We made another check by trying to quantify exac
what we mean by a ‘‘major branch.’’ We focus on the id
that for asymptotic behavior the most important feature
that some branches die, and some survive competition.
see this quantitatively we introduce a measure on DLA cl
ters which we call thedescendent measure Mx . For this
quantity we weight each point according to the number
descendents it has in the last fractionx of the growth. Thus
M1 measures the total number of points that grow from
given one, and, say,M0.01 the number of descendent poin
in a tiny active zone on the outside of the cluster. The
pearance of major branches derived this way is quite rob
and does not depend much onx. Clusters withM1 weighting
are shown in Fig. 3, and Fig. 1~b! illustrates that the corre
lation functions near the critical angle are not much differe
with the Mx weighting. The critical angle is robust, but fo
small angles the measure clearly localizes the main bra
much more cleanly than the measure that uniformly weig
the mass since it prunes sidebranches. TheMx weighting
could be interesting in other contexts, since it provides
definition of a backbone for DLA.

Some aspects of the idea that we have proposed here

FIG. 2. DLA clusters grown in wedges fora530° and 144°.
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appeared in other forms previously. For example, Arneo
et al. observed some hints of a fivefold structure in DL
@17#. This is more or less what we find since our angleh is
close to 2p/5. Many workers have noted that DLA cluste
seem to have five major arms, but this qualitative impress
was not supported by a quantitative estimate of the type
have given here.

FIG. 3. DLA clusters plotted with gray level equal toM1 and
a530° and 144°.
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We think that we should follow up our idea by checking
for radial viscous fingering in direct simulations. We ho
that sophisticated methods such as the vortex sheet techn
@18# could allow us to do this, though this is a computati
intensive approach. The effect of the exact form of the s
face tension can also be checked, although in our opinion
role of the surface tension is only to regularize the equatio
its exact form~e.g., the finite size of the DLA particles ac
as an effective surface tension! is unimportant. Ideally we
should also try to put this idea of a structure made up
building blocks with some typical angle into a more gene
theoretical context. However, we do not see any obvio
relationship between what we have done and the other th
retical approaches to Laplacian growth@19#.
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