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Statistical mechanics of complex systems

Ellák Somfai

Introduction

In this chapter we introduce statistical mechanics in a very general form,

and explore how the tools of statistical mechanics can be used to describe

complex systems.

To illustrate what statistical mechanics is, let us consider a physical

system made of a number of interacting particles. When it is just a

single particle in given potential, it is an easy problem: one can write

down the solution (even if one could not calculate everything in closed

form). Having 2 particles is equally easy, as this so-called “two-body

problem” can be reduced to two modified one-body problems (one for

the centre of mass, other for the relative position). However, a dramatic

change occurs when the number of particles is increased to 3. The study

of the three-body problem started with Newton, Lagrange, Laplace and

many others, but the general form of the solution is still unknown. Even

relatively recently, in 1993 a new type of periodic solution has been

found, where 3 equal mass particles interacting gravitationally chase

each other in a figure-8 shaped orbit. This and other systems where the

degrees of freedom is low belongs to the subject of dynamical systems,

and is discussed in detail in Chapter 2 of this volume. When the number

of interacting particles increases to very large numbers, like 1023, which

is typical for the number of atoms in a macroscopic object, surprisingly

it gets simpler again, as long as we are interested only at aggregate

quantities. This is the subject of statistical mechanics.

Statistical mechanics is also the microscopic foundation of thermo-

dynamics. It developed a number of powerful tools, which can be used

outside of the conventional physics domain, like biology, finance (see
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Chapter 6), traffic, and more. It can also be considered as the science

of ignorance: how to handle a system where we do not know (even pre-

fer not to know) everything. A particular example is renormalisation

theory, developed in the second half of the 20th century, which gives a

systematic framework to dispense successively with the non-interesting

degrees of freedom.

Our approach is that of a physicist: (i) based on models, (ii) funda-

mentally quantitative, (iii) but not rigorous. Probably the most impor-

tant concept in science is that it is possible to construct an abstraction

(“model”) of the world around us which is admittedly much simpler

than the real thing, but nevertheless captures important characteristics,

and which enables to make predictions that are not “explicitly put in”

into the model. The models are fundamentally quantitative, and we use

mathematical language to describe them. We stop here however, and

leave rigorous treatment to mathematicians — this approach enables

one to progress much quicker, on the expense of losing that what we do

is absolutely unshakable.

We start with elements of information theory, which in turn are used

to derive the foundations of statistical mechanics based on the maximum

entropy principle. Unlike the typical treatment in Physics textbooks, this

approach has the advantage that the abstract formalism developed can

be used in a more straightforward way for systems outside the typical

range of thermal applications. We will follow by considering the effects

of fluctuations to provide a link to thermodynamics. One of the most

characteristic collective phenomena of complex systems is phase transi-

tion, which we approach from the direction of statistical physics. The

rest of the chapter will deal with dynamics in some form: we will consider

interface growth and collective biological motion like flocking.

4.1 Introduction to information theory

Random variables

While probability theory can (and should) be founded rigorously, in

these notes we take a relaxed approach and attempt to define everything

without mentioning the probability space. We call a random variable an

object which can take values when observed, say random variable X

can take any values from x1, x2, . . . , xn. When observed many times,

x1 is taken n1 times, x2 is taken n2 times, etc. The probabilities of the
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outcomes can be defined as relative frequencies in the limit of a large

number of observations, for example:

n1
∑

ni
→ p1 .

It immediately follows that the probabilities add up to 1:

n∑

i=1

pi = 1 .

We then say the the probability of X taking a given value xi is pi:

P (X = xi) = pi .

A function of a random variable is another random variable: if X takes

xi with probability pi, then f(X) takes the value f(xi) with the same

probability pi.

The expectation or average of a random variable can be considered as

observing it many times and taking the average of the observed values.

In the statistical mechanics literature the standard notation is angular

brackets:

〈X〉 =
∑

i

xipi , or 〈f(X)〉 =
∑

i

f(xi)pi .

The above concepts can be easily extended to random variables which

can take infinitely many discreet values, and even to ones which take

values from a continuum. In the latter case eg. if X can take real values,

the probability that X takes any value in [x, x+dx] is p(x)dx, where dx

is small, and p(x) is called the probability density function. The sums

above are replaced with integrals, eg.
∫
p(x)dx = 1. While this naive

approach to continuous random variables is sufficient for these notes, in

general, especially when dealing with continuous random variables, one

needs a rigorous foundation of probability theory.

The above frequentist approach to probabilities is not the only one. In

a sentence like “Tomorrow we will have a 10% chance for rain”, proba-

bilities are interpreted as a degree of belief or confidence.

The information entropy

Suppose we want to describe the outcome of a sequence of coin tosses

(heads or tails): HTHHTHTTTH... This sequence looks very different

from that of a lottery play: LLLLL...LLLL...LLWLLLL... The second se-

quence is much more boring, one can describe it as eg. “trial no. 857,923
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was a win, all others were lose”. In the first sequence, however, we cannot

get away much better than quoting the whole sequence verbatim.

To quantify this difference, we introduce the information entropy H

of a random variable. Its intuitive meaning is the amount of uncertainty

in an observation of a random variable, or in other words the amount of

information we gain when observing a random variable. One can think

about is as the “amount of answers” needed on average to learn the

outcome of an observation as a response to an optimally crafted question-

tree. It is a function of the probabilities only: H(p1, p2, . . . ).

We require certain regularity properties:

(i) continuity: H(p1, p2, . . . ) is a continuous function of its argu-

ments.

(ii) “sense of direction”: of the random variables that take all out-

comes with equal probability, the ones with more outcomes carry

more information: the function

h(n) := H

(
1

n
,
1

n
, . . . ,

1

n

)

(4.1)

is monotonically increasing with n.

(iii) “consistency”: if H is calculated in two different ways, they

should agree. Eg. to calculate the information entropy of a 3-

state random variable, we can group the last two states and first

obtain the information entropy for the obtained 2-state random

variable, and then with probability p2 + p3 need to resolve the

grouped states:

H3(p1, p2, p3) = H2(p1, q) + qH2

(
p2
q
,
p3
q

)

where q = p2 + p3.

It can be shown that this three requirements restrict the functional form

of H(·), see [1]:

H(p1, p2, . . . , pr) = −K
r∑

i=1

pi ln(pi) (4.2)

This is the information entropy of a random variable with probabilities

p1, p2, . . . , pr. The constant K sets the units, which can be fused into

the logarithm as setting its base. In many of the following formulae we

will use the notation

H(p1, p2, . . . , pr) = −
r∑

i=1

pi log(pi) (4.3)
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without explicitly specifying the base of the logarithm. Then setting

K = 1/ ln(2) in (4.2), or equivalently using log2 in (4.3) the information

entropy is measured in bits. When setting K = 1 or using loge the units

are nats, and finally the decimal case is K = 1/ ln(10) or using log10,

when the units are called bans.

Multiple random variables

When X and Y are random variables, we can look at the probabilities

of (X,Y ) pairs. These are called joint probabilities :

pij = P (X = xi, Y = yj)

The probability of one of the random variables (the marginal proba-

bilities) are obtained by summing up the joint probabilities on all states

of the other random variable:

p
(X)
i = P (X = xi) =

∑

j

P (X = xi, Y = yj) =
∑

j

pij

and similarly p
(Y )
j =

∑

i pij .

Two random variables are called independent, if the joint probabilities

factorise into marginals for all (i, j) pairs:

if P (X = xi, Y = yj) = P (X = xi)P (Y = xj) for all i, j

or equivalently

if pij = p
(X)
i p

(Y )
j for all i, j

The conditional probabilities tell the probability of one random vari-

able when we know the value of another:

pi|j := P (X = xi | Y = yj) =
P (X = xi, Y = yj)

P (Y = yj)
=

pij

p
(Y )
j

The joint information entropy is the uncertainty of the (X,Y ) pair:

H(X,Y ) = −
∑

i,j

pij log pij

The conditional information entropy gives the uncertainty of X when
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Y is known:

H(X | Y ) := 〈H(X | Y = yj)〉Y =
∑

j

p
(Y )
j (−1)

∑

i

pi|j log pi|j

= −
∑

ij

pij log
pij

p
(Y )
j

= H(X,Y )−H(Y )

where in the last step we used
∑

i pij = p
(Y )
j .

Finally the mutual information is defined as

I(X;Y ) :=
∑

i,j

pij log
pij

p
(X)
i p

(Y )
j

= H(X) +H(Y )−H(X,Y )

= H(X)−H(X | Y ) ,

so its meaning is the reduction in uncertainty of X due to the knowledge

of Y , or in other words how much Y tells about X.

4.2 The maximum entropy framework1

The maximum entropy principle — an example

Suppose we have a random variable X with known states (values of

the observations, x1, . . . , xn) but unknown probabilities p1, . . . , pn; plus

some extra constrains, eg. 〈X〉 is known. We are given the task to at-

tempt to have a good guess for the probabilities.

Let’s start with one of the simplest examples: X can take 1, 2 or 3

with unknown probabilities, and 〈X〉 = x is known. Fixing 〈X〉 does

not determine the probabilities, for example for x = 2 any (p1, p2, p3) =

( 1−p2

2 , p2,
1−p2

2 ) satisfies the constraint, including eg. (0, 1, 0) or ( 12 , 0,
1
2 )

or ( 13 ,
1
3 ,

1
3 ). Which one is the “best”? According to themaximum entropy

principle, the best guess is the one which maximises the information

entropy under the given constraints.

To calculate this solution, we need to find the maximum ofH(p1, p2, p3)

as a function of p1, p2, p3, under two constraints: 〈X〉 = 1p1+2p2+3p3 =

x and p1+p2+p3 = 1. We use the method of Lagrange multipliers: first

calculate the unconditional maximum of the original function plus the

constraints added with some multiplying factors (the Lagrange multipli-

ers), which give the probabilities in a functional form with the Lagrange

1 In this section we follow the treatment of [1].
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multipliers as parameters.

0 = d

[

H(p1, p2, p3)− λ

(
3∑

i=1

ipi − x

)

− µ

(
3∑

i=1

pi − 1

)]

= d

[

−
3∑

i=1

pi log pi − λ

3∑

i=1

ipi − µ

3∑

i=1

pi

]

=
3∑

i=1

{
− log pi − 1− λi− µ

}
dpi = 0

Since this has to hold for any dpi, the curly brackets need to be zero:

− log(pi)− 1− λi− µ = 0 , i = 1, 2, 3

which with the notation λ0 = µ+ 1 gives

pi = e−λ0−λi .

Now we set the Lagrange multipliers by requiring the constraints to be

satisfied. The constraint on the sum of probabilities give

1 =
3∑

i=1

pi = e−λ0

3∑

i=1

e−λi ⇒ e−λ0 =
1

e−λ + e−2λ + e−3λ

so

pi =
e−λi

e−λ + e−2λ + e−3λ
=

eλ(1−i)

1 + e−λ + e−2λ

The other constraint, 〈X〉 = x gives

x =
3∑

i=1

ipi =
1 + 2e−λ + 3e−2λ

1 + e−λ + e−2λ
(4.4)

Multiplying the equation with the denominator gives a second degree

equation for e−λ, which has the solution

e−λ =
2− x±

√

4− 3(x− 2)2

2(x− 3)

Now if we rewrite (4.4) as

x =
eλ + 2 + 3e−λ

eλ + 1 + e−λ
= 1 +

1 + 2e−λ

eλ + 1 + e−λ

then p2 becomes

p2 =
−1 +

√

4− 3(x− 2)2

3
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Note that one of the roots have been dropped to keep p2 non-negative.

Finally the other probabilities become

p1 =
3− x− p2

2
, p3 =

x− 1− p2
2

This solution has the right behaviour in the limiting cases: when x =

1, the probabilities (p1, p2, p3) = (1, 0, 0); and when x = 3, they are

(0, 0, 1). For x = 2, the solution is ( 13 ,
1
3 ,

1
3 ). The maximum entropy

solution assigns zero probabilities only when no other possibilities are

allowed. This is a very desirable property: it would be a sure failure

to propose that a certain state has zero probability, and then find out

that a given observation happened to yield that state. The Maximum

Entropy solution is guaranteed not to fail there.

Maximum entropy principle — general form

After having this worked out example, we state the maximum entropy

principle in a more general form. Suppose we have a random variable X

taking known values x1, . . . , xn with unknown probabilities p1, . . . , pn.

In addition, we have m constraint functions fk(x) with 1 ≤ k ≤ m < n,

where

〈fk(X)〉 = Fk ,

the Fks are fixed. Then the maximum entropy principle assigns probabil-

ities in such a way that maximises the information entropy of X under

the above constraints. This is the “best guess” in the absence of any

further knowledge about the random variable. Since any extra assump-

tion would bring a reduction in uncertainty (see mutual information), we

explicitly deny those extra assumptions by maximising the uncertainty.

In the following we calculate various properties of the maximum en-

tropy solution. This may sound dry, but has the advantage that these

abstract results can be very easily applied later for concrete examples.

To obtain a formal solution we proceed in a similar way as in the

example, maximise the information entropy using Lagrange multipliers:

0 = d




H(p1, . . . , pn)−

m∑

k=1

λk

(
n∑

i=1

fk(xi)pi − Fk

)

− µ
︸︷︷︸

λ0−1

(
n∑

i=1

pi − 1

)





=
n∑

i=1

{

− log(pi)− 1−
m∑

k=1

λkfk(xi)− (λ0 − 1)

}

dpi
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Since this is zero for any dpi, all n braces have to be zero, giving

pi = exp

(

−λ0 −
m∑

k=1

λkfk(xi)

)

(4.5)

Then all the Lagrange multipliers (λ0, λ1, . . . λm) are fixed by substitut-

ing back into the constraints. The sum of probabilities give

1 =

n∑

i=1

pi = e−λ0

n∑

i=1

exp

(

−
m∑

k=1

λkfk(xi)

)

.

The sum after e−λ0 appears frequently, so it is useful to consider it

separately: we will call it partition function

Z(λ1, . . . , λm) :=
n∑

i=1

exp

(

−
m∑

k=1

λkfk(xi)

)

. (4.6)

With this notation

e−λ0 =
1

Z(λ1, . . . , λm)
. (4.7)

The other constraints are

Fk =
n∑

i=1

fk(xi)pi = e−λ0

n∑

i=1

fk(xi) exp

(

−
m∑

k=1

λkfk(xi)

)

= − 1

Z

∂Z(λ1, . . . , λm)

∂λk
= −∂ logZ(λ1, . . . , λm)

∂λk
, (4.8)

which is m implicit equations, just enough to determine in principle the

m unknowns λk. Using (4.7) then the probabilities (4.5) are then fully

determined:

pi =
1

Z(λ1, . . . , λm)
exp

(

−
m∑

k=1

λkfk(xi)

)

(4.9)

Unlike the simple example we had with three states, in practice it is

usually not possible to calculate the λks explicitly as a function of Fks,

but as we see later this does not prevent us obtaining lots of useful

results.

Consider now the value of the maximised information entropy. It is no

longer function of the probabilities, but instead of the constraint values
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Fk, and to reflect this we change notation to S:

S(F1, . . . , Fm) := H(p1, . . . , pn
︸ ︷︷ ︸

from (4.9)

) = −
n∑

i=1

pi

(

−λ0 −
m∑

k=1

λkfk(xi)

)

= λ0 +

m∑

k=1

λk

n∑

i=1

fk(xi)pi = logZ(λ1, . . . , λm) +

m∑

k=1

λkFk (4.10)

Now calculate the partial derivatives of S w.r.t. the Fks, being careful

about what is kept constant in the partial derivatives2:

∂S

∂Fk

∣
∣
∣
∣
{F}

=

m∑

ℓ=1

∂ logZ

∂λℓ

∣
∣
∣
∣
{λ}

︸ ︷︷ ︸

Fℓ

∂λℓ

∂Fk

∣
∣
∣
∣
{F}

+

m∑

ℓ=1

∂λℓ

∂Fk

∣
∣
∣
∣
{F}

Fℓ+λk = λk (4.11)

Here either S(F1, . . . , Fm) or logZ(λ1, . . . , λm) give a full description of

the system, as the other can be calculated using (4.10), and there is a

symmetric relation between their partial derivatives: (4.8) and (4.11).

We look at this kind of relation between two functions more closely

below.

Legendre transform

Consider a convex function f(x), and define the following function

f∗(p) := max
x

(
px− f(x)

)
. (4.12)

We call this3 the Legendre transform of f(x). If f is differentiable as

well, then the maximum can be calculated as

0 =
d

dx
(px− f(x)) = p− df(x)

dx

Its solution for x depends on p, which we call x(p):

df(x)

dx

∣
∣
∣
∣
x=x(p)

= p

2 In thermodynamics and statistical physics functions of many variables are used
extensively, and the notation is not always clear on what the free variables are.
When taking partial derivatives, it is essential to be clear on what is kept
constant; therefore it is often shown at the bottom of the vertical bar after the
partial differential. Eg. the notation {λ} means all λjs are kept fixed except the
one we differentiate with.

3 The Legendre transform is sometimes defined with a sign difference:
f∗(p) = max(f(x)− px). The advantage of our notation is that the inverse, as we
soon see, is completely symmetric.
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which plugged into (4.12) gives

f∗(p) = px(p)− f
(
x(p)

)
.

Now let’s calculate the Legendre transform of f∗:

(f∗)∗(y) = max
p

(
yp− f∗(p)

)
.

Again, if f∗ is differentiable then

df∗(p)

dp

∣
∣
∣
∣
p=p(y)

= y .

However,

df∗(p)

dp
=

px(p)− f(x(p))

dp
= x(p) + p

dx(p)

dp
− df(x)

dx

∣
∣
∣
∣
x(p)

︸ ︷︷ ︸

p

dx(p)

dp
= x(p)

so

y =
df∗(p)

dp

∣
∣
∣
∣
p=p(y)

= x(p(y)) ,

thus

f∗∗(y) = yp(y)− f∗(p(y)) = yp(y)− p(y)x(p(y)) + f(x(p(y))) = f(y) .

We just obtained that the functions f∗∗(·) and f(·) are equal, or equiv-

alently the Legendre transform is its own inverse.

The Legendre transform can be easily generalised to concave functions:

in the definition max needs to be replaced by min.

The other generalisation applies to functions of multiple variables: the

Legendre transform of f(x1, . . . , xm) is

f∗(p1, . . . , pk) =

m∑

k=1

xkpk − f(x1, . . . , xm) , where pk =
∂f

∂xk

Now looking back to the maximum entropy solution, (4.10) and (4.8)

establish that S(F1, . . . , Fm) and− logZ(λ1, . . . , λm) are Legendre trans-

forms of each other. Having seen the symmetric structure of the Legendre

transform, (4.11) is no longer surprising. The only remaining bit is to

show that − logZ is indeed either convex or concave so that the Legendre

transform is defined, to which we come back soon.
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Reciprocity laws and covariances

We can easily derive relationships between partial derivatives of the

constraints Fk and Lagrange multipliers λk. By changing the order of

partial differentiations we obtain

∂Fk

∂λj

∣
∣
∣
∣
{λ}

=
∂2 − logZ

∂λj∂λk

∣
∣
∣
∣
{λ}

=
∂2 − logZ

∂λk∂λj

∣
∣
∣
∣
{λ}

=
∂Fj

∂λk

∣
∣
∣
∣
{λ}

. (4.13)

Similarly

∂λk

∂Fj

∣
∣
∣
∣
{F}

=
∂2S

∂Fj∂Fk

∣
∣
∣
∣
{F}

=
∂2S

∂Fk∂Fj

∣
∣
∣
∣
{F}

=
∂λj

∂Fk

∣
∣
∣
∣
{F}

.

By cursory observation one might say the second equation is just the

reciprocal of the first one, so it is not telling anything new. This is

wrong, as the quantities that are kept fixed at differentiation are not

the same. However, the naive notion of inverse holds in a more intricate

way: the matrices with elements Ajk = ∂Fj/∂λk and Bjk = ∂λj/∂Fk

are inverses of each other: A = B−1.

When we set 〈fk(X)〉 = Fk, we required that the expectation of fk(X)

is what is prescribed, but still it varies from observation to observation.

Now we look at how large these fluctuations are.

The covariance of two random variables is defined as

Cov(X,Y ) := 〈[X − 〈X〉][Y − 〈Y 〉]〉 = 〈XY 〉 − 〈X〉〈Y 〉 ,

which is a measure of “how much Y is above its average at the same

time when X is above its average”. A covariance of a random variable

with itself is called variance:

Var(X) := Cov(X,X) = 〈(X − 〈X〉)2〉 = 〈X2〉 − 〈X〉2 ,

with the convenient meaning that its square root (the standard deviation

σ) measures how much a random variable differs from its average, suit-

ably weighted. (The variance is always non-negative, as it is the average

of a non-negative quantity: a square.)

So we can calculate the covariance of fk(X) and fj(X):

Cov(fj(X), fk(X)) = 〈fj(X)fk(X)〉 − 〈fj(X)〉〈fk(X)〉
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The first term using (4.9) is

〈fj(X)fk(X)〉 = 1

Z

n∑

i=1

fj(xi)fk(xi) exp

(

−
m∑

ℓ=1

λℓfℓ(xi)

)

=
1

Z

∂2Z(λ1, . . . , λm)

∂λj∂λk
.

As a side remark, the above calculation easily generalises to averages of

arbitrary products of fks:

〈fmj

j (X)fmk

k (X) · · · 〉 = 1

Z

(

∂mj

∂λ
mj

j

∂mk

∂λmk

k

· · ·
)

Z .

Coming back to the covariance

Cov(fj(X), fk(X)) =
1

Z

∂2Z

∂λj∂λk
− 1

Z2

∂Z

∂λj

∂Z

∂λk
=

∂2 logZ

∂λj∂λk

= −∂Fk

∂λj
= −∂Fj

∂λk
,

where we have seen the last steps already in (4.13). Similarly for variance

0 ≤ Var(fk(X)) =
∂2 logZ

∂λ2
k

= −∂Fk

∂λk
(4.14)

This confirms that the second derivative of logZ is non-negative, ie. logZ

is a convex function, which we implicitly assumed when mentioned that

− logZ and S are Legendre transforms of each other.

Suppose now that the constraint functions fk depend on an external

parameter: fk(X;α). Everything, including Z and S become dependent

on α. To see its effect we calculate partial derivatives:

−∂ logZ

∂α

∣
∣
∣
∣
{λ}

= − 1

Z

n∑

i=1

exp

(

−
m∑

k=1

λkfk(xi;α)

)
m∑

k=1

−λk
∂fk(xi;α)

∂α

=
m∑

k=1

λk

〈
∂fk
∂α

〉

. (4.15)

Similarly, using S = logZ +
∑

k λkFk:

∂S(F1, . . . , Fn;α)

∂α

∣
∣
∣
∣
{F}

=

m∑

k=1

∂ logZ

∂λk

∣
∣
∣
∣
{λ}

︸ ︷︷ ︸

−Fk

∂λk

∂α

∣
∣
∣
∣
{F}

+
∂ logZ

∂α

∣
∣
∣
∣
{λ}

+

+

m∑

k=1

∂λk

∂α

∣
∣
∣
∣
{F}

Fk =
∂ logZ

∂α

∣
∣
∣
∣
{λ}

.
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So the partial derivatives of logZ and S with respect to α are equal,

though one should note that the variables kept fixed are the natural

variables in each case.

4.3 Applications of the maximum entropy

framework

The microcanonical ensemble

The simplest system to consider is the isolated one, with no interac-

tion with its environment. A physical example can be a thermally and

mechanically isolated box containing some gas, conventionally these are

called microcanonical ensembles. With no way to communicate, we have

no information about the current state of the system. To put it in the

maximum entropy framework, we do not have any constraint to apply.

The maximum entropy solution for such a system is

Z =

n∑

i=1

1 , pi =
1

Z
, S = logZ .

Using the conventions of statistical physics the number of states is de-

noted by Ω, and the unit of entropy is kB : recall this sets the prefactor

and/or the base of the logarithm in (4.2)-(4.3). Using this notation (the

MC subscript denotes microcanonical):

Z = Ω , pi =
1

Z
=

1

Ω
, SMC = kB lnΩ .

In this most simple system all internal states have equal probability.

The canonical ensemble

In the next level of increasing complexity, we allow the exchange of one

conserved quantity with the external environment. The physical example

is a system which is thermally coupled (allowing energy exchange) with

its environment; conventionally these are called canonical ensembles. Us-

ing this terminology we label the internal states with their energy. By

having the ability to interact with the system, we can control eg. the

average energy of the system by changing the condition of the environ-

ment, corresponding to having one constraint in the maximum entropy

formalism.
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The maximum entropy solution for one constraint reads

Z(λ) =

n∑

i=1

e−λf(xi) , pi =
1

Z
e−λf(xi) , S(F ) = logZ(λ) + λF .

The conventional units for entropy is kB for canonical ensembles as well,

and as we mentioned the states are labelled with energy: f(xi) = Ei with

average energy (the value of the constraint) F = E. Finally, the Lagrange

multiplier λ is called β = 1/(kBT ) in statistical physics, where T is

temperature (measured in Kelvins), and kB is the Boltzmann constant.

Thus we have

Z(β) =
n∑

i=1

e−βEi , pi =
e−βEi

Z
=

e
−

Ei
kBT

Z
, SC(〈E〉) = kB lnZ+

〈E〉
T

In pi the exponential factor e−βEi is called Boltzmann factor, while Z

provides the normalisation.

Having established this connection, we can easily translate the results

of the maximum entropy formalism. Eqs. (4.8) and (4.11) become

〈E〉 = −∂ lnZ

∂β
and

1

T
=

∂SC

∂〈E〉

Eq. (4.14) gives the energy fluctuation:

σ2
E = Var(E) =

∂2 lnZ

∂β2
= −∂〈E〉

∂β
=

∂〈E〉
∂T
︸ ︷︷ ︸

CV

kBT
2

where CV is the heat capacity of the system. This is an interesting re-

lation, connecting microscopic fluctuations with macroscopic thermody-

namic quantities.

In practice it is useful to define the following quantity, called Helmholtz

free energy :

A := −kBT lnZ = 〈E〉 − TSC ,

If we consider it as a function of temperature, A(T ), its derivative is

∂A

∂T
= −kB lnZ − kBT

∂ lnZ

∂β

1

kBT 2
= −SC

This leads to a relation with the energy. Our approach so far determined

the entropy SC as a function of average energy 〈E〉. Considering its

inverse function 〈E〉(SC), we see that its Legendre transform is −A(T ).
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It is interesting to note that

∑

i

exp

(

− Ei

kBT

)

= Z = exp

(

− A

kBT

)

,

so the sum of Boltzmann factors equals to a single Boltzmann factor

with energy replaced with the Helmholtz free energy. We will see its

implications later in the grand canonical ensemble.

Next we consider a system made of two subsystems, which are suffi-

ciently uncoupled. The joint partition function can be written as [label-

ing the left and right subsystem with (L) and (R)]:

Z =
∑

i

∑

j

e
−β

(

E
(L)
i

+E
(R)
j

)

=
(∑

i

e−βE
(L)
i

)(∑

j

e−βE
(R)
j

)

= Z(L)Z(R)

This means that lnZ is additive: A = −kBT lnZ = A(L) +A(R). Other

quantities, like the entropy or the energy have the similar additive prop-

erty, and we call these extensive quantities.

Physical examples for canonical ensembles

We have seen that to calculate any statistical mechanics quantity for

a given system, the partition function is calculated first, and then any

other quantity is easily expressed. We will consider physical systems, like

a particle at position x, momentum p = mv, and energy E = p2/(2m)+

U(x), where U is the potential. In systems made of discrete states the

formula involves a sum over the states. For continuous systems, however,

the sum needs to be replaced by integration:

∑

i

(·) ↔ 1

h

∫ ∞

−∞

dx

∫ ∞

−∞

dp (·) (4.16)

This is a semiclassical formula: not quantum mechanical, as x and p

are independent variables and not non-commuting operators; but not

purely classical either as the Planck constant h is involved. Instead of

fully understanding, we just rationalise this formula as (i) a constant

needs to appear in front of the integrals to make the full expression

dimensionless, as Z should be, and (ii) in quantities involving logZ the

prefactor 1/h becomes an additive constant, and in particular for the

entropy it sets its zero level.

The simplest example is a one-dimensional box of length L. The po-
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tential can be taken as zero within the box and infinity outside, giving

Z =
1

h

∫ ∞

−∞

dx

∫ ∞

−∞

dp exp

(

−β

[
p2

2m
+ U(x)

])

=
1

h

∫ L

0

dx

∫ ∞

−∞

dp exp

(

−β
p2

2m

)

=
L

h

√
2πm

β
=

L

λ
(4.17)

where we used the Gaussian integral 1 =
∫∞

−∞
exp(−x2/2σ2)/

√
2πσ2.

The factors other than L are collected into a quantity of dimension

length: λ = h/
√
2πmkBT , called thermal de Broglie wavelength. When

it is small compared to characteristic length scales, in our case λ ≪ L,

the system can be considered as classical; while if λ ' L, proper quantum

mechanics needs to be used. Interestingly, this does not only involve size,

but also mass and temperature. This is the reason why typically electrons

are always quantum mechanical, but full atoms can be considered as

classical (as is done in molecular dynamics simulations). The exception

is very light atoms at very low temperature, when inherently quantum

effects like superfluidity of helium can be observed.

The ideal gas is a model of gases where gas atoms or molecules are

point particles which do not interact. Since in the energy the x, y, and

z components are decoupled, the coordinates of all N particles can be

considered as independent, which using (4.16) and (4.17) leads to

Z =
1

N !

(
L

h

√
2πm

β

)3N

=
1

N !

(
V

λ3

)N

(4.18)

The 1/N ! comes from the fact that the particles are indistinguishable:

states where eg. particle 1 has position and momentum ra,pa and parti-

cle 2 has rb,pb is identical to the state where particle 1 of rb,pb and par-

ticle 2 of ra,pa; the factor corrects the double counting in the integrals.

Having Z, it is easy to show that the average energy 〈E〉 = (3/2)NkBT ,

the Helmholtz free energy A = NkBT (log(ρλ
3) − 1), and the entropy

S = NkB(5/2− log(ρλ3)), where ρ = N/V is the number density.

It is interesting to see that considering V as a parameter of the system,

we can apply (4.15) to obtain a new relation. Plugging in α = V and

∂f/∂α = ∂E/∂V = −p (the latter can be considered as a definition of

pressure):

−∂ logZ

∂V
= −β

〈
∂E

∂V

〉

which using (4.18) gives

NkBT = 〈p〉V
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This is called equation of state, as it provides a relation between state

variables like pressure, volume and temperature.

Next we consider another fundamental system, the harmonic oscilla-

tor. One can think about it as a point mass m moving in one dimension,

connected to a spring of stiffness k, of which the other end is kept fixed.

If the position x is measured from the equilibrium position (unstretched

spring), then the force acting on the the point mass is −kx, yielding New-

ton’s equation md2x/dt2 = −kx. This has a solution x = A sin(ωt+ φ),

where the amplitude A and phase φ are parameters set by the initial

condition, and the frequency is ω =
√

k/m. The energy stored in the

spring can be written as kx2/2 = mω2x2/2, so the total energy is

E =
p2

2m
+

mω2

2
x2 (4.19)

Using the standard recipe we first calculate the partition function:

Z =
1

h

∫ ∞

−∞

dx

∫ ∞

−∞

dpe−β p2

2m e−β mω2

2 x2

=
1

h

√
2πm

β

√
2π

mω2β
=

1

~ωβ

where we introduced ~ = h/(2π). Then

〈E〉 = −∂ lnZ

∂β
= − ∂

∂β
ln

1

β
= kBT and CV =

∂〈E〉
∂T

= kB

This last result is a realisation of the principle of equipartition: each

quadratic half-degree of freedom [like x and p in (4.19)] contributes

kBT/2 to the average energy, and consequently kB/2 to the heat ca-

pacity.

We will now apply these results to calculate the heat capacity of solids.

Far away from the the melting temperature the many-body potential of

the atoms in a crystal can be considered quadratic. Collecting all 3N

coordinates of the N atoms into a vector x = (x1, x2, . . . , x3N ), the

potential is

U(x) = U0 +
3N∑

i=1

∂U

∂xi
(xi − x0

i ) +
1

2

3N∑

i,j=1

∂2U

∂xi∂xj
(xi − x0

i )(xj − x0
j ) + . . .

where the series expansion is truncated at the quadratic term. The equa-

tion of motion involves the 3N × 3N dynamical matrix ∂2U/∂xi∂xj ,

which separates into 3N independent one-dimensional harmonic oscilla-

tors corresponding to the normal modes and eigenfrequencies. This leads

to C = 3NkB , known as Dulong-Petit law, which turns out to be correct

at high temperatures.
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At low temperatures quantum mechanical effects have to be taken into

account, which we do simply by replacing the classical harmonic oscilla-

tors with quantum harmonic oscillators. For our purposes the quantum

harmonic oscillator is a system with discrete energy levels: in the ith

state Ei = (i + 1
2 )~ω, where i = 0, 1, . . . . Being a discrete system the

partition function involves just a sum, which here is a geometric sum:

Z =

∞∑

i=0

e−β(i+ 1
2 )~ω =

e−
1
2β~ω

1− e−β~ω
=

1

2 sinh
(

β~ω
2

)

The average energy and heat capacity are

〈E〉 = −∂ lnZ

∂β
=

~ω

2
coth

~ω

2kBT

C =
∂〈E〉
∂T

= kB

(
~ω

2kBT

)2
1

sinh2 ~ω
2kBT

At high temperature (small β) the argument of sinh is small, which

expands to sinhx ∼ x. This leads to C → kB , which is the classical

result.

At low temperature (large β) however, the argument of sinh is large,

expanding to sinhx ∼ 1
2e

x. This gives C ≈ kB

(
~ω
kBT

)2

e
− ~ω

kBT , resulting

in exponential suppression at low temperatures. Naively applying this

result to crystals leads to the Einstein model of solids, which at low

temperatures simply gives C = 3NkB

(
~ω

2kBT

)2

/ sinh2 ~ω
2kBT .

This is still incorrect, however, since all quantum harmonic oscillators

are assumed to have the same frequency. In the Debye model of solids

the proper spectrum of frequencies is used, which indeed reproduces

experimental measurements at low temperatures as well. The Reader is

referred to standard solid state physics textbooks for details.

The grand canonical ensemble

We now allow the exchange of two conserved quantities with the external

environment: to follow the physical example of grand canonical ensem-

bles, these are the energy and the particle number. In the maximum

entropy formalism this corresponds to constraining the average energy

and the average particle number. As before the units of entropy is kB ,

and the ith state has energy Ei and particle number Ni. The Lagrange

multiplier conjugate to energy is β = 1/(kBT ) as in the canonical ensem-

ble. The other one, however, is conventionally denoted by −µβ = − µ
kBT .
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Accordingly the grand canonical partition function (denoted by Ξ)

and the probabilities of the states are

Ξ(β, µ) =
∑

i

e−β(Ei−µNi)

pi =
1

Ξ
e
− 1

kBT
(Ei−µNi) ,

while the entropy, now function of the average energy and average par-

ticle number, using (4.10) becomes

SGC

(
〈E〉, 〈N〉

)
= kB ln Ξ +

〈E〉
T

− µ〈N〉
T

.

The simple relations (4.8) and (4.11) become more complicated due

to the fact that the physical variables, especially µ, are not simply the

Lagrange multipliers but functions of them:

〈E〉 = − ∂ ln Ξ

∂β

∣
∣
∣
∣
−µ·β

= − ∂ ln Ξ

∂β

∣
∣
∣
∣
µ

+
∂ ln Ξ

∂µ

∣
∣
∣
∣
β

µkBT

〈N〉 = − ∂ ln Ξ

∂ − µβ

∣
∣
∣
∣
β

= kBT
∂ ln Ξ

∂µ

∣
∣
∣
∣
β

1

T
=

∂SGC

∂〈E〉

∣
∣
∣
∣
〈N〉

− µ

T
=

∂SGC

∂〈N〉

∣
∣
∣
∣
〈E〉

In the grand canonical ensemble not only the energy fluctuates, but

also the particle number:

σ2
N = Var(N) =

∂2 ln Ξ

∂(−µβ)2

∣
∣
∣
∣
β

= kBT
∂〈N〉
∂µ

∣
∣
∣
∣
β

The reciprocity relations also become more complicated, for example

∂〈E〉
∂ − µβ

∣
∣
∣
∣
β

=
∂〈N〉
∂β

∣
∣
∣
∣
−µ·β

becomes

−kBT
∂〈E〉
∂µ

∣
∣
∣
∣
β

=
∂〈N〉
∂β

∣
∣
∣
∣
µ

− µkBT
∂〈N〉
∂µ

∣
∣
∣
∣
β

An important quantity is the grand free energy (we will see soon the

relevance of the free energies), which is defined as

Φ(T, µ) := −kBT ln Ξ = 〈E〉 − µ〈N〉 − TSGC
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It is interesting to note that the partition function can be written as

e−βΦ = Ξ =
∑

i

e−βEieβµNi =

∞∑

N=0

eβµN
∑

j

e−βEj,N

=
∑

N

e−β
(
A(T ;N)−µN

)

In this expression microscopic states with the same particle number N

are lumped together into a macroscopic state, and the sum of their Boltz-

mann factors is replaced by a single Boltzmann factor where the role of

the energy is played by an appropriate free energy. This manipulation is

called partial trace, a terminology borrowed from the quantum formalism

of statistical mechanics.

4.4 Fluctuations and thermodynamics

In the previous section we calculated the energy and particle number

fluctuations in the canonical and grand canonical ensembles. Considering

how the relative fluctuations depend on the system size, we obtain

σE

〈E〉

∣
∣
∣
∣
canonical ensemble

=

√

kBT 2 ∂〈E〉
∂T

〈E〉 ∼ 1
√

〈E〉

σN

〈N〉

∣
∣
∣
∣
grand canonical ens.

=

√

kBT
∂〈N〉
∂µ

〈N〉 ∼ 1
√

〈N〉
In both cases the relative fluctuations decay as the − 1

2 power of the

system size. In the N → ∞ limit, called thermodynamic limit, the fluc-

tuating quantities (when rescaling with the system size) become definite,

not random. Thus we can replace 〈E〉 with E etc. This is why statistical

mechanics is the microscopic foundation of thermodynamics.

In many cases fluctuations are the aggregate effect of many indepen-

dent contributions. To consider this case more rigorously, suppose Xi

are iid (independent, identically distributed) random variables, with

〈Xi〉 = µ and Var(Xi) = σ2. Then the Central limit theorem states

that

Zn :=

Sn
︷ ︸︸ ︷

X1 + · · ·+Xn −nµ√
nσ

D→ N (0, 1)

Here N (0, 1) is the distribution of standard normal (Gaussian) random
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variables, ie. with zero mean and unit variance. The notation
D→ means

convergence in distribution:

lim
n→∞

P (Zn < z) = P (ζ < z)

where ζ is a standard normal random variable. Note that this is pointwise

convergence of the cumulative distribution function, which is weaker

than the convergence of the probability density function.

The Central limit theorem is behind the fact that the normal distribu-

tion is so prevalent: for macroscopic fluctuations often the microscopic

contributions are sufficiently independent. As we have seen before the

relative fluctuations of the sum decrease as 1/
√
n:

σSn

〈Sn〉
→

√
nσ

nµ
∼ 1√

n

A simple application is the one-dimensional random walk: Xi takes

values ±1 each with probability 1/2. The resulting trajectory, Sn =

X1 + · · ·+Xn is like a Gaussian variable with mean zero and standard

deviation
√
n, when sufficiently coarse grained to remove the discrete-

ness.

Certain important cases fall outside the applicability of the Central

limit theorem, like distributions where the variance (or the mean as well)

is undefined. One such example is the Cauchy (or Lorentz) distribution,

defined by the probability density function

f(x) =
1

π(1 + x2)
or f(x) =

1

πγ

(

1 +
(

x−x0

γ

)2
)

Surprisingly the average of n iid Cauchy random variables has the same

distribution as just one, which means that if one deals with such quan-

tities, taking averages is useless.

When generalising this phenomena one arrives at the concept of stable

distributions : these are families of distributions where the sum of such

random variables is from the same family. More formally, let Fam(Θ)

represent a family of distributions where Θ denotes all the parameters.

Suppose X1 and X2 are from this family. If their linear combination is

also from this family:

X1 ∼ Fam(Θ1), X2 ∼ Fam(Θ2) ⇒ aX1 + bX2 ∼ Fam(Θ3) + c

then we call Fam a stable distribution.
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We have seen that both the normal and the Cauchy are stable distri-

butions. One more where the probability density function can be given

in closed form is the Levy distribution:

f(x) =

√
c

2π

e−c/(2x)

x3/2

which can be generalised to the 4-parameter Levy-skew-α-stable family.

This distribution underpins the Levy flight, which is similar to a ran-

dom walk, but the increments are taken from a heavy tailed distribution,

f(x) ∼ 1/|x|α+1 , where 0 < α < 2 .

Thermodynamics

As we mentioned, thermodynamics is founded by statistical mechanics.

However, it can also be considered as a self-standing axiomatic theory,

based on the following axioms:

(0) There exist a relation between thermodynamic systems. This relation

is called thermodynamic equilibrium, and it is transitive (equivalence

relation):

if A ∼ B and B ∼ C, then A ∼ C.

Here A, B and C label different systems. For example in thermal

equilibrium this means a transitive relation between the temperatures

of the three systems.

(1) Energy conservation: the total energy of an isolated system is fixed.

Thus if during some process a system absorbs heat ∆Q, as well as

work ∆W = −p∆V + . . . is made on it, then its energy changes by

∆E = ∆Q+∆W .

(2) In an isolated system the entropy does not decrease.

Thus if during some process a system absorbs heat ∆Q, then its en-

tropy changes by ∆S = ∆Q/T +∆Sinternal ≥ ∆Q/T .

(3) The entropy at absolute zero temperature is zero, or it is independent

of other parameters, so can be set to zero. Another form is that the

ground state of a quantum system has finite multiplicity (or at least

not exponential with N).

A simple consequence is that the heat capacity vanishes at absolute

zero temperature:

CX =
∂Q

∂T

∣
∣
∣
∣
X

= T
∂S

∂T

∣
∣
∣
∣
X

→ 0 if T → 0
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where the subscript X corresponds to the quantity held fixed, it can

be anything suitable, eg. volume or pressure.

Let us suppose now that we bring a thermodynamic system from one

state to another. Certain thermodynamic quantities, like work or heat do

depend on which path is taken, while others like total energy, entropy,

free energy, temperature, pressure etc. are path-independent. We call

the latter ones state variables.

Now we return to free energies. Consider a system kept at fixed tem-

perature T , which undergoes some change. If it is otherwise isolated from

its environment (canonical ensemble), then its energy changes only by

the absorbed heat: ∆E = ∆Q. The change in entropy is

∆S =
∆Q

T
+∆Sint ≥

∆Q

T

since the second law of thermodynamics states that ∆Sint ≥ 0. Intro-

ducing the Helmholtz free energy as A(T ) = E − TS, its change is

∆A = ∆E − T∆S ≤ 0 ,

so the free energy never increases during any change or transition. Then

it follows that at stable equilibrium it must be minimal. This is a very

important point, which makes free energies central in thermodynamics.

The corresponding observation in statistical mechanics, where there are

always fluctuations, is that the probability of a macroscopic state is

proportional to exp
(
− A(T )

kBT

)
. For a large system the difference between

free energies of different states are large: ∆A ≫ kBT , so only the state

with the lowest free energy is observed.

The above observations hold for any ensemble, when the appropriate

free energy is used. To illustrate this we will have another example.

Consider now a system kept at constant temperature T and pressure p,

so exchange of heat and volume with its environment is allowed. When

undergoing a change, its energy changes by ∆E = ∆Q − p∆V . The

change in entropy is

∆S =
∆Q

T
+∆Sint ≥

∆Q

T

If we now introduce the Gibbs free energy: G(T, p) = E − TS + pV , its

change is

∆G = ∆E − T∆S + p∆V ≤ 0

non-positive again. The Gibbs free energy is the relevant quantity for

constant T , p environments, like in biochemical reactions.
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4.5 Phase transitions

As we mentioned in the beginning of this chapter, complex systems dis-

play a nontrivial collective behaviour of the constituents. Phase tran-

sitions are the most spectacular of these emergent phenomena. They

correspond to sudden change in behaviour by a small change in the

controlling parameters.

Probably the first example to come to mind is the melting of ice, and

boiling of water – those in the domain of Physics are the best under-

stood, since the microscopic interactions are completely known. There

are many other, potentially more contested examples as well, like the

fall of communism in East Europe around 1989.

Coming back to Physics, the transition occurs between different phases.

The possible phases include the grade school examples of solids, liquids

and gases, but there are many more, like magnets, a whole zoo of liquid

crystals, superconductors, superfluids, different crystal structures of the

same material etc.

When considering phases, symmetry is an important concept. It can

be thought of as a collection of operations that map a system back to

itself. If two states have different symmetry, these are necessarily dif-

ferent phases. However, it is possible to have two different phases with

the same symmetry, like both liquids and gases are homogeneous (trans-

lation invariant in a statistical sense) and isotropic (all directions are

equivalent). When state A and state B corresponds to phases of differ-

ent symmetry, any path connecting A and B has at some point a jump

in symmetry, thus it necessarily involves a phase transition. However,

when the phases are of the same symmetry, it is possible, as in Fig. 4.1,

to move from A to B without a phase transition.

Order parameter field

The first step to describe a phase transition is to define an order param-

eter field. This is an extraction of the relevant quantities from a large

number of degrees of freedom. This is not straightforward to do, and

represents a very important step in understanding the phase transition.

A few examples:

liquids and gases: the order parameter field is the density ρ: it is a

scalar assigned to each point in space.

magnets: the order parameter field is the locally averaged magneti-

sation: it is a vector v at each space point.
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Figure 4.1 Simplified phase diagram of water. Path (1) corresponds
to an abrupt phase transition between the liquid and gas phases, path
(2) is a continuous phase transition, while path (3) involves no phase
transition as it crosses neither a coexistence line nor a critical point.
Since liquid and gas has the same symmetry, it is possible, as in path
(4), to move from one side of the coexistence line to the other without
a phase transition.

With the extra restriction of fixed temperature, |v| becomes fixed: cor-

responding to a point on the surface of a sphere.

nematic liquid crystals: these consist of thin rod molecules, which

have an orientational order. The order parameter field is the locally av-

eraged orientation d. Since the two ends of the molecules are equivalent,

a 180◦ rotation does not change the orientation. Mathematically this

property can be expressed as d = −d: these objects are called directors.

With the extra restriction of fixed temperature, |d| becomes fixed, cor-

responding to a point on a hemisphere.

crystals: the order parameter field is the local translation needed

to return an atom to a perfect lattice site. Since all perfect lattice sites

are equivalent, this means that our object does not change if we add

integer times a lattice vector. Eg. in two dimensions this means u =

u+maxx̂+nay ŷ, where ax and ay are the lattice constants and x̂ and ŷ

are the lattice directions. These objects are often called wrapped vectors.

They can be represented by a rectangle, where the pairs of opposite sides

are identified, which is topologically equivalent to the surface of a torus.

superconductors: the order parameter field is a complex number Ψ,
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corresponding to the quantum mechanical phase of the condensed state.

At fixed temperature |Ψ| is fixed, ie. a point on a circle.

Topological defects

A phase is often not perfect: the order parameter field is not uniform

everywhere. Often these are small fluctuations that can return easily to

the perfect state, but sometimes this is not the case. We call defect a

“tear” (some sort of singularity or discontinuity) in the order parameter

field, and topological defect is a “tear which cannot be patched”. This

means that no continuous local deformation of the order parameter field

can remove the defect.

The simplest example is a vortex line superconductor at fixed T . If

we consider a closed path encircling the line, the order parameter goes

around the circle in the order parameter space. The lack of defect would

correspond to the order parameter being constant as we follow the closed

path. Since it is not possible to deform continuously the order param-

eter field from the initial state where following the closed path we go

around the circle in the order parameter space to a final state where we

don’t move in the order parameter space, this is a topological defect. A

rigorous treatment of this phenomena belongs to the topology branch of

Mathematics. It follows that the vortex line cannot end (in reality it can

only end at the boundary of the sample).

Another example is a crystal, where in half of the domain there is an

extra layer of atoms. The edge of this layer is a line defect: encircling

it corresponds to moving on a closed loop on the torus of the order

parameter space, which cannot be contracted continuously to a single

point.

Our last example is nematic liquid crystals at fixed T . The order

parameter space is a hemisphere, where one can select a closed loop

which cannot be contracted continuously to a single point. This means

that nematic liquid crystals can have line defects. This in in contrast with

three-dimensional magnets, which do not have line defects: there the

order parameter space is a full sphere: there any circle can be contracted

to a point, just image to move them to the north pole.

Abrupt phase transitions

Phase transitions can be grouped into to classes: abrupt phase transi-

tions, where the order parameter has a discontinuity, and continuous
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phase transitions, where the order parameter has a singularity but still

continuous.

Abrupt phase transitions are sometimes called first order, and the

continuous one as second order. This terminology originates from Ehren-

fest’s classification, which considered the lowest derivative of the free en-

ergy that is discontinuous at the transition. Ehrenfest’s approach is no

longer used, as it turned out that different higher order phase transitions

are not fundamentally different, some even do not fit in (eg. divergent

derivatives).

First let us consider abrupt phase transition, and our example will be

water held at fixed T and p. As illustrated on Fig. 4.1, if the parameters

(T and p) are varied on a path which crosses a phase coexistence curve,

a sudden jump in properties occur. This can be captured by the order

parameter, which is in this case the density ρ.

What underlies an abrupt phase transition is that when the external

parameters are varied, the current phase, which used to be stable (lowest

free energy), becomes metastable, as another phase, which might be

very far in configuration space, becomes lower in free energy. In the

phase diagram (representing the lowest free energy phase as a function

of parameters like T and p) one crosses from a domain A where the free

energy of phase A is lower to domain B where that of phase B is lower.

When the coexistence curve (of equal free energies) is crossed, the

system does not necessarily recognise immediately that some other state

would be lower in free energy: this happens via fluctuations. Suppose

that by fluctuations a small sphere of radius R of the lower free energy

phase is formed. To fix notation let us consider cooling down a gas to

form liquid at fixed pressure. Then the Gibbs free energy of the small

liquid droplet is

Gdroplet(R) = c1R
2 − c2R

3∆T ,

see Fig. 4.2. The first term corresponds to surface tension: it costs free

energy to create an interface between the two phases. This is positive

and quadratic in R, dominating the expression for small R. The origin

of the second term is the difference between the bulk free energies: this

is proportional to the volume of the droplet (∼ R3). The prefactor is

proportional to ∆T (the difference between the coexistence temperature

and the actual temperature), as the bulk free energies are smooth func-

tions of the temperature, therefore their difference can be approximated

to be linear in ∆T . This term is negative, and dominates at large R. The

function Gdroplet(R) has a maximum, which is easy to obtain by differen-
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Figure 4.2 The Gibbs free energy of a droplet as a function of its
radius.

tiation: the maximum can be denoted by Gc, which is taken at finite Rc.

Due to the temperature dependence of the volume term, Gc ∼ ∆T−2.

The free energy of a large droplet is negative, therefore this is the ther-

modynamically stable state. However, the system needs to discover that

there is indeed a phase with lower free energy than the current one, which

it does via fluctuations. In the simplest picture the system attempts to

overcome the free energy barrier many times, and each attempt succeeds

with probability exp(−βGc). The rate by which the attempts are made

(denoted by “prefactor” below) is determined by fundamental frequen-

cies of the system, and is often very hard to predict, but the strong

temperature dependence is contained mostly in the Boltzmann factor.

So the rate by which the droplets form spontaneously, often called nu-

cleation rate, is given by

Γ = (prefactor) e
− Gc

kBT = (prefactor) e
−

c3
kBT

1
∆T2 .

This means very small rate for small ∆T , that is why a metastable phase

has a macroscopic lifetime for small enough undercooling.

All the above relates to spontaneously forming droplets in free space,

or “bulk nucleation”. In practice there might be other channels to form

droplets, like on the surface of the container, around an impurity etc.,

which all have their individual barrier height; the smallest of these pro-

viding the dominant contribution to the overall nucleation rate.
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Continuous phase transitions

When a system is brought through a path in parameter space which goes

through a critical point [see path (2) in Fig. 4.1], the order parameter

stays continuous, but at this point has a singularity: the derivative is

infinite similarly to the square root function. In fact in this type of

phase transition typically a large number of physical quantities have

singularities, or in other words have non-trivial power law dependencies.

One such quantity is the parameter dependence (eg. temperature de-

pendence) of the jump of the order parameter between the two phases

near the critical point. For the liquid-gas transition of water, the order

parameter can be approximated by

ρ

ρc
= 1 + s

(

1− T

Tc

)

± ρ0

(

1− T

Tc

)β

(4.20)

Another example is the uniaxial magnet, where the order parameter, the

magnetisation, has a nonzero value below the Curie temperature, which

can be either positive or negative, and its absolute value scales as

M ∝
(

1− T

Tc

)β

.

Surprisingly the value of the exponent β for both the liquid-gas transition

of water and the uniaxial magnet is the same, an often quoted value is

β = 0.325 ± 0.005. This is not coincidence: the scaling exponents (the

exponents of the power laws for the singular quantities) are the same for

a number of other physical quantities as well4.

The above examples illustrate the concept of universality : the be-

haviour near a continuous phase transition point is independent of the

microscopic details. The various systems can be classified into a small

number of groups. These groups are called universality classes : collec-

tions of systems with the same singular properties at the critical point.

For example in thermal systems the scaling behaviour (the scaling ex-

ponent and the shape of the scaling function) of the susceptibility, spe-

cific heat, correlation length etc. are identical within a universality class,

while other quantities like the parameters (eg. temperature) correspond-

ing to the critical point, and also the prefactors are different. The uni-

4 In some sense the uniaxial magnet is simpler, as the phase coexistence curve falls
on the T = 0 line. For the liquid-gas transition of water the coexistence curve is
parallel to neither the T nor the p axis in the phase diagram, giving rise to the
linear term in (4.20). The singular term, which is the important one, however, is
the same.
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versality class typically depends only on fundamental properties, like the

symmetry of the order parameter, and the dimensionality.

As we have seen, the liquid-gas transition of water (and other ma-

terials!) and uniaxial magnets are in the same universality class. This

is quite surprising at first sight, but on closer inspection one can see

that the order parameter is of the same type (scalar), the dimensional-

ity (3 dimensions) is the same, an in fact it is possible to find a mapping

between the two systems.

Universality is a very powerful concept, since one member of a univer-

sality class fully represents all other members. Thus to learn everything

about a particular universality class it is enough to find a simple enough

member which is tractable theoretically or numerically. This is the reason

why physicists often study very simple “toy” models, which genuinely

represent the more complex members of their universality class in all

important aspects.

Fluctuations, which were exponentially suppressed in abrupt phase

transitions, are very prevalent in continuous phase transitions. The char-

acteristic spatial size of the fluctuations (the correlation length) diverges

at the critical point.

4.6 Surface growth5

A large class of processes in nature can be described as growth processes,

where one phase grows and invades a region previously occupied by

another phase. These processes are often not in equilibrium (in fact far

from equilibrium), where a persistent driving force brings the process

forward, resulting in a propagating rough front. The growth front is not

progressing uniformly, it is not smooth, because of some noise or inherent

disorder in the system.

To give some concrete examples, we can think of the progress of the

wetting of a paper or table cloth, or the burning front of a slowly burning

paper. An example from the nanosciences is molecular beam epitaxy,

where atoms are deposited in vacuum onto the surface of a crystal, which

due to the shot noise of the deposited atoms creates a rough surface

after a number of deposited layers. The growth of bacterial colonies can

also be in this class of processes, especially when the growth substrate is

relatively dry so the bacteria don’t swim, and the nutrients are abundant.

5 A detailed treatment of the statistical mechanics aspects of surface growth can
be found in [3].
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(It must be mentioned that the bacterial colony growth is much more

complex phenomena, including sometimes even genetic shifts. And even

in more simple cases a different physical phenomenon can dominate, like

in the scarce nutrients regime, where the constant driving is replaced by

growth dominated by the diffusion of nutrients. In the latter case instead

of the rough growth front a fine branching fractal pattern emerges.)

As usual, we only would like to know aggregate information about

the process, like how “non-smooth” the front is. We consider the surface

growth problem on an initially flat substrate; denote the coordinates

along the substrate as x, and the distance of the interface from the

substrate is h (height). We can define the average height as

h̄(t) = 〈h(x, t)〉x, h̄(t) ∼ t

which typically grows linearly in time. The roughness or width of the

surface is defined as the root-mean-square deviation of h from h̄:

w(L, t) =

√
〈(

h(x, t)− h̄(t)
)2
〉

x

where L is the linear size (length) of the substrate.

In typical surface growth processes the width initially grows as a power

of time, then at some crossover time (which depends on L) it saturates:

early times, t ≪ t×: w(L, t) ∼ tβ β: growth exponent

late times, t ≫ t×: w(L, t) ∼ wsat(L) ∼ Lα α: roughness exponent

crossover time: t× ∼ Lz z: dynamic exponent

When plotting width against time, we can achieve data collapse if the

width is rescaled by the saturation width, and time by the crossover

time. This way the surface width can be expressed by a single-argument

scaling function:

w(L, t) ∼ Lαf

(
t

Lz

)

f(u) ∼
{

uβ , if u ≪ 1

const, if u ≫ 1

which is called the Family-Vicsek scaling relation.

Evaluating w at the crossover time where approximately both the early

and the late time behaviour holds, we can obtain a relation between the

exponents:

w(L, t×) ∼ Lα

∼ tβ× ∼ Lzβ

}

z =
α

β
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The surface generated by the growth process has no intermediate char-

acteristic length scales, thus displays some kind of self-similarity. In this

case the x and the h directions are not equivalent, so different magnifi-

cation in the x and h direction yields statistically similar objects:

h(x) similar to bαh
(x

b

)

Such functions are called self-similar with self-similarity exponent α. One

such familiar function is the graph of random walk (note here t plays

the role of x):

〈
(y(t+∆t)− y(t))2

〉

t
∼ ∆t ⇒ α =

1

2

These surface growth processes can be illustrated by simple models,

for example:

• random deposition: unit square blocks are released above integer po-

sitions of a substrate, and they just land on top of previously dropped

blocks. For this model α is undefined, and β = 1/2.

• random deposition with surface relaxation: as for random deposition,

but the blocks are allowed to jump to the nearest neighbour substrate

position to achieve lowest position.

• restricted solid-on-solid (RSOS) model: only those growth events are

allowed which keep local slope bounded: maintain |h(x)−h(x+1)| ≤ 1

Another approach to understand the surface growth processes is to

consider continuum equations:

∂h

∂t
= G[h(·), x, t] + η

where the noise term is often unbiased and delta-correlated:

eg. η(x, t) : 〈η(x, t)〉 = 0, 〈η(x, t)η(x′, t′)〉 = 2Dδ(x−x′)δ(t− t′)

These equations have the following desired symmetries:

t → t+∆t

h → h+∆h

x → x+∆x

x → −x, or rotation

h → −h (in certain cases, eg. if in equilibrium)
The simplest such equation is the Edwards-Wilkinson equation:

∂h

∂t
= ∇2h+ η(x, t) α = 1− d

2
, β =

1

2
− d

4
, z = 2
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The simplest one breaking the h → −h symmetry is the Kardar-Parisi-

Zhang (KPZ) equation:

∂h

∂t
= ∇2h+

λ

2
(∇h)2 + η(x, t) for d = 1 : α =

1

2
, β =

1

3
, z =

3

2

which describes eg. the RSOS model. The continuum equations and

discrete models can be classified into universality classes (as we have

seen in continuous phase transitions), where the scaling exponents are

the same across a class.

4.7 Collective biological motion: Flocking

In this lecture we will consider a model, which is a first step towards

understanding the motion of groups of animals: for example schools of

fish, herds of quadruples, flocks of birds (of which flocks of starlings

is particularly impressive), as well as cooperative motion in bacterial

colonies.

The model consists of a collection of self-propelled particles (repre-

senting e.g. the individual birds), which move in continuous space with

constant speed but varying direction[4]. This arrangement is quite unlike

typical physical systems made of passive particles, as momentum and en-

ergy is not conserved; but much more typical in biological systems where

the individuals are more advanced: active, having own energy supply.

The particles move for time ∆t in a ballistic motion, then select a new

direction for their velocity. For simplicity we restrict the particles in two

dimensions, where the direction is given by an angle θ. The update rules

of the ith particle’s position, velocity and direction is

xi(t+∆t) = xi(t) + vi(t) ∆t

vi(t) = v(cos θi(t) x̂+ sin θi(t) ŷ)

θi(t+∆t) = 〈θj(t)〉j:|xj−xi|<R + ∆θ
︸︷︷︸

uniform in [η/2,η/2]

So at the end of each ∆t timestep each particle takes the average di-

rection of all particles within radius R, and adds a noise of controlled

amplitude.

What are the relevant parameters of this model? For any model we

should take care to reduce the number of parameters as much as possible

(but no further!) in order not to be lost in a high dimensional parameter

space.
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Without loss of generality we can set ∆t = 1 and R = 1, i.e. these

will be our units of time and space. For the speed v of the particles we

already fixed the units, so need to consider its actual value. The v → 0

limit would mean stationary objects (which would correspond to the XY

model of magnets), while v → ∞ limit would mean that each timestep

a given particle meets completely new ones, corresponding to complete

mixing or mean-field models. For our flocking model in the relevant,

intermediate range, say 0.003 < v < 0.3, the actual value of v turns out

not to affect the behaviour. So as long as the value of v is moderate,

its value does not matter: it is not a relevant parameter either. There is

one more symbol above, the amplitude of the noise, 0 < η < 2π, which

is indeed one of the relevant parameters. The second relevant parameter

is a bit hidden: it is the average density of particles, ρ. Finally we have

the system size: either the number of particles N or the side L of the

2D box (the two are related by ρ = N/L2), which does matter but we

will strive to see everything in the thermodynamic limit N → ∞.

We see that for some values of the parameters the particles align the

direction of their velocities globally, creating an ordered phase, while for

other values there is no global order either because each particle moves

randomly or there are small coherent groups but these are uncorrelated

with each other. To quantify this order, we define the order parameter

as the average velocity over the whole system normalised by v, or to

follow [4] we take the absolute value:

Φ =
1

Nv

∣
∣
∣
∣
∣

∑

i

vi

∣
∣
∣
∣
∣

As the parameters are varied, in the N → ∞ limit Φ changes from

nonzero to zero value. On the ordered (nonzero) side we see power law

scaling:

fixed ρ: Φ ∼ (ηc(ρ)− η)β

fixed η: Φ ∼ (ρ− ρc(η))
β′

,

where numerically it was found that β ≈ 0.45 and β′ ≈ 0.35 [4].

This system is not an equilibrium system, the phase transition is

purely due to kinetic effects; this is an example of kinetic phase transi-

tions.

It turns out that like for many other continuous phase transitions, the

order parameter, which is now function of two parameters Φ(η, ρ), can
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in fact be written as a scaling function of as single variable:

Φ(η, ρ) = Φ̃

(
η

ηc(ρ)

)

, Φ̃(u) ∼
{

(1− u)β , if u < 1

0 if u > 1

With the help of the scaling function we can now look at the scaling

exponents β and β′. For fixed η and varying ρ, we defined β′ as Φ ∼
(ρ− ρc(η))

β′

. Denoting ǫ = ρ− ρc(η):

Φ(η, ρc(η) + ǫ) = Φ̃

(
η

ηc(ρc(η) + ǫ)

)

≈ Φ̃






η

η + ǫ dηc

dρ

∣
∣
∣
ρ=ρc(η)






≈ Φ̃

(

1− ǫ

η

dηc
dρ

)

∼ ǫβ (4.21)

so this shows [5] that β = β′, despite the original different numerical

estimates.

There is recent ongoing research (as of 2010-2011) on the dynamics

of flocks of starlings in Italy. The current understanding is that while

the above model is a good starting point, real birds don’t really con-

sider a fixed radius neighbourhood, but instead watch a fixed number of

neighbours and keep them oriented by trying to maintain relative angles

between them fixed.
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