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ABSTRACT
PATTERN FORMATION IN NONEQUILIBRIUM STATISTICAL PHYSICS

by
Elldk Somfai

Chairman: Leonard M. Sander

In this thesis we explore problems in surface- and diffusion limited growth.

Molecular beam epitaxy, the technique used to grow structures on crystal surfaces,
is studied with computer simulations. Our focus is the multilayer stage of this
process: how the growth conditions affect the evolution of the forming mounds. We
also studied heteroepitaxial systems, where the elastic effects significantly change the
growth process, resulting in unusual phenomena like quantum dots.

The second area of research is the evolution of river networks. We propose a coarse
grained theory, coupling the equation of the surface erosion with the conservation
law of surface water flow. Computer simulation of the model produce patterns which
show the statistical properties of natural rivers.

Lastly, we study diffusion limited aggregation (DLA), the discrete model of Lapla-
cian growth. Using DLAs grown in wedge geometry, we show the existence of angular
building blocks. In a different approach, using conformal maps, we study the relation

between the scaling properties of the model and the Laurent expansion of the map.
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CHAPTER 1

Introduction

1.1 Overview

Nonequilibrium statistical physics is one of the most rapidly growing branches
of physics. The present understanding of far from equilibrium phenomena is behind
that of equilibrium physics, providing a wide range of interesting problems.

In nonequilibrium systems there exists a mechanism which drives the system away
from its equilibrium state. These processes give rise to rich and interesting pattern
forming phenomena, which are the topic of this thesis.

A large class of nonequilibrium processes can be described as growth processes,
in which a phase (or aggregate, or cluster) is growing. The main question is to
understand and explain the static and dynamic properties of the growing cluster
from the physics of the growth process.

In many cases the interface between the growing cluster and its environment is
smooth on large scales. These objects, as well as their relation to scale-invariance is
discussed in Section 1.2. An application with practical importance, molecular beam
epitaxy, is introduced in Section 1.3. Systems of much larger scale, geomorphological
evolution, are described is Section 1.4. Finally we introduce Laplacian growth and

diffusion limited aggregation (DLA) in Section 1.5.



The following chapters contain our research results. In Chapter 2 we study ho-
moepitaxial systems in the multilayer regime. Chapter 3 deals with heteroepitaxial
systems, where strain is a significant factor. In Chapter 4 we present our coarse-
grained theory for the evolution of river networks. The topic of the next two chapters
is Laplacian growth and diffusion limited aggregation. Of these, Chapter 5 studies
aggregates in wedge geometry, to show the existence of wedge-shaped building blocks
in circular geometry. In Chapter 6 we use the approach of conformal maps to study
the scaling properties of DLA clusters. Chapter 7 summarizes the results presented
in this thesis, and finally in Appendix A we describe the numerical techniques to

simulate large off-lattice DLA clusters.

1.2 Fractals and scale-invariance in surface growth

In many physical systems there exist a range of lengths such that the character-
istic range of the underlying process lie outside of this range. A system could be
much bigger than molecular dimensions, for example. It is natural to expect that
this lack of internal scales will be reflected on the whole evolved system as well. If
this range is large enough, then the description of the system on this range becomes
meaningful. This description has to be without characteristic scales also, the system
is scale invariant. Therefore the statistical quantities are also scale invariant; they
are in general power laws, with crossovers marking the ends of the scaling range.

Fractals [1] are often found in these systems: these are scale invariant objects
whose mass enclosed in a sphere of radius R and centered around a point of the

object scales with a power of the radius:
M(R) ~ R” (1.1)

where D, the fractal dimension, is typically a fractional number (hence the term



fractal). These objects in general are self-similar: after rescaling they are statistically
identical (except for the change of crossover scales) to the original.

In cases when the system has a strong orientation, often the process can be
described as the evolution of an interface, which is smooth on large scales. Often
these processes are called surface growth [2, 3]. The interface is a single valued
function (height) of time and the lateral coordinates (the ones perpendicular to
the strong orientation). Scale invariant functions are in general self-affine: they
remain statistically invariant under rescaling with a different factor horizontally and
vertically.

If the growth process is inherently local, then the time evolution should depend
on local quantities only: the partial time derivative of the height should only depend
on the height, its derivatives, possibly including some probabilistic factor (noise).
This approach, usually called continuum description, is an important step towards
understanding, because it is often possible to say something insightful about the

solutions of these partial differential equations.

1.3 Molecular beam epitaxy

An important practical example of surface growth is molecular beam epitaxy
(MBE). This technique is used to grow thin films on crystal surfaces, and has practi-
cal applications in the semiconductor industry. Typically a semiconductor or metal
crystal with flat surface is chosen as substrate, put inside ultra-high vacuum, and
bombarded with low energy atoms. The process is referred to homoepitaxial if the
deposited atoms are of the same kind as the ones making up the crystal, and het-
eroepitarial otherwise.

After the atoms land on the surface of the crystal, their thermal energy is large



enough for diffusion, but desorption is usually not significant (the sample is kept at
300 — 800 °C). When the diffusing atoms (called adatoms) meet, they form immobile
structures called islands, which are the cores of the next crystal layer. Additional
adatoms might join the island, or land on top of the islands. New islands may form
on top of island, creating wedding cake like structures. Or the islands might grow,
coalesce, and form the next crystal layer of the substrate.

A large number of materials exhibit the property that the atoms landed on top of
islands are not likely to hop down. This behavior results in an effective upward cur-
rent, and is responsible for the instability which creates large structures or mounds.
These mounds grow and coalesce in time. This coarsening process is investigated in
more detail in Chapter 2.

In case of heteroepitaxy, the situation is more complex. Even if the adatoms
are chemically similar enough to the substrate atoms that they start to form their
own crystal structure on top of the substrate, their size might be different from the
substrate atoms, resulting in an elastic stress. During the evolution the system tries
to minimize the excess energy resulted from this stress. One possibility is to grow
high three-dimensional islands, where only the bottom of these islands is stressed. If
the three-dimensional islands have narrow size distribution (quantum dots) and are
ordered, then this could have practical importance for lasers and quantum computing.

The issues of strained heteroepitaxial systems are discussed in Chapter 3.

1.4 Scale-invariance in geomorphological processes

Geomorphological objects are among the first in which scale invariance was ob-
served [1]. There are various processes which form the surface of the Earth: tectonic

motion, volcanic processes, erosion by ice, water and temperature fluctuation, earth-



quakes, sedimentation, mudslides etc. Out of these, we restrict our attention only to
erosion by water flow, i.e. rivers.

A river system can be divided into three regions: the production zone, the source
of most of the water the and sediments; the transportation zone, which is typically
the meandering part of the river; and the deposition zone, where the river ends at a
sea or ocean in a delta or estuary [4]. The production zone is the most interesting
of these: this contains the branching network called river basin.

In natural rivers this branching network has remarkable statistical properties
which cannot be explained by simple considerations. In Chapter 4 we investigate
the evolution of this branching network: how the erosion of streams produces these

complex patterns.

1.5 Laplacian growth and diffusion-limited aggregation

There exists a wide range of growth processes, where the rate limiting factor
is the diffusion of some quantity. These processes can be described in terms of
Laplacian growth. A field can be defined outside of the growing cluster, it satisfies
the Laplace equation, and has a fixed value on the boundary. The local growth rate
of the cluster is proportional to the gradient of the field at the boundary. This latter
quantity is also called harmonic measure, referring to the field which satisfies the
harmonic equation.

This picture in electrostatic terms is the following: the cluster is a conductor
carrying unit charge, the Laplacian field is the electrostatic potential, and the growth
rate is proportional to the electrostatic field or surface charge density.

Disorderly thin branching structures are produced by this process. The origin of

the rich patterns is the Mullins—Sekerka instability: suppose that the boundary of



the cluster is flat with a small perturbation, then during growth the amplitude of
the perturbation is increasing exponentially; the increase is faster if the wavelength
of the perturbation is smaller. A small bump will grow into a large finger, but this is
not stable either: it can have side fingers of any size, creating rich branched patterns.

The underlying physical process can contain possibly direction-dependent surface
tension, which affects the growth process. The presence of surface tension energet-
ically forbids large curvatures of the surface. On the other hand, at zero surface
tension there are known exact solutions which produce singularities (cusps, where at
one point the curvature is infinite) during finite time. Any finite surface tension is
regularizing these singularities.

In many cases the growth occurs in finite chunks of material, here the growth
probability is proportional to the harmonic measure. The discrete model of this
process is the Witten-Sander model or diffusion limited aggregation (DLA)[5]. Here
the aggregate consists of uniform particles, originally only a single seed. A random
walker is released from infinity, which sticks to the cluster on first contact. Then a
new walker is released.

The shot noise inherent in the discrete process has a significant effect on the
growth process. Although the DLA model does not have explicit surface tension, the
noise together with the uniform added chunks regularizes the instability.

The Witten—Sander model has attracted a good deal of attention in the scientific
community. (This is demonstrated by the more than 1850 citations for the original
paper — making it one of the top cited papers in condensed matter theory.) While
the model has been known for almost two decades, and a large amount of empirical
knowledge has been accumulated, little theoretical understanding has been achieved

so far.



In Chapter 5 we study both theoretically and with computer simulations 60—70°
wide angular regions of DLA clusters, and show that the cluster can be considered
to be formed of these building blocks.

In a different approach to diffusion limited aggregation, developed only recently,
the two dimensional growth is described as a sequence of conformal maps. In Chap-
ter 6 we study the Laurent expansion of the map, and establish a relationship between
the scaling properties of the model and the coefficients of the expansion. For exam-
ple, the dimension of the cluster is determined by the linear coefficient, which seems

to become deterministic with increasing cluster size.
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CHAPTER 2

Coarsening of homoepitaxial structures in 241
dimensions

The research presented in this chapter was done with Professor Leonard M.
Sander; the numerical work was done by me, the analytical work was split between
us. It was published in “Dynamics of crystal surfaces and interfaces”, edited by P.
M. Duxbury and T. J. Pence. (Plenum, New York, 1997).

When thin solid films are grown by MBE, the presence of Ehrlich—Schwoebel
barrier leads to the formation of mounds [M.D. Johnson et al., Phys. Rev. Lett.
72, 116 (1994)]. As the film grows these mounds grow larger (coarsen). We study
this coarsening in 241 dimensions by comparing simulations of an activated hopping
model with solutions to the continuum equations we introduced previously. The
principal mode of coarsening is the disappearance of saddle points from the surface.
In 241 dimensions the evolution is characterized mainly by nonequilibrium terms and
is not driven by capillary forces. We find that the mounds coarsen as a power law
in time. In strongly nonequilibrium growth conditions a low value of the coarsening

exponent (n = 1/6) is observed, while in the weakly nonequilibrium case n = 1/4.
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2.1 Introduction

Molecular beam epitaxy is a widely used technique for growing structures on
crystal surfaces. One of the goals is to be able to control the growth process to
such extent that one can make the nanostructures complex enough for a particular
purpose. An ambitious example is a quantum computer [1].

In this chapter we investigate the effect of the growth parameters (near equilib-
rium or far from equilibrium) on the growth process. In many materials the diffusion
of an adatom on a singular surface (terrace) is faster than across a step edge: the
downward diffusion is suppressed by the Ehrlich-Schwoebel barrier [2]. This bar-
rier gives rise to an instability in the growth process against mound formation, as
proposed by Villain [3], and investigated by Johnson et al. [4] These 3-dimensional
mounds coarsen: their lateral size L increases in time according to L ~ t". In this
chapter we focus on the question how n depends on the growth conditions. We
also show that the continuum equation proposed by the Michigan group [4, 5] is a

reasonable description of the process.

2.2 Monte—Carlo simulation

One of our tools is an activated hopping Monte-Carlo simulation. We imple-
mented a simple model for growth processes: the solid-on-solid model on cubic lat-
tice. Although one expects that a model reflecting the microscopic details of the
crystal structure (e.g. fcc(001)) would better describe the real situation [6], even
this very simple model captures correctly the phenomenon of coarsening. Also, the
cubic lattice model appears to simulate very well the more complicated semiconduc-
tor growth, where one cube stands for e.g. a 2x4 block of GaAs. In our model the

atoms land on the surface at rate F'. All atoms on the surface undergo activated dif-
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fusion with rate v -exp(—FE/kT'), where v = kT'/h is the attempt frequency (k is the
Boltzmann constant, h is the Planck constant), and the energy barrier, E, depends
on the local neighborhood of the diffusing atom. We make a further simplification:
E depends linearly on the number of nearest neighbors, n, of the atom at the initial
position (the number of bonds to break), and also on the change in next-nearest
neighbors, Ann, if it is negative:
nnt —nnt, if nnf —nnt <0
Ann = {

0, otherwise.

where nn/ and nn® is the number of next-nearest neighbors in the final and initial
state. The first factor takes care of island formation and attachment of adatoms to
step-edges, while the second models the Ehrlich-Schwoebel barrier to some extent.

The entire form of the barrier is
E=FEy+n-E,— Ann-E,, (2.1)

where Ej is the barrier of a flat terrace. Details of the model can be found in Johnson
et al. [4].

Fig. 2.1 shows surfaces obtained by this simulation. The surface is symmetric
under the transformation h — —h in case of high flux and high Ehrlich—Schwoebel
barrier, while for other regions of the parameter space this symmetry is broken: the
mounds have flat tops, and the valleys between them are narrow and deep. We can
trace the process of coarsening. Initially the surface consists of many small mounds,
they can be characterized by the maxima (tops) and the saddle points between
mounds. We now focus on the coarsening, i.e. how two of these mounds merge. The
mounds grow in time, and they compete with each other for the base area. Eventually
one of them becomes large by a fluctuation. Then the saddle point between the

mounds approaches the smaller maximum and annihilates it (Fig. 2.2): this is the
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1055 17484 2906

Figure 2.1: Snapshots of the time evolution of the surface obtained by the simula-
tion, the flux of the incoming atoms is F' = 1%, and the strength of the
Ehrlich—Schwoebel barrier is S = 0.653. In this regime of the parameter
space the surface grows symmetrically with respect to the transforma-
tion h — —h. The number of deposited monolayers is shown under the
images.

most important step of the coarsening process. What is left is one large mound,

which rearranges itself to be more-or-less symmetric. There can be fluctuations in

the other direction: the top of a mound can split and merge again as observed by

Smilauer and Vvedenski [7].

The coarsening process (growth of dominant wavelength) takes place during the
approach to equilibrium as well. We carried out simulations verifying this. We

started the process with two-dimensional sine wave initial conditions, and with no

incident flux, so that the surface relaxed towards a plane. After a short transient
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Figure 2.2: Time evolution of the top () and the saddle point (o) on a cross-sectional
view of two evolving mounds. The saddle point annihilates the top of
the small mound, while the maximum of the large mound only fluctuates.
Both the height and the lateral position are measured in lattice units.
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(during which the surface rearranged its profile according to the strength of the
Ehrlich-Schwoebel barrier) the root-mean-square width decreased as w ~ exp(—st),

where the wavelength-dependence of the exponent, s, is

5= 4D, (%)4 (2.2)

showing that the equilibrium coarsening is dominated by diffusion processes [8]. That
is, we have Oh/0t = —D,V*h, the Mullins equation. We have verified that this

equation holds for our Monte-Carlo model, and we have measured D,.

2.3 Continuum equation

A different way to approach the coarsening process is to concentrate on the long
wavelength properties and analyze them in the framework of a continuum equation.
The height h(Z,t) of the surface is measured from its mean height. Changes in height

arise from the divergence of the surface mass current:

oh -

The surface current consists of a non-equilibrium part driven by the incident flux and

the Ehrlich—Schwoebel barrier, and the equilibrium part driven by capillary forces:

FSo*Vh

m + Dy - VV2h + Dyg - VViV2h + ... (2.4)

j =

The parameters are the flux, F', of the incoming atoms; the strength, S, of the
Ehrlich—Schwoebel barrier (S = R — T with R being the probability of reflection
and T the probability of transmission across a step edge). The length, o, is the
mean distance between nucleation centers on a terrace, and Dy is the strength of
the equilibrium capillary forces. The last term in the current is the next term in the

expansion series consistent with the symmetry. Dy corresponds to healing of edges,
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while D¢ may correspond to the healing of corners. This last term is negligible near
equilibrium compared to the D, term, which is why the classic Mullins theory takes
the leading D, term only.

To give a physical interpretation of the non-equilibrium part of the current [4], let
us assume that the Ehrlich-Schwoebel barrier is infinitely strong (no atoms can jump
down a step), and the up steps are perfect sinks. In this case for small slopes VA, only
the atoms that land in strips of width o will reach the up steps, the rest will attach
to islands on the terrace, and do not contribute to the net mass current. In this case
the total current is the fraction of the incoming flux which contributes to the current,
multiplied by the mean migration length of the adatoms: j: Fo?Vh. For the large
slope limit, every incoming atom contributes to the current, but the migration length
is only 1/|Vh|, yielding j = F//|Vh|. The generalization for finite Ehrlich—Schwoebel
barriers (S < 1) is simply to multiply the current by S. A convenient interpolation
between these expressions for the non-equilibrium current is given in Eq. (2.4).

The present form (2.4) of the surface current is odd in h, so a surface growing from
this current will be symmetric under the transformation h — —h. Another feature
of this current is that in the absence of curvature it is finite for nonzero slopes Vh.
Other terms in the current, which we did not include, could make the current zero [9]
for a given slope my. This stabilizes the slope of the growing structures around my,
and explains the phenomena of selected slope. Although the selected (or “magic”)
slope has been observed in many experiments, it is not necessarily present in every
case and is not believed to be important in the coarsening process: coarsening occurs
not only in cases where a selected slope is achieved, but also in different experiments
where the slope grows indefinitely.

By integrating Equations (2.3) and (2.4), neglecting the Dg term, with ran-
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3, 0e+04 3, 3e+0b

Figure 2.3: Typical images of the surfaces obtained by the integration of the contin-
uum equation. The rescaled time is shown below the images.

dom initial conditions, mounds similar to those of the simulation can be obtained
(Fig. 2.3). These mounds also coarsen in time. However, there has not been direct
test of this equation as a description of multilayer growth. In particular, Eq. (2.4)
was derived by fitting to Monte-Carlo data in the submonolayer regime. In this chap-
ter we show that certain aspects of multilayer growth by the Monte-Carlo model are
well represented by Eq. (2.3) and (2.4).

Results of Ref. 5 show that integrating these equations generates coarsening: the
time dependence of the lateral size, r., of the mounds scales with a power of time,
re ~ t", with exponent n = 1/4. This exponent is associated with the leading Dy
term. Similarly, Stroscio et al [10] found n = 1/6 numerically when only the Dg term

was present. A detailed analytical proof is given by Golubovic [11].

2.4 Generalized free energy

In order to quantitatively compare the simulation with the continuum equation,
we introduce a generalized free energy of the surface, and write the equation of
motion in variational form.

By appropriate rescaling of the variables 7, t and h to X , T"and H, the parameters



17

in the equation of motion can be scaled out, leading to a dimensionless equation.
Considering the present form (2.4) of the current, without the Dg term, the equation

of motion of the surface can be written in form of a functional derivative:

where
FIH(X,T)] = % [ (~108(1 + (VxHP) + (Vi HY) d2X (2.6)

which we call free energy. It is a functional of the rescaled height H. F consists of
a non-equilibrium and an equilibrium term, like the current. This free energy does
not coincide with the conventional free energy of the surface, but has the similar
property that in our non-equilibrium growth conditions F is the quantity driving
the system, and is a monotonically decreasing function of time. It is important to
point out, that contrary to the previous claims [5], in case of a current that produces
asymmetric surfaces, no free energy can be found. (The lowest order term in the free
energy density, which breaks the H — —H symmetry but conserves the X > -X
symmetry and the translation invariance in H and X would be 3rd order in H and
6th order in X, thus can be excluded from our consideration.)

At this point we are able to compare the coarsening process of the Monte-Carlo
simulation with that of the continuum equation, (2.5). We rescale the surfaces ob-
tained in the simulation to the dimensionless variables H ()2 ,T), and compare the
time evolution of the free energy associated with the rescaled surface of the simulation
(with different parameter values) with the free energy of the continuum equation.
As we expect, the free energy (Fig. 2.4) decreases in time. But it turns out that
the equilibrium part itself increases, so it cannot drive the process. This is different

from the case of spinodal decomposition, which also shows power law coarsening and
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which can be mapped on to this problem in 1+1 dimensions. In that case minimiza-
tion of the surface energy drives the process. Here the surface energy increases in
time.

[t can be seen from the comparison that the non-equilibrium part (Fig. 2.4a),
which in most cases dominates the free energy, is consistent with that of the con-
tinuum equation. But on the other hand, although the equilibrium part (Fig. 2.4b)
more-or-less coincides with the result of the continuum equation for some parameter
values of the simulation, for an another domain of the parameter space it does not.
This could mean (and later we will argue that it does) that the Dg term of Eq. (2.4)

s important in those cases. We will give an explanation for this later in this chapter.

2.5 Coarsening

An another way of describing the coarsening process is to study the time de-
pendence of the characteristic feature separation r. (the lateral size of the mounds,
defined as the first zero crossing of the correlation function (h(0)h(7))). In most

cases 1. scales as a power of time,

re ~o t" (2.7)

where n is the coarsening exponent. As we mentioned before, for diffusion dominated
growth n = 1/4, and this is the case for the continuum equation, in the absence of
the Dg term [5, 9].

But in the coarsening process of the Monte-Carlo simulations (Fig. 2.5) the ex-
ponent is n = 1/6 for a domain of the parameter space (F, S), while for other regions
it is n = 1/4. The region where the value of the coarsening exponent does not equal
to the value of the diffusion dominated case is the high flux, high Ehrlich—Schwoebel

barrier corner of the parameter space. In this regime the growth conditions are
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Ref. [12] (e: measured n = 0.23 £ 0.02). The estimate of the Ehrlich—

Schwoebel barrier is taken from Ref. [13] (thin line) and Ref. [14] (thick
line).
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strongly out of equilibrium: the high Ehrlich-Schwoebel barrier restricts the free dif-
fusion of the adatoms, and the high flux also keeps the system far from equilibrium,
the adatoms do not have enough time to find a preferred equilibrium position. This
coincides with the region where the equilibrium free energy did not match the equi-
librium free energy of the continuum equation. In this far from equilibrium regime
the Dg term of the current could be significant, Dg can depend on the flux and
the Ehrlich-Schwoebel barrier. This term can dominate the coarsening, and give
n = 1/6 if the D, term of Eq. (2.4) is missing, as first suggested by Stroscio et al.
[10]. The presence of the Dg term, which we neglected in our continuum equation,
is the explanation for the fact, that the equilibrium part of the free energy of the far
from equilibrium simulations deviates from that of the continuum equation.

Experimental results support this parameter-space dependence of the coarsening
exponent as well. In case of Fe/Fe(100) homoepitaxial growth (where there are
estimates for the value of the Ehrlich—Schwoebel barrier), at room temperature n =
1/6 has been measured [10] (n = 0.16 £ 0.02), while at elevated temperature [12] the
exponent is 1/4 (n = 0.23+£0.02). These results are in excellent agreement with our
predictions (Fig. 2.5).

In the near-equilibrium regime, n = 1/4 and both parts of the free energy (thus
the free energy itself also) coincide with that of the continuum equation. In these
cases Equations (2.3), (2.4) and (2.5) give a good description of the evolution of
the surface, the correct roughening behavior, and the correct functional form of the
free energy. It should be noted that in order to fit the free energy of the continuum
equation to that of the simulations, we used only one free fitting parameter (the time
offset of the continuum equation, since its random initial conditions are arbitrary), all

other parameters were either input parameters of the Monte-Carlo model or measured
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directly in the simulation, as in the case of Dy, above.

2.6 Summary

We have investigated the coarsening process in homoepitaxial systems using
Monte-Carlo simulations and continuum equations. From the geometric aspects
of coarsening, the scenario for merging two mounds is the following: after initial
competition between the mounds, the saddle point between them annihilates with
the maximum of the smaller mound, then the one big mound rearranges itself to be
symmetric.

In case of relaxation to equilibrium, the process is diffusion-dominated and the
presence of the D, term is verified. For non-equilibrium conditions we have two cases:
For weakly out of equilibrium (low flux, low Ehrlich-Schwoebel barrier) the Dy term
is still present and dominates the long-time coarsening, characterized by n = 1/4.
However, for strongly out of equilibrium cases (high flux, high Ehrlich—-Schwoebel
barrier) the D, term seems to be dominated by the Dg term, causing coarsening
with exponent n = 1/6.

We would like to thank Brad Orr, Chris Orme and Ji Li for useful discussions, and
also Mark Johnson and Chris Orme for letting us to use their computer programs.

This work was supported by NSF grant DMR 9420335.
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CHAPTER 3

Strain in heteroepitaxial growth

In this chapter we use atomistic simulations with an empirical potential (EAM) to
study the elastic effects of heteroepitaxial islands on adatom diffusion. We measure
the diffusion barrier on pure stressed substrate and near a misfit island, as well as
the detachment barrier from islands of different size.

The numerical work presented in this chapter was done by me, and the analytical

work was shared with Leonard M. Sander and Bradford G. Orr.
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3.1 Introduction

Molecular beam epitaxy is used extensively to grow thin films on crystal sur-
faces. Although homoepitaxial systems give rise to interesting questions, as seen in
Chapter 2, the case of heteroepitaxy is much more complex.

One of the main consequences of the fact that the substrate and the adlayers are
made of different atoms is the stress generated in the adlayers. Suppose that the
lattice constant of the crystal made of adatoms is larger that the substrate lattice
constant (the adatoms are “larger” than the substrate atoms). Then if the adlayers
are pseudomorphic (follow the periodic order of the substrate without dislocations),
they have to be compressed. The size difference is not necessarily the only source of
stress: the compressive stress of few monolayers of Ag on Pt(111) is measured to be
five times larger than expected from the size difference [1]. The reason is presumably
charge transfer from the adlayers to the substrate due to their chemical difference.

In close to equilibrium conditions the growth is layer-by-layer (also called Frank—
van der Merwe [2]), if this is the energetically most favorable configuration. However,
since the elastic energy of the stressed layer is proportional to its height, the excess
elastic energy (over the configuration of relaxed adlayers) will overcome the barrier
of creating a dislocation network at the bottom of the adlayers for relaxation. Thus
pseudomorphic growth cannot be stable for abritrarily large thickness.

Relaxed layer-by-layer growth is not the only possibility to overcome the excess
elastic energy. If the adatoms form tall, 3-dimensional islands, the lattice constant
in the majority of an island can be close to its bulk value, and only the bottom of
the island is stressed. In case of Volmer—Weber growth [3], the 3-dimensional islands

nucleate right on the substrate, while in the Stranski-Krastanow scenario [4] first few
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layers grow epitaxially (wetting layers), continued by the growth of 3-dimensional
islands on top of them.

The typical growth conditions in MBE are not necessarily close to equilibrium.
In this case the dynamical effects greatly modify the above thermodynamic consider-
ations. If the dynamical effects dominate the process, then the nucleation dynamics
on different layers and the interlayer transport become important [5].

The 3-dimensional islands are important for practical applications, as they are a
good candidate for lateral electron confinement. Certain semiconductor systems (e.g.
InAs on GaAs) develop 3-dimensional island structure, where the size distribution of
the islands is narrow, free of dislocations, and their spatial distribution is relatively
ordered [6]. Since this ordering takes place during epitaxy without fabrication (e.g.
high resolution lithography), they are often called self-organized quantum dots. The
self-organization can be enhanced by alternately growing GaAs and the strained
InAs: this results in a 3-dimensional structure where the successive layers of InAs
are increasingly more ordered [7].

However, the uniformity of current InAs quantum dots is insufficient for laser
applications. It has been suggested recently that the size distribution of the quantum
dots is similar to the distribution of the 2-dimensional islands, it follows the same
renormalized curve for a range of island densities, and therefore strain does not seem
to be relevant factor determining the size distribution [8].

An atomic level simulation of strained epitaxial systems has been done by Orr,
Kessler, Snyder and Sander [9]. In this pioneering work the dynamic Monte-Carlo
method has been applied in one dimension, which incorporated linear elasticity. The
surface particles were able to hop to neighboring sites, with the hopping probability

depending upon both the bond and strain energy. The lattice was locally relaxed
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after each motion, with global relaxation after fixed number of timesteps. The elastic
lattice was modelled with harmonic forces between nearest and next-nearest neigh-
bors.

It has been observed that tall islands form, and that their lateral size is smaller
with increasing misfit. The kinetics determine the morphology: the thermodynamic
effects can reach only up to the diffusion length: the typical distance a walker diffuses
during the deposition of a monolayer. On larger scales the surface is smooth — as
rough as it would be without strain.

Schroeder and Wolf [10] studied the effect of strain on surface diffusion. They
observed that the activation barrier is with good approximation a linear function of
strain over a wide range: compressive strain enhances diffusion, while tensile strain
hinders it. The strain changed mostly the energy of the saddle point, the stable sites
were not affected considerably. The strain field of a coherent two-dimensional island
is not uniform (the edges are more relaxed than the center), therefore this is reflected
on the diffusion of adatoms on top of the island. In this work simple cubic, fcc and
bee lattice has been used with Lennard—Jones potential.

It is tempting to write down a mean-field theory using self-consistent rate equa-
tions. Refs. [11, 12] model the process with the following dynamical variables: the
density of adatoms, the density of “typical size” 2-dimensional (2d) islands, and the
density of “typical size” 3-dimensional (3d) islands. The attachment, detachment,
diffusion, and 2d/3d conversion rates (see later) are given in terms of 6 parame-
ters: the critical island size, the surface diffusion barrier, the Ehrlich—Schwoebel
barrier[13], the binding energy of a critical island, the attachment barrier (same for

2d and 3d islands), and one more parameter Ey with dimensions of energy. The
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elastic effects are taken into account in the detachment barrier from a 2d island:

logr
Edetach - EO 8

(3.1)

(r is the island radius), and also in the assumption that as soon as an island nucleates
in top of a 2d island, it immediately transforms to 3d island. The parameters are
selected to match an InP/GaAs(001) metal-organic vapor phase epitaxy process, and
an adequate description is achieved.

In the research summarized in this chapter we study the effects of misfit strain on
the energy landscape observed by the diffusing adatoms, and also how that affects

the growth process.

3.2 Simulational methods

In our simulations we use a substrate of slab geometry, which is periodic in the
lateral directions, has open surface at the top, and bounded by a frozen lattice from
below. The atoms of the substrate and the adlayers or adatoms are allowed to relax
according to the potential described below, but we did not introduce dislocations to
the substrate. The relaxation is achieved by using conjugate gradient methods.

It is necessary to have the relaxable substrate as deep as wide, because the elastic
effects penetrate roughly isotropically[10]. If the lattice was shallower, then that
would cut off the deformation field such a way that the effective range of the elastic
deformation in the lateral direction would be limited to the depth, losing possibly
important long range effects. This restriction has severe consequences on the lattice
sizes that are computationally tractable.

For interatomic potential, we used the embedded atom method (EAM). It belongs
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to the class of pair functionals: the form of the potential is

Fun =53 3 00(Ry) + 3 FO() (32)

The upper index in parenthesis denotes dependence only through the type of the
atom. ¢ (R) is the pair-potential part, F'®)(p"°") is the embedding function, its

argument is the “electron density at the host atom”, given by

P = 3" pi(Ryj) (3.3)
j(#1)

where ¢() F() and p; are given functions.

The rationale of this type of potential is the following[15]. For the transition
metals (for which the potential is to be used) there is a relatively well defined sepa-
ration of positively charged ions and nonlocal conduction electrons. The interaction
of the ions is described by ¢(#). The ions are embedded into the electron density
contributed by their neighbors (the name embedded atom comes from this), and their
interaction with the electron field is given in F®.

To write down the pair repulsion term, the ions are considered as charged spheres

of effective charge Z)(R):

. ZO(RYZU)
pii) () = L HZE) (3.4)
R
and the effective charge is given in parametric form:
Z(R) = Zy(1 + BR")e™ . (3.5)

Zy is the number of outer d and s electrons; «, 3 and v (the last one is integer)
are to be fitted. The electron contribution p;(R) is estimated from the Hartree-Fock

wavefunctions of the outer d and s electrons. Finally the embedding function F® is
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defined such that the equation of state of the isotropically compressed or expanded

metals follow the universal function (a is lattice constant):
E(a) = —Egp(1 +a*)e ™™, (3.6)

where a* is a measure from the deviation from equilibrium lattice constant:

. a—ag (9BO\Y?
@ = (E b) . (3.7)

ap (the equilibrium lattice constant), B (bulk modulus), Ey,, (sublimation energy),
and € (equilibrium volume per atom) are supplied directly by experimental values,
the electron orbitals are taken from Roothaan—Hartree-Fock tables of ground state
atoms, and the rest of the parameters are fitted according to other experimental
values (shear moduli, vacancy-formation energy, mixing enthalpies between different
metals). The parameters used in our simulation are given in Ref. [15].

This pseudopotential provides reasonable values for a row of bulk properties.
There is some concern that it is similarly appropriate for surface simulations. In
EAM, the atoms are considered spherical (which is good approximation for bulk
transition metal atoms). Surface atoms, however, are in an anisotropic environment.
The universal equation of state at very much expanded state is not necessarily good
description for the low coordinated surface atoms sitting in low embedding electron
density. Nevertheless, EAM is still more realistic approach than pair potentials, and
computationally tractable for the necessary system sizes as opposed to first principle

calculations.

3.3 Results

First we measured the effect of strain on the diffusion barrier. The substrate

lattice was compressed in the horizontal directions by a given factor, and was allowed
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to relax vertically. Then an adatom was placed on top, and the whole system was
allowed to fully relax. Fig. 3.1 shows the energy of the system when a Ag adatom
was placed on a stable, metastable and bridge point of a stressed Ag(111) substrate.
The diffusion barrier (the difference of the bridge and the stable/metastable energy)
is also plotted.

Around zero stress the barrier was close to be a linear function of the lattice
constant, with increasing barrier for tensile strain. This is the expected behavior:
under compressive strain the energy landscape becomes more uniform, while under
tensile strain the adatom feels more the separate attracting potential of the surface
atoms. For large tensile strain this trend breaks down: the surface becomes softer,
bringing down bridge energies, resulting in decreased diffusion barrier.

The same procedure has been applied to the Ag/Ni(111) heterodiffusion system,
the barriers and energies are depicted on Fig. 3.2. While the behavior of the diffusion
barrier is qualitatively the same as in the Ag self-diffusion case, the dependence of
energies on strain is different. Around zero stress, here the stable sites are unaffected,
and the bridge energy is changing. From this we can draw the conclusion that
whether the energy of the stable sites or the bridge point changes under stress is
system dependent, no general statements can be made.

To test the reliability of our procedure, we plot on Fig. 3.1a the diffusion barrier
measured by the effective medium theory also (the values are from Ref. [16]). While
the EAM values are consistently lower by about 10 meV, the general trend of the
curves is very similar.

Our primary goal is to study the elastic effects of an island on the energy landscape
observed by the diffusing adatoms. To persue this we deposited a large hetero-island

and an adatom on the substrate, and computed the energy of the system for different
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positions of the adatom, the configuration is shown on Fig. 3.3.

On Fig. 3.4 we plot the diffusion barriers of a Ag adatom on top of Ni(111) sub-
strate, as a function of the distance from a Ag island of radius 4 atoms. The misfit
between Ag and Niis 16%, the Ag island is compressed. We had to select metals of
this large misfit in order to see effects of the misfit on the system sizes computation-
ally available — 323 in this calculation. There are two different barriers: one seen
by an adatom diffusing away from the island, and a different one for approaching
it. The oscillation is due to the nature of the lattice: on top of an fec(111) lattice
an adatom can be in the fcc position (stable) or hep position (metastable). The
diffusion barrier is measured between the bridge point and the stable or metastable
site.

According to the results, near the island it is easier to diffuse away from a stable
site, and easier to diffuse inward from a metastable site. The island does not have
a strong attractive or repulsive long-range effect on the adatom. However if the
adatom is very close, it can only diffuse inwards: it is captured by the island.

The small island of the previous result was pseudomorphic to the substrate. For
larger islands this is not the case. Fig. 3.5 shows the diffusion barriers near an island
of radius 7 atoms, which is already not pseudomorphic, as can be seen on Fig. 3.3.
The distortion of the energy landscape is much larger in this case, and the attraction
of the island can be felt at larger distances. The effect of the island is not only attrac-
tion (the outward barriers larger than the inward ones) but also enhancing diffusion
near the island: the diffusion barriers in both direction are decreased. Probably this
is due to the fact that the substrate near the compressed island is also compressed.

To check that how much of this effect is due to the presence of the compressed

hetero-island, we repeated the previous calculation with homoepitaxial island: the
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Figure 3.3: The configuration to measure the effect of an island on the energy land-
scape. White circles denote substrate atoms, black ones are the hetero
atoms. The hexagonal island is of radius 7 on this figure, the black
atoms on the top right corner are part of the island because of the peri-
odic boundary conditions. The adatom is moved in the direction of the
arrow.



Figure 3.4: Diffusion barrier of Ag on Ni(111) near a small Ag island (radius is 4
atoms). The island is pseudomorphic. The bottom figure is magnification
of the top figure around the equilibrium barriers.
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Figure 3.5: Diffusion barrier of Ag on Ni(111) near a large Ag island (radius is 7
atoms as in Fig. 3.3). The island is not pseudomorphic. The scale of the
plots is the same as on the previous figure.
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large Ag island has been replaced with same size Ni island. The obtained barriers
(Fig. 3.6) show even smaller effect than the case of the small hetero-island. On
a considerable range the energy landscape is deformed: the outward and inward
directions are not equivalent (as in a sawtooth potential) but there is no global
attraction or repulsion.

The detachment barrier from a strained island has also been measured. Fig. 3.7
shows the bonding energy as a function of island size, it is the same as detachment
barrier up to its sign. The trend is decreasing barrier for larger islands.

It has to be noted that the bonding energy of the island of radius 5 is very different
compared to the nearby sizes. The explanation is the following. The bonding energy
is defined as the energy of the island with an adjacent adatom, the zero point is
when the adatom is infinitely far away. The island of this size is at the borderline
of pseudomorphic and not pseudomorphic islands. When we measured the energy of
the island in itself, the relaxation converged to a pseudomorphic state, see Fig. 3.8.
But when the adatom was added, this was enough perturbation that the system
converged to a not pseudomorphic state (Fig. 3.9). Thus the addition of the adatom
triggered a much lower energy state, hence the large negative bonding energy. It is
possible that the bare island also has a lower energy non-pseudomorphic state, but
we did not do a detailed search.

We also tried to obtain an energy landscape on top of an island. This was quite
difficult, because the island atoms are very soft, deform very much in the presence
of an adatom on top, and there is no well defined stable, metastable and bridge site.

Fig. 3.10 depicts a case when a the adatom is in a deformed four-fold hollow site.
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Figure 3.8: Relaxed island of radius 5. The “pseudomorphic atoms” are grey. (An
atom is considered pseudomorphic if it is closer to the stable site extrap-
olated from the lattice than to other stable or metastable sites.) The
majority of the island is pseudomorphic, only the edges are pushed out.
Note the deformed edges.
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Figure 3.9: Relaxed island of radius 5 with adjacent adatom — compare with pre-
vious figure. The “pseudomorphic atoms” are grey. The perturbation
of the adatom was enough that the nearby part of the island is pseudo-
morphic only. The other parts are also relaxed, with smooth dislocation
network connecting the relaxed parts.
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3.4 Summary

In this chapter we studied the elastic effects of heteroepitaxial islands on diffu-
sion using atomistic simulations with EAM potential. Compressive strain enhances
diffusion, small tensile strain hinders it, but large tensile strain also tend to enhance
it. Whether the energy of the stable site changes or the bridge energy, depends on
the system.

The energy landscape near a compressed island is deformed: the island attracts
the adatom, and the diffusion is increased near the island. Even homoepitaxial
island deforms the energy landscape, but the change is much smaller, and only the
symmetry of the potential is broken.

The detachment barrier from a compressed island decreases with larger island
size. The diffusion barriers on top of an island is hard to measure, because the island

is soft and distorted near an adatom, there is no well defined diffusion path.
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CHAPTER 4

Scaling and river networks: A Landau theory for
erosion

The research presented in this chapter was done with Professor Leonard M.
Sander; the numerical work was done by me, and the analytical work by Profes-
sor Leonard Sander. It was published in Phys. Rev. E 56, R5 (1997).

We propose a coarse-grained theory for the formation of a river network in the
form of a Langevin equation for the erosion of the landscape coupled to a conservation
law for the surface water flow. We claim that this is the universal form for the large-
scale behavior. We show by simulations of a discrete model which represents the
same dynamics that the slope-area law, the basin size distribution law, and Horton'’s
laws agree with real rivers. We discuss the relationship to optimal channel networks

and to self-organized criticality.
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Natural river networks have attracted a good deal of attention in the physics
and geophysics communities, and a large number of models have appeared which
attempt to give an explanation for the remarkable statistical properties of these
systems [1, 2, 3, 4]. The spirit of much of this work is to try to abstract from the
details of the geological processes a simple description which will account for the
large-scale, coarse-grained properties of the network. In this chapter we present a
new model of this type. Our model is similar to that of Inaoka and Takayasu [2] and
of Sinclair and Ball [3] but also has significant differences. Our theory is intended to
serve as a unified model of erosion and is based on a continuum formulation which
we believe to capture the important features that survive on coarse-graining. If we
are correct, much of the previous work will have the same large-scale properties as

the work we present here.

4.1 Statistical properties of river networks

The remarkable statistical properties of river basins have been known for some
time [5, 6]. We will focus on a few of the laws which we consider to be central, and
which we have verified for the model to be presented. The most important of these
is the slope—area law: which was derived from field observations [7]: the slope of the

river bed s scales with a power of the basin area ():
—0
s~ Q (4.1)

where the value of the exponent # ~ 0.5 has been carefully measured [7]. The
distribution of the drainage area also obeys power law: P ~ Q=% where P is the
fraction of the landscape for which the drainage area is larger than a given value Q).

The value of the exponent is 3 = 0.43 [4, §].
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The best known of the statistical properties are Horton’s laws [9] which are re-
lations between the number and length of different parts of the network. They say,
in effect, that the streams form a random branching fractal. Consider the Strahler
scheme for ordering the streams (i.e., up ends of the streams are order 1; when two
or more streams of same order join, the order increases by one; when streams of
different order join, the higher stream order prevails.) Let N, denote the number
of streams of order w, and L, their averaged length. Horton’s laws state that the
branching ratio Rg = N, /N, and the length ratio Ry, = L,.,/L, are independent
of w. The fractal dimension [10] of the network is given by d. - log(Rp)/log(RL),
where d, is the fractal dimension of the individual streams [11]. For many networks
the values Ry ~ 4, R;, =~ 2 are found [9] along with d. ~ 1.1 — 1.2 [11, 12]. Our

model will turn out to obey all these laws.

4.2 The model

We start with the observation that landscapes seem to have scale invariance
[13]: they are close to being self-affine fractals. This means that if we consider a
topographic map and rescale the coordinates, r on the map so that r — br, and
the height differences by Ah — b*Ah, where a < 1 we get a statistically identical
landscape. Since erosion by rivers are among the processes that form landscapes,
the scale invariant statistical properties of mature river networks should have a close
connection with the scale invariance of the landscape.

Now let us focus on the erosion process, and make some simplifying assumptions
(which could be easily modified): we assume that the only source of water is from
a uniform rainfall and neglect underground flows. The land is geologically uniform

and initially structureless. We also assume that the material washed away by the
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river is carried entirely to the sea, and is not redeposited. This is the limit of slow
erosion and fast flows.

To formulate the coarse-grained erosion law we use an argument which is standard
in the theory of random rough surfaces [14] and which, in turn, is based on the classic
work of Landau and Ginsburg [15]. We note first that the absolute height of the

landscape should play no role in the local erosion. Thus we write:
Oh/ot = F(Vh,V?h,|Vh|?,...) + n(r,t) (4.2)

where 7(r,t) is a noise term which accounts for small scale random processes.
Further, we argue that the functional, F', is analytic in the gradients: it is the

result of averaging over local fluctuating processes'. Now we are interested in large-

scale statistical properties. When we rescale a self-affine surface the gradients de-

crease. Thus we should be able to expand F' in a power series:
F=A+B:Vh+C|Vh>+ DV?h + ... (4.3)

We can interpret these terms. The first is a uniform change in height which might
correspond to geological uplift. For our case we can set A = 0. The second term
involves a vector, B, which introduces a preferred global direction of water flow.
Since local flows have no preferred direction (except down) we must set B = 0. The
third term corresponds to erosion proportional to s, the squared slope. This sort
of law has been considered in the literature [16] along with others. It has a special
significance since it is the lowest order term, and thus the dominant one when we

rescale. The last one which we keep can be thought of sedimentation and smoothing:

!This is the weakest part of our argument. For near-equilibrium dynamics F is related to the
Landau free energy and is necessarily analytic. For our case the rigorous justification of the method
is less evident. We do get interesting results, as we will see.
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it rounds hilltops and fills valleys [17]. The equation for the landform is:
Oh/0t = C|Vh|* + DV*h + ... + n(r, t). (4.4)

This is the KPZ equation [18] which has been extensively studied. There has been
a previous application of this equation to river networks [19]. In this form it is
clear that the equation can generate self-affine landscapes. The higher order terms
represented by the dots are irrelevant in the sense that they disappear upon rescaling.

The other ingredient in our theory is the water. We define q as the flux of water
per unit width of landscape. Our assumptions (uniform rainfall and no ground water)

imply that ¢ o< @), where () is the basin area. The vector q satisfies the following:
V-aq=R (4.5)
where R is the rainfall/unit area. Further, water runs downhill. Thus:
q = q/q x =Vh. (4.6)

Finally, we insist that there be no erosion in the absence of water. That means
that the coefficient, C' of the erosion term must be a function of ¢, that vanishes as
g — 0. There is no particular reason why C' should be analytic, so we propose on
the basis of simplicity, an erosion rate linear in the flow: C' = —c¢q. Putting this all
together we get:

Oh/)0t = —cq|Vh|* + DV?h +1(r, t). (4.7)

Equations (4.5, 4.6, 4.7) constitute our Landau theory.
Formulations similar to this one have been proposed before. A theory of this type
was given by Smith and Bretherton [20] some time ago, and discussed by Tarboton

et al. [6] in the context of stream initiation. Our equations differ from theirs in
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that they conserve sediment so that the right-hand side of Eq. (4.7) is of the form
=V -[q¢™s"]. Our Eq. (4.7) corresponds (up to an irrelevant term) to m = n = 2.
The recent work of Sinclair and Ball [3] proposes a set of equations like ours with a
term of the form ¢%s® of which our equation is a special case. (As we will see, our
solution to these equations is quite different from that of Ref. [3]).

Because the landform generated by Eq. (4.7) is coupled to the water flow (which
changes with the landscape) the solutions to the coupled set are quite unlike those
of the ordinary KPZ equation. With suitable boundary conditions, the landscape
will approach a dynamic steady state where the river network and the landform do
not change. This steady state is a feature of many of the models which have been
proposed. It corresponds to the simple statement that large rivers are long-lived?.

To understand the steady state we use the approach of Smith and Bretherton
[20] who point out that an obvious kind of steady state is one in which the erosion
is uniform everywhere. If we neglect smoothing and noise (as we will do from this

point on), we can write:
Oh/ot = Const. = —cq|Vh|? (4.8)

which amounts to having s o 1/¢'/?, that is, exactly the slope-area law® of Eq.
(4.1). If this state is attained it will have the observed slope-area law in a natural
way, and is certainly stationary*. It remains to show that featureless landscapes

tend towards this state, and that it is stable. To investigate this question we turn to

2We are not considering the meandering instability which causes large rivers to change course.

3Since only the ratio of the exponents of ¢ and |Vh| is significant here, other combinations like
q?|Vh|* would yield the same slope-are law. The choice of the exponents in Eq. (4.7) is motivated
by finding the lowest order permitted term that produces the right slope-area relation.

“In contrast, Sinclair and Ball consider another kind of state in which the height at each point
decreases as a power law. This may be appropriate for the late stages of erosion (the formation of
a penneplain) where the boundary conditions dominate the behavior throughout the river basin.
We give a more local approach. The resulting slope-area law is different in the two cases.
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numerical solutions of a discrete model which is an approximate realization of our

set of equations.

4.3 Numerical simulations

Our discrete model is very similar to that of Refs. [2, 3] (though our boundary
conditions are not). We consider a triangular lattice of mesh points which represents
our landscape. Every point has two variables: the height h and the flow ¢. The
water flows on the bonds of the lattice, and every node has one outflowing bond, the
one which is the steepest. At every time step (doing parallel updates) the drainage
area is calculated from the landscape, and the height is decreased according to the
erosion rule: Ah = —|Vh|?-q-At. The gradient is measured on the outflowing edge.
If there are no lakes in the initial height distribution (no nodes with all neighbors
higher then itself), then using sufficiently small At, no lakes are created. Thus we
were able to ignore the special treatment of lakes, which are generally present only
in the initial stages of the erosion process, and do not affect the stationary state.

Initially the landscape is a hillside with a little noise: h(x,y, t=0) = s¢ - (y +
dy - rnd(x,y)), where y is the North-South coordinate, sq is the initial slope of the
hillside, rnd() is uniform random number from [0, 1], and dy is the lattice constant.
These initial conditions ensure the absence of lakes. The boundary conditions are
periodic in the East-West direction, infinite wall on the North side (this is the upper
end of the hillside), and outflowing on the South side. The slope of the outflowing
edges on the outflowing side are taken to be fixed. With these boundary conditions
the stationary state is such that the whole landscape erodes with the same rate
everywhere. We can think of this as representing a plateau which has been upthrust

and which starts to erode. This boundary condition is in contrast with fixed height
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Figure 4.1: A typical stationary river network on a 256 x 256 triangular lattice. For
better visualization, the stream is drawn with line width proportional to
the square root of the discharge. Only streams with discharge ¢ > 10 are
displayed.

at the outflowing edge used by other authors [2, 3]: in that case the stationary
state occurs when nearly all of the material has been washed away and a different
slope-area law holds [3].

In our simulations we find that the initial stages of river formation corresponds
to rivers valleys that start at the bottom edge and elongate, compete, and eventually
reach a stationary state with one large river. Fig. 4.1 depicts a typical stationary
river network.  Taking the lattice constant to be unit length, the slopes at the
outflowing edge also one, and measuring the discharge as the number of the nodes
in the basin area, the rivers reach the stationary state at around unit time. The
corresponding landscape is shown on Fig. 4.2.

The following statistical results were obtained by averaging 20 independent sim-

ulations of size 256 x 256. As expected, the slope—area law (Fig. 4.3) holds with
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Figure 4.2: The landscape created by the river of Fig. 4.1. The grayscale is propor-
tional to height, with white corresponding to high.

exponent 1/2 £ 107% The great accuracy is understandable if we accept that the
slope—area law is an attractive fixed point of the dynamics: if any node does not
satisfy the law, it will erode faster or slower than its neighbors towards a height
which satisfies the law. The cumulative distribution of the basin area is depicted on
Fig. 4.4. The value of the exponent is # = 0.45 + 0.02. Horton’s laws are shown on
Fig. 4.5, the branching ratio is Rg = 4.0 £ 0.2, the length ratio is R, = 2.3 £ 0.1.
The dimension of the individual streams d, is measured [12] from the scaling of the
average river length with the system size: (I;) ~ L% (where [; is the distance of site
i from the root on the network). Using L = 64,128 and 256, we obtained d, = 1.05,
giving network fractal dimension 1.85 £ 0.15. This value of the fractal dimension
is somewhat lower than the expected 2 for space filling networks. The probable
explanation is the low value of d.: in our hillside initial conditions the rivers are

“stretched” in North-South direction, making them more linear (d. closer to 1).
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The slope—area law obtained by the simulation. The exponent is § =
1/2 £ 1075, The great accuracy is the consequence of the attractive
nature of the fixed point of the dynamics.
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The cumulative basin area distribution P(()) (the fraction of the land-
scape for which the drainage area is larger than a given @)). The value
of the exponent, 3 = 0.45 £+ 0.02 agrees with Ref. [4].



o6

10
10" ¢ 10°
10° ¢
N, L,
2
107 - 10"
10" +
10° ¢ .
L L L L L L L L 10

Figure 4.5: Horton’s laws for the branching ratio (o): Rp = 4.0+0.2, and the length
ratio (e): R, = 2.3 £ 0.1. With stream dimension d. = 1.05, the fractal
dimension of the network is D = d, - log(Rp)/log(R.,) = 1.85 £ 0.15,
somewhat lower than the expected space filling D = 2.

There is another approach [4, 21] to the problem of river networks which appears
quite different from ours, namely the idea that rivers are optimal channel networks
(OCN’s): connected branching patterns which minimize a functional that represents
dissipation. It is well known that for systems far from equilibrium no functional
exists in general which gives the dynamics in the usual sense that 0h/0t = §F /oh. If
there were such a functional we could understand OCN’s by noting that 0h/0t = 0,
the stationary state, would occur if F is at a minimum. However, our equations are
not of this form.

The solution to this quandary was given by Sinclair and Ball [3] who point out
that a functional can exist which gives the stationary state, but not the complete

dynamics. It is easy to see that the height function, h, and flow q which minimize:

]—"[h,q]:/{h-(V-q—R)+ql/2}d2x. (4.9)

obey both Eq. (4.5) and Eq. (4.1). However this variational principle does not
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produce the dynamics (Eq. (4.7)). There is no free energy which would produce the
dynamics of the initial stages of the erosion.

In the erosion process there are sudden large-scale events which have some simi-
larity with the avalanches of self-organized critical (SOC) systems [22]. In fact, there
is a formulation of SOC dynamics [23] which resembles ours in that it involves a
Langevin-like equation whose parameters are a dynamical variable (cf. C' = —cq).
However, our theory does not represent SOC processes, though there are similarities.
The events in our system which are most like avalanches are river basin capture: when
part of the basin area gets connected to another river. These change a macroscopic
part of the flow pattern and are fast and nonlocal like avalanches, and they are essen-
tial during the evolution of the river network. But they completely disappear from
the stationary state, and are not dominant for the formation of the large-scale struc-
tures. In SOC the avalanches are the only means to transmit information between
the different parts of the system, and dominate any large-scale structure. In our case

it is the river network itself, while eroding slowly, which transmits information.
4.4 Summary

In summary, our treatment of river networks differs from earlier work in that it
emphasizes the properties of the dynamics which should survive coarse-graining. We
make a strong claim, that the dynamics given by Eq. (4.5, 4.6, 4.7) is a universal
theory for the large-scale structure. We have shown that, at least, there is a rea-
sonably satisfactory agreement with the empirical statistical laws that are gleaned
from field observations of real rivers. We hope that generalizations of our work to
allow ground water, storms, etc., could shed some light on how these processes affect

landscapes, and could even, in the best case, give useful information on, for example,
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the statistics of floods.
We would like to thank F. Mackintosh, P. Olmsted, and D. Turcotte for useful

discussions. This work was supported by DOE grant DE-FG02-95ER45546.
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CHAPTER 5

Diffusion-limited aggregation and viscous
fingering in a wedge: Evidence for a critical angle

The research presented in this chapter was done with D. A. Kessler, Z. Olami,
J. Oz, 1. Procaccia, and Leonard M. Sander; large part of the numerical work was
done by me, while the analytical work was shared between the collaborators. It was
published in Phys. Rev. E 57, 6913 (1997).

We show that both analytic and numerical evidence points to the existence of
a critical angle of n &~ 60° — 70° in viscous fingers and diffusion-limited aggregates
growing in a wedge. The significance of this angle is that it is the typical angular
spread of a major finger. For wedges with angle larger than 27, two fingers can
coexist. Thus a finger with this angular spread is a kind of building block for viscous

fingering patterns and diffusion-limited aggregation clusters in radial geometry.

61
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The diffusion limited aggregation (DLA) [1, 2] model is a simple idealization of
a common natural process, the formation of natural objects where the rate-limiting
step is diffusion. In the simplest examples (say, solidification from solution, or dif-
fusion limited electrochemical deposition) particles random walk and then stick to
a growing aggregate. Diffusion-limited growth of this type gives rise to remark-
able morphologies which are ramified, disorderly, and, in the case of infinite diffusion
length, fractal. It is this complexity which is the major interest in the model. Despite
more than a decade of work in this field [2] very little theoretical understanding has
been achieved. In this chapter we attempt to contribute to such understanding by
demonstrating the existence of a kind of building block for the pattern: there seems

to be a characteristic angular spread for the fingers which make up the structure.
5.1 Fingering instability

The fundamental origin of the complexity of DLA patterns has been known from
the outset: it is in a fingering instability: diffusion-limited growth is generically
linearly unstable for flat growing surfaces, and forms fingers. The proliferation of
the fingers gives rise to the fractal pattern in a way which we seek to clarify here.
Another physical system that displays the fingering instability is the displacement
of an inviscid fluid by a viscous one, the viscous fingering problem. It has been
suspected since the work of Paterson [3] that the large scale features of DLA patterns
are similar to those in radial viscous fingering. They both obey the Laplacian growth

equations:

Vi = 0 (5.1)

(5.2)

>
<y

n-Ve =
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Here ¢ denotes the diffusing field, i.e. the probability density to ever find a random
walker at point r in the case of DLA or the pressure at r in viscous fingering. The
normal velocity of growth of the pattern is n - ¥. The boundary value on the surface
of the growing pattern, ¢, is given by the Gibbs-Thomson relation ¢, = v« for the
case of viscous fingering where v is the surface tension. DLA differs by having the
boundary condition set implicitly by the finite size of the accreting particles and
by the fact that the patterns are affected by shot noise. Some authors have argued
[4] that neither of these facts affect the large-scale features of the pattern, and that
radial viscous fingering patterns are identical to DLA clusters in a coarse-grained
sense. We adopt this point of view.

This idea is attractive because the theory of viscous fingering is quite well devel-
oped [5]. In particular, it is clear that viscous fingers in a channel geometry are not
fractal [6], and attain a steady state of a single finger. The striking difference from
the radial case, where there is no indication that a steady state is ever achieved,
led Ben-Amar and collaborators [7] to investigate the wedge geometry. The general
result is that in a wedge of any angle the selected finger grows in a self-similar way.
For fixed surface tension they are stable for a finite time, and they then become
unstable against tip-splitting. This idea was used by Sarkar [8] to give an estimate
for the fractal dimension of DLA by counting the tip-splittings.

However, we think that Sarkar’s estimate left out a crucial effect: that of finger
competition. Our view is that this is the key to the whole problem: if fingers split
in a wedge that is too narrow, they will compete, and one will die. The result will
be a finger with sidebranches. On the other hand, if the wedge is wide enough,
then the fingers will not compete, and there will be two branches to the pattern.

The wedge angle, o at which this begins to happen will be twice the typical angle
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between fingers, which we call n. As a pattern grows the fingers will split until they
form channels of angle n for their neighbors. There is some experimental support
for this idea [9] in the mode of tip-splitting seen for various angles. However, the
experimental evidence is ambiguous because the dynamic range of a real fingering
experiment is limited. Here we will try to verify our ideas by giving an analytic
estimate for 7, and then show that these are reasonable by considering simulations

of DLA clusters in a wedge.

5.2 Finger competition

To begin, consider two steady-state viscous fingers side by side in a wedge with
periodic boundary conditions at the sides. We will attempt to estimate how large
the angle must be so that there is no competition between them. For example, for
« = 27 the fingers grow independently.

We now look at the stability of the two finger solution in order to see if there is
competition. We prepare one finger slightly longer than the other, and ask, in the
linear regime, if there is a different growth rate for the two. We can see how the
calculation goes by using the mapping, due to Ben-Amar and Brener, [10], between
the wedge problem and the problem of diffusive (i.e. not Laplacian) growth in a
channel. We first map the wedge to a strip using: Z = [2/«]ln z. This transforms a
wedge of angle a centered around the x-axis in the z plane to a strip of width 2 in
the Z plane. Since the transformation is conformal, the field is Laplacian in the new

variables. Eq. (2) becomes:
n - V¢ = exp(ad)n - v. (5.3)

The Gibbs-Thomson condition on the interface is complicated in the new coordinates
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except for small surface tension, in which case it becomes:

¢s = yRexp(—ai/2) (5.4)

If we define ® = ¢exp(—ai) then @ satisfies, up to terms of order a?, a quasi-

static diffusion equation in the frame moving with Peclet number «:

dd
V20 + 20 = o?® ~ 0 (5.5)
X

Eq. (5.3) now reads 72 - V® = 7 - 0. Thus we have two steady-state fingers
growing in a channel with finite diffusion constant and with boundary condition
on the interfaces ®; = vk exp(—3az/2). This equation implies a space-dependent
effective curvature. Thus our problem is not exactly the same as that of dendrites
in a channel, but it is qualitatively the same'. For the question of competition, the
exact form of the surface-tension is probably not important. From Eq. 5.5 it follows
that 1/« plays the role of a diffusion length: the field is screened over distances larger
than 1/« and two fingers that are separated by larger distance cannot compete. This
is an indication that a critical angle exists.

We have verified this insight by a numerical stability analysis. We found that for
small o (weak screening) fingers compete, and for large wedge angle they do not.
The numerical value for the threshold that we compute in this way (a & 0.5) is too

large to be trusted because of the small o approximation.

'We have made a further approximation here. In our stability analysis we use the steady state
solution to the dendrite problem. For the wedge and for the channel there are two solutions for
each surface tension corresponding to different finger widths. In the wedge, the solution with the
smaller width is the stable one, and the opposite is true in the channel. However, for the question of
finger competition, we think it does not matter which solution one looks at, since the two solutions
differ only in their local tip structure. Finger competition is a more global question.
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5.3 The two-needle model

In order to go further we do a different estimate which is more qualitative, but
not restricted to small angles. Consider, again, two viscous fingers in a wedge of
opening angle a. We now replace the problem with a simpler one that we can
solve analytically, that of two needles in the wedge. In complex notation, the tips
of the needles are at z, = l1€'®*; 2z, = [;e¥%/*. The Laplacian field ¢ vanishes on
the needles, and we suppose that there is a cutoff (finite tip size) a and that the
growth rate of the needles is given by the flux of the Laplacian field, V¢ at the tips:
z =2z +ae? = z; 4+ 6250, = a/4,3a/4.

We solve by a series of conformal maps. First we map the 2z plane into the u plane
with u = 2”; 8 = 27 /a. The two needles are now one needle along the imaginary
axis. Now center the needle. Define L = [I¥ + 15]/2, and arrange things so that the
needle goes from —L to L by putting w = u — [I} —15]/2. Then we can map the line
segment onto the unit circle by putting w = [Li/2][z + 1/Z]. Now the two needles
have been mapped onto points on the exterior of the unit circle (2, = 1,2, = —1).

It is now clear that the potential can be written ¢ = Rew;1¢ = ¢,ln(Z), where
¢, is proportional to the incoming flux. This potential satisfies periodic boundary
conditions. To get the growth rate it is sufficient to find d¢/dz because |dy/dz|* =
|V¢|?. By a straightforward computation we can write down the growth rate of tip

i
,@*1 l[ﬂ—l}ﬂ

dy/dz|; = |d®/dz| ! X —=4 )
w/ | | / | [leﬁfla]]_/g [l,f +l2,3]]_/2

(5.6)

Whenever one finger is longer than the other, the longer one will get more flux,
and, it seems, grow faster. However, we know from the computation above that there

is a point at which fingers cease competing. Physically this is because the difference
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between a needle and a finger is that a finger must grow in area if it is self-similar.
Thus, even if the integrated flux to two fingers is the same the fatter one will grow
more slowly since it will advance according to dA;/dt oc d(I2)/dt o l;dl;/dt < G;
where G; is the flux that finger ¢ gets in competition with the other. We estimate

G; o< 1Y% from the needle calculation. That is dl;/dt o |d®/dz|/l;. Thus:

dly /dt
dly/dt

= [1;/15)1P=3172, (5.7)

When § = 3, that is, when o = 120°, the two fingers stop competing. Thus each
finger occupies 7 = 60°. We should note that this is exactly the criterion of Derrida
and Hakim [11] who get it in a different way, namely by demanding that, for some
fixed a, the ratio of the lengths of two spikes remain small (though the difference can

be large). That is, they make the following quantity decrease, for [; > ly:

%(z1 /1) = %[(1 J1)d®, [dz — (1/15)d®,/dz] (5.8)

which is our estimate.

We can use this estimate in another way. Suppose that the fingers are fractal, so
that we have A o< [P where D is the fractal dimension. Now repeating the calculation
above, we must have (3 —1)/2 = D — 1, at the operating point. However, Turkevich
and Scher [12] have given another criterion: if the cluster grows so that it has major
branches, then the growth and the fractal dimension will be dominated by the tip
angle. The result of this consideration, in our notation, amounts to saying that
D = 1+4n/(r+n). Using # = 7/n we find that 7 satisfies a quadratic equation, whose
solution is 7 = (v/2 — 1)7 which corresponds to 7 ~ 75°. Thus D = 1+1/v/2 = 1.71
which is exactly the observed fractal dimension. This estimate was given by Ball [13]

some years ago using a different argument.
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5.4 Numerical simulations

To verify these estimates we turn to numerical calculations for DLA in a wedge.
We grew a large number of off-lattice DLA clusters in wedges of different opening
angles a.. For greater efficiency we used the method of hierarchical maps [14] adapted
to the wedge geometry, so that our wedge was subdivided into sectors whose radii
were in geometric ratios. The data which we will report involve averages over 25
realizations for each o, and the number of particles, M in the wedge was determined
so that M = 10%°x/27. That is, each wedge acted like a slice from a million-particle
cluster. We report results for o = 30°,60°,90°, 120°, and 144°.

We measured the fractal dimension of our clusters and find that it depends weakly,
if at all, on «. This allows us to understand the remarkable accuracy of the estimate
of fractal dimension above. The Turkevich-Scher calculation implies that the fractal
dimension of a finger would depend only on the tip velocity, which in turn depends
on the tip structure. The invariance of the fractal dimension with « indicates that
the tip structure is not affected by boundaries, and thus probably not by the presence
of other fingers. However, in the radial case, the large scale structure (the number
of main surviving branches) adjusts via finger competition to be consistent with the
local growth rate. In our estimate we gave a representation of the tip which is valid
only far away — we replaced the cluster by a needle — but then used self-consistency
to find the fractal dimension.

In this work our main interest is not the fractal dimension but the overall shape.

To see this we computed the angular density-density correlation function,

c(¢) = [< p(0 + 6)p(0) > — < p >*]ly. (5.9)

Here p(f) is the density of particles in the cluster in a 1° sector around 6 and we
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(a) Angular correlation function, c¢(¢)/c(0), for DLA clusters in a wedge
of angle a as a function of ¢/a. (b) Correlation functions using the
measure M;.

Figure 5.2: DLA clusters grown in wedges for a = 30°, 144°.

average over the starting angle. All of the angles are taken as periodic with period «

so that the function is reflection-symmetric around «/2. In Fig. 5.1(a) we show the

correlation function averaged over 25 realizations, and in Fig. 5.2 a typical cluster

for small and large angles.

There is a very clear difference between large and small « in the behavior of ¢(¢).

For small angles there is an anticorrelation between the origin and other angles. This

corresponds to the matter being clustered in one branch. For a between 90? and 144°
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the nature of the correlations changes. The appearance of a second peak and the
positive correlation function indicates that there are now two coexisting branches
[15].

We have examined the individual realizations that make up the average. The
appearance of the second peak corresponds to structures which sometimes have one,
and sometimes two (or more) large branches. In the case of 120° and 144° there is
considerable fluctuation in the correlation functions (and the visual appearance) of
each individual realization. This is a further indication that for some « in this range
there is a critical point.

We have seen no indication that the correlation functions depend on the cluster
size. For the case of 30° we grew clusters ten times larger than those described above
to check this, with the result that the correlations were the same. The correlation
function depends on the angular spread of the wedge, not on the space available to
spread out, which indicates that the branches are self-similar in shape. If we take the
point at which the ¢(a/2) crosses 0 as the criterion for determining 1 we find that
the typical distance between different major branches is n = /2 ~ 60 — 70°. This
is in rough agreement with our analytic estimates, and we take this as a verification
of our basic idea.

We made another check by trying to quantify exactly what we mean by a 'major
branch’. We focus on the idea that for asymptotic behavior the most important
feature is that some branches die, and some survive competition. To see this quan-
titatively we introduce a measure on DLA clusters which we call the descendent
measure, M,. For this quantity we weight each point according to the number of
descendents it has in the last fraction x of the growth. Thus M; measures the total

number of points that grow from a given one, and, say, Mj; the number of descen-
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Figure 5.3: DLA clusters plotted with gray level proportional to M; for a = 30°, 144°

dent points in a tiny active zone on the outside of the cluster. The appearance of
major branches derived this way is quite robust, and doesn’t depend much on .
Clusters with M; weighting are shown in Fig. 5.3, and Fig. 5.1(b) illustrates that
the correlation functions near the critical angle are not much different with the M,
weighting. The critical angle is robust, but for small angles the measure clearly lo-
calizes the main branch much more cleanly than the measure that uniformly weights
the mass since it prunes sidebranches. The M, weighting could be interesting in
other contexts since it provides a definition of a backbone for DLA.

Some aspects of the idea that we have proposed here have appeared in other
forms previously. For example, Arneodo and collaborators have observed some hints
of a 5-fold structure in DLA [16]. This is more or less what we find since our angle 7
is close to 27w /5. Many workers have noted that DLA clusters seem to have 5 major
arms, but this qualitative impression was not supported by a quantitative estimate
of the type we have given here.

We think that we should follow up our idea by checking it for radial viscous
fingering in direct simulations. We hope that sophisticated methods such as the
vortex sheet technique [17] could allow us to do this, though this is a computation

intensive approach. The effect of the exact form of the surface tension can also be
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checked, although in our opinion the role of the surface tension is only to regularize
the equations; its exact form (e.g. the finite size of the DLA particles acts as an
effective surface tension) is unimportant. Ideally we should also try to put this idea
of a structure made up of building blocks with some typical angle into a more general
theoretical context. However, we do not see any obvious relationship between what
we have done and the other theoretical approaches to Laplacian growth [18].
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to thank the Weizmann Institute of Science for hospitality and the CIES for support
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CHAPTER 6

Diffusion-limited aggregation and iterated
conformal maps

The research presented in this chapter was done with Benny Davidovitch, H.G.E
Hentschel, Zeev Olami, [tamar Procaccia, and Leonard M. Sander; most of the nu-
merical work was done by me, while the analytical work was shared between the
collaborators. It was published in Phys. Rev. E 59, 1368 (1999).

The creation of fractal clusters by diffusion limited aggregation (DLA) is studied
by using iterated stochastic conformal maps following the method proposed recently
by Hastings and Levitov. The object of interest is the function ®™ which conformally
maps the exterior of the unit circle to the exterior of an n-particle DLA. The map
®(™M is obtained from n stochastic iterations of a function ¢ that maps the unit
circle to the unit circle with a bump. The scaling properties usually studied in
the literature on DLA appear in a new light using this language. The dimension
of the cluster is determined by the linear coefficient in the Laurent expansion of
®(™ which asymptotically becomes a deterministic function of n. We find new
relationships between the generalized dimensions of the harmonic measure and the

scaling behavior of the Laurent coefficients.
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6.1 Introduction

The diffusion limited aggregation (DLA) model was introduced in 1981 by T.
Witten and L. Sander [1]. The model has been shown to underlie many pattern
forming processes including dielectric breakdown [2], two-fluid flow [3], and electro-
chemical deposition [4]. The model begins with fixing one particle at the center
of coordinates in d-dimensions, and follows the creation of a cluster by releasing
random walkers from infinity, allowing them to walk around until they hit any particle
belonging to the cluster. Upon hitting they are attached to the growing cluster. The
model was studied on- and off- lattice in several dimensions d > 2; here we are only
interested in the off-lattice versions in two dimensions.

DLA has attracted enormous interest over the years since it is a remarkable exam-
ple of the spontaneous creation of fractal objects. It is believed that asymptotically
(when the number of particles n — oo) the dimension D of the cluster is very close
to 1.71 [5], although there exists to date no proof for this fact in spite of several
interesting attempts [6, 7]. In addition, the model has attracted interest since it was
among the first [8] to offer a true multifractal measure: the harmonic measure (which
determines the probability that a random walker from infinity will hit a point at the
boundary) exhibits singularities that are usefully described using the multifractal
formalism [9]. Nevertheless DLA still poses more unsolved problems than answers.
It is obvious that a new language is needed in order to allow fresh attempts to ex-
plain the growth patterns, the fractal dimension, and the multifractal properties of
the harmonic measure.

Such a new language was proposed recently by Hastings and Levitov [10, 11].

These authors showed that DLA in two dimensions can be grown by iterating stochas-
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tic conformal maps. We adopt their basic strategy and will see that it provides a
new formulation of the problem which may lead to new insights and results.

The basic idea is to follow the evolution of the conformal mapping ® (w) which
maps the exterior of the unit circle in the mathematical w—plane onto the complement
of the cluster of n particles in the physical z—plane. ®™ is unique by the Riemann

mapping theorem, provided that it satisfies the boundary condition
) (w) ~ F™w as w— 00 (6.1)

Here F\™ is a real positive coefficient, fixing the argument of (@™ (w)]’ to be zero at

infinity. ®™ (w) is related to the complex electric potential ¥ (z) by
T (2) = Inh™(2), (6.2)

where h(™(z2) = [®™]71(2) is the inverse mapping. Letting z — oo in Eq.(6.1) it is

easy to verify that Eq.(6.2) implies
UM™(z) ~Inz  when  z— o0 (6.3)

as it should be at d = 2.

The equation of motion for ®™ (w) is determined recursively. The choice of the
initial map ®© (w) is rather flexible, and in this chapter we select (arbitrarily) an
initial condition ®® (w) = w. We expect the asymptotic cluster to be independent
of this choice. Then suppose that ®™~Y(w) is given. The cluster of n “particles”
is created by adding a new “particle” of constant shape and linear scale v/ to the
cluster of (n — 1) “particles” at a position which is chosen randomly according to
the harmonic measure. We denote points on the boundary of the cluster by Z(s)
where s is an arc-length parametrization. The probability to add a particle on an

infinitesimal arc ds centered at the point z(s) on the cluster boundary is

P(s,ds) ~ |VU(s)|ds. (6.4)
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w-plane Z- plane
®n-1
P,
o
®n-1

Figure 6.1: Diagrammatic representation of the mappings ¢ and ¢.

The pre-image of 2(s) and ds in the w-plane are ¢ and df respectively. Clearly,

ds = |[@"~V] (e)|df. From Eq.(6.2) we conclude that
P(s,ds) ~ |V¥(s)||®'|d0 = db, (6.5)

so the harmonic measure on the real cluster translates to a uniform measure on the
unit circle in the mathematical plane.

The image of the cluster of n particles under A (z) is, by definition, just the unit
circle. On the other hand, the image of the cluster of n particles under h(*~Y(z) is
the unit circle with a small bump whose linear scale is v/Aq/|®'" " (¢¥r)| where ¢t
is the image (under h("~1) of the point 2, on the real cluster at which the growth
occurred.

Let us define now a new function ¢,, g, (w). This function maps the unit circle to
the unit circle with a bump of linear scale \/),, around the point €. For w — oo,

P, 0, (W) ~ w (with positive real proportionality coefficient). Using ¢y, o, (w) the

recursion relation for ®™ (w) is given by (see Fig. 6.1):

O (w) = "V (hy, 9, (w)) . (6.6)
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According to the above discussion A, is given by

Ao
An = |(I)(n71)’(ei0n)|2 (6.7)

so the RHS of Eq.(6.6) is determined completely by @~ (w); Eq.(6.6) induces the
recursive dynamics of ®™ (w).

The recursive dynamics can be represented as iterations of the map @5, o, (w),

O (W) = P10, © Prg0, © - © D, 0, (W) - (6.8)

This composition appears as a standard iteration of stochastic maps. This is not
so. The order of iterations is inverted — the last point of the trajectory is the inner
argument in this iteration. As a result the transition from ®™ (w) to ®*+Y (w) is not
achieved by one additional iteration, but by composing the n former maps Eq.(6.8)
starting from a different seed which is no longer w but ¢, g, (w).

We note that in the physical plane the “particles” are roughly of the same size.
To achieve this the linear scales v/, vary widely as a function of n and . We will see
that the distribution of \/\, and their correlations for different values of n determine
many of the scaling properties of the resulting cluster. In particular their moments
are related to the generalized dimensions of the harmonic measure.

There are many functions ¢,y which conformally map the unit circle to the unit
circle with a bump. A simple choice is a function which behaves linearly for large w
and has a simple pole inside the unit circle which will induce a bump in the image.
The pole has to be at wy =1 — A in order to localize the bump near w = 1 and make
it of linear size of the order v/A. The residue has to be A*2, in order for the bump’s

height to be also of the order v/A. Consider then

3/2

o) = (1+ W+ ——.
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Careful thinking leads to the conclusion that this function and other similar functions
are inappropriate: they have long “tails”. In other words, the unit circle is slightly
distorted everywhere. This small global distortion may result in a loss of conformality
or in the growth of non- constant size particles in the physical plane in numerical
applications.

It was proposed in Ref. [10] that a choice for ¢y, g, (w) that is free of global

distortion is given by

(1+ M)

Dro(w) = w' ™ {
1/2 a

<frewsn (g - 2123 | 1} 69)

Prp(w) = ey ole™w), (6.10)

The parameter a is confined in the range 0 < a < 1. As a decreases the bump becomes
flatter, with the identity map obtained for @ = 0. As a increases towards unity the
bump becomes elongated normally to the unit circle, with a limit of becoming a line
(“strike” in the language of [10]) when a = 1. Naively one might think that the
shape of the individual particle is irrelevant for the large scale fractal statistics; we
will see that this is not the case. The dependence on a is important and needs to be
taken into account. Notice that this map has two branch points on the unit circle.
The advantage of this is that the bump is strongly localized. On the other hand
repeated iterations of this map leads to rather complex analytic structure.

The aim of this chapter is therefore to investigate the scaling and statistical
properties of such iterated stochastic conformal maps with a view to discovering the
scaling properties induced by the dynamics which any analytic theory must ulti-
mately explain. In Section II we present the numerical procedure used to generate

the fractal clusters, and in Section III give the necessary mathematical background
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to describe such mappings. In particular we discuss the Laurent expansion of the
conformal map from the unit circle to the n-particle cluster; the coefficients of the
Laurent series have interesting scaling behaviour with the size of the cluster which
is intimately related to the fractal dimension of the cluster and to the generalized
dimensions of the harmonic measure. In Section IV we present numerical results
regarding the scaling properties of averages of the Laurent coefficients and of the size
parameter \,. The results are accompanied by a theoretical analysis and interpreta-

tion. In Section V we conclude with some remarks on the road ahead.

6.2 Numerical procedure

The algorithm simulating the growth of the cluster is based on Ref. [10]. The
n “particle” cluster is encoded by the series of pairs {(0;, \;)}* ;. Having the first
n — 1 pairs, the n'" pair is found as follows: choose 6,, from a uniform distribution in
[0, 27], independent of previous history. Then compute A, from Eq.(6.7), where the
derivative of the iterated function ®~1) involves Do P2 Porys s ELC
computed respectively at the points e, ¢y 5 (€9%), dr. L0, o (Or, 10, . (e7)),
etc. Notice that the evaluation of both ¢’ and ¢ after the addition of one particle
involves O(n) operations since the seed changes at every n. This translates into
n? time complexity for the growth of an n-particle cluster. This is inferior to the
best algorithms to grow DLA (using hierarchical maps [12], with close to linear
efficiency), but the present algorithm is not aimed at efficiency. Rather, it is used
since the Laplacian field and the growth probability which is derived from it are
readily available at every point of the cluster and away from it. The typical time to
grow a 10,000 particle cluster is 8 minutes on a 300 MHz Pentium-II.

Naively one would expect that any choice of 0 < a < 1 would yield DLA clusters,
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a=1/2 a=2/3 a=4/5

Figure 6.2: Typical clusters of 10,000 particles. The black regions represent the
interiors of the images of the unit circle under the map ®(%%0 for three
values of a. The large enclosed areas for the a = 1/2 cluster are the
unwanted “fill-up” events discussed in Section II. However, the black
area in the a = 4/5 cluster is only a numerical artifact: that region is
not resolved by double precision arithmetic.

since a only determines the shape of the particles (the aspect ratio is 1a/(1 — a) for
small ), and the microscopic details of the particles (except their linear size) should
not affect the global properties. Three typical clusters with particles of various aspect
ratios a are shown in Fig. 6.2.

We mark in black the interior of the image of the unit circle under the conformal
map ®((w). The objects look very much like typical DLA clusters grown by stan-
dard off-lattice techniques, and in the next section we demonstrate that they have
fractal dimensions in close agreement with the latter. For a significantly different
from 2/3, disadvantages of the algorithm get amplified. Since the functional form of
¢ is fixed (only the size and position of the “bump” change), particles of constant
shape and size are obtained only if the magnification factor |®™=D’| (the inverse
of the field) is approximately constant in the w—plane around the “bump” of ¢. If
the particles are elongated along the cluster, then the variation of the field along

the cluster affects the shape: large otherwise deeply invaginated regions, where @’
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is large, are filled up with a single particle, and the resulting cluster tends to be
more compact. This effect, slightly noticeable even at a = 2/3, is quite significant
at the otherwise natural choice of @ = 1/2, where the particles are half circles. In
Fig. 6.2 we show such a cluster and point out to the area filling dark regions which
represent such unwanted events. The other extreme, when the particles stick out of
the cluster, leads to sensitivity to variations in the field going away from the cluster.
Especially if a bump is grown on a tip of a branch, where the field decreases rapidly
as one goes away from the tip (such that @’ increases significantly), then the map of
the bump gets magnified, resulting in particles of very unequal sizes.

[t is necessary to stress that even for a = 2/3, when this procedure appears to
yield nice ramified structures, the problem of fill-ups does not go away: in a few rare
cases the particle —if it happens to land on a place where |®”| is large — is significantly
distorted. The net effect is that large areas surrounded by the cluster (where the
growth probability is small) are filled up entirely by one distorted particle. For the
value of @ = 1/2 it appeared that the errors may be unbounded. Our numerics
indicates that for a = 2/3 the errors were bounded for the cluster sizes that we
considered. We do not have a mathematical proof of boundedness of the errors, and
our disregard of this danger is only based on the sensible appearance of our clusters

at this value of a.

6.3 Mathematical Background

In this section we discuss the Laurent expansion of our conformal maps, and

introduce the statistical objects that are studied numerically in the next section.
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6.3.1 Laurent Expansion

Since the functions ®™ (w) and ¢, 4(w) are required to be linear in w at infinity,

they can be expanded in a Laurent series in which the highest power is w:

oW (w) =F"w+F"+FYw !+ FYw 24 . (6.11)
Prp(w) = frw+ fo+ foawT + fow TP+ (6.12)
where
f1 = (1 + )\)a
2a\ e??
fO = T y\i-a
(14 A)t-e
2a\ e 20 — 1
. = — |1 A
Jor (1+A)2G<Jr 2 )
2a) e 202 — 3a + 1
L, = —— 1+ 2(a—1DN+ — )\
fo (1+)\)3a<+(a A+ 3 >

The recursion equations for the Laurent coefficients of ®™ (w) can be obtained by

substituting the series of ® and ¢ into the recursion formula (6.6). We find

FW o= FURY (6.13)

Fo(n) _ Fl(n—l)fén)+F()(n—1)

FIY = EY R R

FW = FrVpe ey o peoy (6.14)
()2 (fM)2

We note that the n-dependence of fi(") follows from the dependence on the randomly
chosen 0,, at the nth step, from which follows the dependence of A, on n. The latter
is however a function of all the previous growth steps, making the iteration (6.13)

-(6.14) rather difficult to analyze.
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A general relation between the Laurent coefficients is furnished by the so-called
area theorem which applies to univalent mappings. Since our maps solve the Laplace
equations with boundary conditions only at infinity and on the cluster boundary
where the potential is zero, they map the w plane uniquely (and with a unique
inverse) to the z plane. In other words, the pressure lines and the stream lines are
non-degenerate. Such mappings have the property [13] that the area of the image of

the unit disc in the nth step is given by:

2

S, = \Ff”)f - i i |F% (6.15)
k=1

A second theorem that will be useful in our thinking is a consequence of the so-called
one-fourth theorem, see Appendix A. There a statement is proven that the interior
of the curve {z : z = ®™ (")} is contained in the z-plane by a circle of radius 4F™.
Now as the area S, is obtained simply from the superposition of n bumps of roughly
the same area \g, it has to scale like S,, & n)\g, for large n. On the other hand any
typical radius of the cluster should scale like n'/Py/Xy where D is the dimension of

the cluster. We can thus expect a scaling of Fl(n) that goes like

F ~nlP /2 (6.16)

. We note in passing that this scaling law offers us a very convenient way to measure
the fractal dimension of the growing cluster. Indeed, we measured the dimension D
for a range of a in this way by averaging Fl(n) over 100 clusters. We found that for
a range of a spanning the interval [1/3,8/9] the dimension is constant, around 1.7.
We can infer therefore that the sum in Eq. (6.15) which subtracts positive con-
|2

tributions from |F™|? contains terms that cancel the behavior of n?/? (remember

that D < 2), leaving a power of unity for the scaling of S,. Indeed, we will show



85

below both numerical and theoretical evidence for the scaling behavior of the |F£7,? |2
for k£ > 6 which is in agreement with n*?
We can give a direct physical interpretation for the coefficients F by comparing

them to the coefficients of the series for W™ cf. Eq.(6.2):

T (2) = 1In(2) — In(re) i@/}_: (6.17)
1

The coefficient of In(z) is unity so that the electric flux is unity. This corresponds
to the normalization of the probability. The constant ry is the Laplace radius which
is the radius of a charged disk which would give the same field far away. The rest of

the ¢;’s are conventional multipole moments.

The relations between the Laurent coefficients of U and &™) are:

o = F1
v = —F
1 2
Y =~k - ok
2 1 3
77[)3 — _F_2F1 —2F0F_1F1—§F0
3
Yy = —F_3F} — 5F%lFf — 3R FyF_,
1
—3F ,FyF? — ZFg* (6.18)

The first line shows that F; = ry, the Laplace radius, in accordance with the
one-fourth theorem.

The second line shows that the dipole moment v, is —Fy. We can interpret this
coefficient as a distance, the wandering of the center of charge due to the random
addition of the particles. We will take the point of view that this quantity is less
“intrinsic” than the others to the dynamics of the DLA growth. In fact, if we set

= )y = 0, (we could imagine shifting the cluster as we grow it) we can rewrite
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the rest of the equations:

—F_; ~ y/ry
—F_y ~ 2/)3/7“3

“Fly o~ (Gt U/ (6.19)

etc. This leads to the interpretation of F' ; in terms of the multipole expansion of

the electric field.

6.3.2 Statistical objects and the relations to generalized dimensions

Our growth process is stochastic. Accordingly, it is natural to introduce averages
over the randomness. In our thinking there are two important averages, one over
histories of the whole random trajectory {6;}" ;, and the other only over the random
choice of 0,, at the nth step. To distinguish between the two we denote the first by
angular brackets and refer to it as “history-average”, while the second is denoted by
an overbar and referred to as a “cluster-average”. There is a possibility that for very
large clusters (n — o) the two averages result in the same numbers. We will refer
to such a property as “self-averaging”.

The cluster average of moments of )\, offers a relationship to the generalized
dimensions of the harmonic measure [14]. The latter are defined by dividing the
plane into boxes of size €, and estimating the probability for a random walker to hit

the piece of the boundary of the cluster which is included in the 7th box by

pi(€) = |E;le , (6.20)
where |E;| is the modulus of the electric field |V;| at some point in the ith box.
The generalized dimensions are defined by the relation

€ (g—1)Dq
) (6.21)

N(e)
q ~ [ —
; pi(e) < 7
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where N (€) is the number of boxes of size € that are needed to cover the boundary,
and R is the linear size of the largest possible box, which is of the order of the radius

of the cluster. Substituting (6.20) we find

¢! % || ~ (5>(q_1)Dq (6.22)
i=1 R
Taking € very small, of the order of \/)\, and assuming that the field is smooth on
this scale we have:
L
/0 |Eitds ~ (y/Ao) ¢ nlt-0Pa/P (6.23)
where L is the length of the boundary, ds is an arc-length differential, and we have
used the scaling law n ~ S, /e2 ~ (R/e)Y/P.
The connection to our language is obtained by considering the cluster average of
powers of \,. We grow a cluster of n — 1 particles, perform repeated random choices
of growth sites (without growing), and compute A, for each choice. The cluster

average can be represented as an integral over the unit circle, A%, and is given by
N 2
N = (1/27r)/0 A (6)d6 . (6.24)

Recalling Eq. (6.7) we observe that A2(0) = M| E(0)|??. The last relation, Eq.(6.5),

and Eq.(6.23) imply the scaling relation
A~ 2Pz /D (6.25)

6.4 Numerical results and their interpretation

In this section we present results on three topics:
(i) The coefficients of the Laurent expansion. The scaling behaviour of these quan-
tities is described and discussed in the first subsection.
(ii) The microscopic fluctuations in the conformal map. We show that the assump-

tion of self-averaging is valid for Eq.(6.25) and that the multi-fractal exponents are
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in a good agreement with the known ones.

(iii) Distribution functions of the Laurent coefficients. We analyze numerically the
width of those functions and find that Fl(n) tends to a deterministic function of n.
We attribute this effect to non-trivial temporal correlations in the field, and give

some evidence of their existence.

6.4.1 Laurent Coefficients of ®(™

All the coefficients of the Laurent series of ®™ (w) are complex numbers except
F; which is real by the choice of zero phase at infinity, see Eq.(6.1). Most of our
discussion below pertains to the amplitudes of the coefficients F. We need to stress,
however, that the phases are not irrelevant. If we attempted to use the correct
amplitudes with random phases, the resulting series will in general not be conformal.

One of the main results of this chapter is that in addition to the expected scaling
behavior of the linear coefficient F1™ (given in Eq. (6.16) the rest of the amplitudes

of the Laurent coefficients |F ET,?| exhibit also a scaling behavior. We find numerically

that in the mean the magnitudes of the Laurent coefficients scale as powers of n:
(|IF™?) = apn® . (6.26)

The exponents x, are given in Fig. 6.3. We first discuss the consequences of the

scaling behavior of F\™.

Scaling of F)

The scaling behavior (6.16) has immediate consequences for the scaling behavior
of the bump areas A, that are the subject of the next subsection. The connection

appears from the recursion Eq.(6.13) of F™ which together with f; = (14 A)® reads

n

F™ =TI+ A (6.27)

k=1
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Figure 6.3: The scaling exponents of the Laurent coefficients: (|F_;[*) ~ n®. The
values are obtained by averaging 400 independent realizations of 10,000
particle clusters.

Taking history averages we find

(FM) = (T + M) (6.28)
In(F™) =~ afj@k) (6.29)
dIn(F™Y/dn =~ a(A_n>. (6.30)

The last two equations are obtained by expanding the logarithm and keeping only
divergent sums. Both the mean of Fl(n) and the mean of the sum of \; increase as
a function of n. All other sums of powers of \; converge as a function of n: cf.
subsection B. Thus, if we assume that (F\™) « nl/P, fractal scaling of the radius
(see below), implies that [10]

(\n) =1/naD. (6.31)

In the next subsection we show that this is indeed supported by the simulations.
Note that (A,) is inversely proportional to n for any value of the fractal dimension

D. On the other hand, if we assume the property of self-averaging, Eq. (6.31) implies
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10°

Figure 6.4: The scaling of <|F0(n)|2> (thick lines) and the sum of diagonal terms (thin
lines, see Eq.(51)) with size n. Clearly the two have different scaling
exponents. The solid lines are averages over 400 clusters of size 10,000,
the dashed lines are averages over 30 clusters of size 100,000.

a relationship between the generalized dimension D3 and the fractal dimension D.

Comparing Eqgs. (6.25) and (6.31) leads immediately to the relation
Dy =DJ2. (6.32)

This scaling relation was derived by Halsey [15] using much more elaborate consid-
erations. We see that in the present formalism this scaling relation is obtained very
naturally. In fact the present formulation is more powerful since Eq.(6.31) predicts
not only the exponent of the third moment of the electric field, but also the prefactor.
It is also noteworthy that the scaling relation (6.32) results simply from the existence

of a power law behavior for the radius Fl(”).

Scaling of Fj

We found the exponent of (|Fy|?) to be 2 = 0.7+ 0.1, see Fig. 6.4. To estimate
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the scaling behaviour of Fj theoretically we note that

]_ 2T
r = —/ o / .
o= o - 5)|ds . (6.33)

Accordingly we can write

RBE = (1/47) / ds / ds'2(5)2(s") | E()[[B ()]

~ AR /0 ds(|E(s)[?) (6.34)

In writing the second line we assumed that the main contribution to the correlation

function is short ranged,
(2(s)2(s) " [E(s)[|E()]) ~ MR B ()6 (s — &) . (6.35)

The justification for this is that the field is expected to exhibit wild variations as
we trace the boundary z(s). In addition the main contribution to the integral is
expected to come from the support of the harmonic measure where the radius is of
the order of R. From the estimate (6.34) and Eq.(6.23) we then find

2—Ds
D

Ty = ~ 0.64 (6.36)

in agreement with our measurement of z,. (We used here D, = 0.90 in correspon-
dence with the numerical finding reported in Section IV C. Any of the values of D,

quoted in the literature would yield zy in the range 0.7 +0.1.)
Scaling of F' 4
The exponents xy, for k < 0 are smaller than 2/D but approach it asymptotically,

see Fig. 6.3. This behavior is expected from the area theorem, and also from a direct

estimate of the integral representation of the coefficient for large &

1 L
[F_]? = ﬁ/ ds

/ ds'2(5)2(s) | E(5)[ | E (s7) |0 00 | (6.37)
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In Appendix B we show that this integral can be estimated using the multifractal

formalism of the harmonic measure with the final result

[Fi? ~ (R/4k)? / da(2k /m)f@/a (6.38)

where v and f(«) are the strength of singularities of the harmonic measure and the
dimension of the sets of points that exhibit these singularities respectively [9]. For
our purposes the important consequence of Eq.(6.38) is the scaling relation (assuming
self-averaging)

(IF &%) = Xon®Pg(k) (6.39)

with g(k) ~ 1/k? [ dakf(®/®  One knows from the theory of multifractals that
f(a)/a < 1, and therefore we can bound g(k) from above and from below, Ak™2 <
g(k) < Bk~!. This is in accord with our numerical simulations in the range 3 < k <
10, although the calculation in the appendix is only valid for large values o k. We
found agreement with Eq.(6.26) with xy — 2/D and ay ~ k™ with 1 < o < 2.
Note that this scaling behaviour has important consequences for both the area
theorem and for conformality. Absolute convergence of the sum > 72, /€|F£T,L€)|2 in
the area theorem requires o > 2 which is not the case. The situation is even more
serious for the existence of conformality. To insure the latter the sum >7°, k|F£7€)|
must exist. This would require o« > 4. The reason that the sums exist in the theory
is only due to the ultraviolet cutoff at v/Ag. This cutoff introduces a highest k in
the Laurent expansion which we estimate as 27k ~ L/\/Ag ~ n where L is the

perimeter of the cluster.

6.4.2 Multi-fractal exponents

Here we test Eq.(6.25). In Fig. 6.5 we display double-logarithmic plots of (\?)

vs. n for ¢ = 0.5, 1, 1.5, 2, 2.5, 3 and 3.5. The values of the generalized dimensions
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Figure 6.5: Scaling of the moments (A?) with powers of n. The curves from top to
bottom correspond to ¢ = 0.5, 1, 1.5, 2, 2.5, 3 and 3.5. The exponents
—2qDsy,+1/D are in agreement with theoretical predictions (see text) and
with numerical values for the generalized dimensions in the literature.

D, obtained from our simulations agree very well (within the uncertainties) with the
generalized dimensions D, obtained in the past [5] for Dy, -+, Ds using standard
methods. In addition we reproduce numbers in agreement with the theoretical pre-
diction of Dy = D =~ 1.71 and D3 = D/2. This agreement is a strong indication for

self averaging at least for the purpose of computing moments of A, (i.e. (A1) ~ Al).

6.4.3 Fluctuations of the averages

We previously discussed the scaling behavior of |F£T,?|2 and showed that their
history averages obey Eq. (6.26). However |F£T,?| are random variables with broad
scaling distributions. Fig. 6.6 describes the rescaled standard deviation a,(cn) of the

Laurent coefficients,

5 e

o = \JUE Yy = (F ), (6.40)
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Figure 6.6: The rescaled standard deviation a,(cn) of the Laurent coefficients of the

map (see definition in text). For k # 1, a,(cn) fluctuates around unity,
corresponding to broad distributions. But for £ = 1 it tends to zero
as n — 0o, demonstrating the asymptotic sharpness of the distribution
of Fi. The solid lines are averages over 400 clusters of size 10,000, the
dashed lines are averages over 30 clusters of size 100,000.
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for K = 1,0,—1,—2 as a function of the cluster size n. As is seen clearly from the
graphs the widths of the distributions for all £ < 0 tend asymptotically to a finite
value. This is the normal behaviour for scaling distributions. The exceptional case
is k = 1. Even though it exhibits a scaling law of the type (6.26) (see Section III),

with
2

.’EIZBQIIS,
2

the rescaled distribution width of |F1(”)| tends to zero as n goes to infinity. This
means that the rescaled distribution function of Fl(") tends asymptotically to a delta
function. The importance of this result for the evaluation of the fractal dimension
of the cluster warrants an immediate discussion of this sharpening phenomenon.

The conclusion of the numerics on F} is that there exists a universal constant
¢(Xo) such that

n YPEM 5 () (6.41)

where ¢(\g) is cluster independent! Moreover, we found that ¢(A\g) = ¢v/Ag, which is
in accordance with the role played by \/)\y as an ultraviolet inner lengthscale, which
is the only lengthscale that appears in the mappings. Note that the constant ¢ in
Eq. (6.41) depends on the parameter a. We measured ¢ values of 0.6, 0.87, 1.2 and
1.8 for a values of 1/3, 1/2, 2/3 and 4/5 respectively.

The observed sharpening is not obvious since we know that Fl(”) is built from
a product of random variables \,, whose moments change with n in multi-fractal
manner according to Eq. (6.25).

One could attempt to connect the sharpening of Fl(") to the existence of other
sharp functions of n. Considering the full expansion of Eq.(6.27) we find

1
Elan”) = Y In(1+\) (6.42)

=1
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= Z/\i——ZA?leZA?Jr---. (6.43)
=1 2i:1 31’:1

We could understand Eq. (6.41) easily if all the sums of all the powers of \; converged

to constants,

n 2
A= =1 6.44
; phn = o (6.44)
YA = o (6.45)

=1
(6.46)

with ¢; cluster independent. In fact, this is not the case. The sums of powers are
not cluster independent. A clear demonstration of this is a simulation which begins
with initial conditions which are very far from the circle. The individual sums in
Eq. (6.43) are very different from the average values, but nevertheless Y1 | In(1+ ;)
seems to converge to the right value. It is our conclusion that each of the sums in
(6.43) is not cluster independent, and yet somehow the resummed form is cluster
independent.

This remarkable sharpening calls for further discussion; it appears that its in-
terpretation requires better understanding of the time correlations of the field: an
independent choice of random realization of a series of \; according to their multi-
fractal distribution can only generate Fl(n) with the proper scaling exponent but
cannot trivially yield a highly peaked distribution of Fl(n). Therefore we consider
now some evidence for the existence of temporal correlations.

The first outstanding evidence appears in the context of the scaling behavior of
Fy, which was discussed in the first subsection. We show that if we assume that
there exist no correlations between different growth stages, the exponent zy will be

very different from the measured and calculated value. From the recursion relations
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of the Laurent coefficients (Eq. 6.14) we can estimate, in the limit of large n when

An 1s very small on the average,

(F™ FI™) X Ay 20 = 0 (6.47)

1

(F™ BI) Oy A0 =00 (6.48)

1

M=
M=

(EIPRY ~

1m/

3
I

2
M:
M=

1m/

3
I

The second line is obtained because Fl(m) is proportional to the radius of the whole
cluster and should not be correlated with A,,. The crucial approximation comes next:
if A\, and A,y can be treated as independent for m # m/, then (since 6,, and 6,, are

independent) Eq.(6.48) simplifies to

M A €0 0m)Yy 2 (A2 V6, (6.49)
([F5" ) ~

Z <(F1(m))2><)\72n> ~ pl+2/D-4Ds/D _, 0.3 (6.50)
m=1

The numerical simulation resulted in an exponent of the order of 0.7, in serious
disagreement with Eq. (6.50). We think that the assumption of independence, Eq.
(6.49) is the culprit.

Another fact which illustrates the importance of the time-angle correlation (see
Eq. (6.49)) is the difference between the exponents of Fy and F_; ({|Fp|?) ~ n®7
whereas (|F_1|?) ~ n%?). Their equations of motion (6.14) differ, for small \,, by
two terms only. The first one is the term )\an*l) in the RHS of the equation for F'
which is absent in the equation for Fj. We checked numerically that neglecting this
term leads to a very small change in the exponent. The second difference between
is that the term A\,\,_ze'»=%-+) in Eq. (6.48) is replaced by A\, je2(0rn—0n-r),
The change in the exponent can therefore be directly attributed to the existence of

important time-angle correlations.
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Figure 6.7: Time-angle correlations of the field. In order to reduce statistical noise,
the values plotted are averaged in bins [n, 1.1n).

We tried to analyze numerically the time-angle correlations (\,\,_ge'n=0n—r)),
The results for some k’s are shown in Fig. 6.7. It appears that as we increase the
size of the ensemble, (\,\,_pe»=0=+)) —5 0 with the usual N~'/2 dependence on
the ensemble size. If we believe these numerical results (doubts may exist due to
the relative smallness of the ensemble analyzed), then the previous results must be
related to more subtle correlation of higher order nature.

Lastly we would like to discuss the importance of early stages of the growth.
(F{™) might be written in the following way

n
(B = (L1 +2) (6.51)
i=

(see Eq. (6.13). Neglecting the correlations in time in the above product one may

approximate

n n

(JL(U+ X)) ~ [T+ ) (6.52)

i=1 i=1

Numerical evaluation of the two objects in Eq.(6.52) shows that they differ by a
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Figure 6.8: The ratio of F; with time correlations neglected and the full F7i:
P+ N /(T (1 + X)) (thick line). The quantities ([T%_ (1 +
i) Tl (1 4 Ag)®) are also plotted for k& = 10, 100 and 1000.

few percent (see Fig. 6.8). The numerics indicate the scaling laws
(I +2)" = exn®?, (6.53)
=1

(T2 = arn”, (6.54)

-

=1

where ¢; /¢ > 1.06.

To get further intuition we checked also the object

(T4 20 1T (14201

for various values of k. The results are shown in Fig. 6.8. As it seems from this
graph, time correlations in the initial stages of the growth are much more important
than local correlations in the late stages.

We checked also two-point time correlations (A,\, _x) for some k’s. The results
are plotted in Fig. 6.9. As it turns out from this graph, (A, A\—x) &= (M) (M) up

to statistical fluctuations.
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Figure 6.9: Correlations of the field. In order to reduce statistical noise, the values
plotted are averaged in bins [n,1.01n].

6.5 Summary and discussion

The language proposed by Hastings and Levitov appears to offer many appealing
features. It generates DLA clusters in such a way that the conformal map ®™ from
the circle to the boundary of the cluster is known at every instant. In this chapter we
examined carefully the numerical procedure used to generate the conformal maps,
and pointed out the advantages and the shortcoming of the algorithm.

The new results of this chapter pertain to the scaling behavior of the Laurent
coefficients |Fy| of the conformal map ®™ and of the moments of A, which are re-
lated to moments of the field. We presented a theoretical discussion of the exponents
characterizing moments of |Fi| and A,. We pointed out the relations to the multi-
fractal analysis of the harmonic measure, and derived scaling relations. Of particular

interest is the scaling relation D3 = D/2 that was derived first by Halsey and which
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appears here as a very natural consequence of the formalism.

One important results which is not adequately interpreted in this chapter is the
sharpness of the distribution of Fj. This coefficient is proportional to the radius of
the cluster, and its sharpness is directly related to the existence of a universal fractal
dimension independently of the details of the shape of the cluster. Understanding the
sharpness appears to be connected to understanding the existence of universal fractal
dimension, and we believe that it poses a very worthwhile and focussed question for
the immediate future.

This work has been supported in part by the Israel Science Foundation founded
by the Israel Academy of Sciences and Humanities. LMS and ES are supported by
DOE grant DEFG-02-95ER-45546, and would like to thank the Weizmann Institute

of Science for hospitality.
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CHAPTER 7

Conclusion

In this thesis we investigated various problems in nonequilibrium statistical phys-
ics. Common to these problems is that they are all related to pattern formation, and
scaling concepts are essential to their thorough understanding. Our methods were
mostly discrete: we modeled individual atoms, blocks of material, particles, and
studied discretized partial differential equations.

In general, we did not attempt to closely mimic experimental conditions. Rather,
we were interested in the basic principles. The exception is the case of epitaxial
processes, where our models were closer to experiments—here we were also successful
explaining the observations.

To summarize our results, we observed two different scaling regime, depending on
growth parameters, in multilayer heteroepitaxial systems. In heteroepitaxial systems
we studied how the elastic effects modify the growth process. To better understand
the formation of river networks, we proposed a coarse grained theory, which couples
the equation of the surface erosion with the conservation law of surface water flow.
In the area of Laplacian growth, using diffusion-limited aggregation clusters grown
in wedge geometry, we showed the existence of angular building blocks. And finally,

using a conformal map approach to DLAs, we studied the relation between the

103
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Laurent coefficients of the map, the generalized dimensions of the harmonic measure

and other relevant physical quantities, and their scaling.
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APPENDIX A

Fast off-lattice DLA algorithms

In this Appendix we explain the current best algorithms to simulate off-lattice
DLA clusters. The details given here are for the 2-dimensional case, but can be
generalized to higher dimensions.

When simulating DLA, in each step a particle is added to the cluster: we have
to compute the first contact position of the random walker (or Brownian path) with

the cluster using the smallest amount of resources (CPU time, memory) possible.

A.1 Efficient random walk

Ideally the walker is released at infinity. However, before it gets in contact with
the cluster, it has to cross a circle of arbitrary radius enclosing the cluster, centered
around the origin. Suppose we select the smallest circle enclosing the cluster, denoted
by C. Because of symmetry considerations, the first contact point of the walker with
this circle is uniformly distributed on the circle. Thus we can model the path of the
walker from infinity to the point of first contact to the circle in one step: place it on
the circle with uniform probability.

Now suppose that at some point P on its path the walker is at some distance from

the cluster. One can select a bounded region D, which contains the walker and does
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not intersect with the cluster. Before the walker contacts the cluster, it has to come
out of this region, specifically there will be a point P’ in the path were it first crosses
the boundary of the region. Given the position P of the walker and the region D,
this segment PP’ of the path is independent of the cluster, and can be in principle
calculated in one step. The goal is to select an appropriate region D such that the
distribution of P’ is easily computable. One such choice is a circle centered around
P with radius r strictly smaller than the distance of P from the cluster (but the
bigger the circle, the more efficient is the simulation). Then P" would be uniformly
distributed on the circle. Given the cluster and P, an efficient selection of the radius
r is not easy, but a good method will be given later in this Appendix.

An exception from this difficulty is the case when P is outside the smallest enclos-
ing circle C: then a quick choice for r is the distance of P from the circle. However,
if the walker wanders too far away from the cluster then this method becomes inef-
ficient. Early works used the kill the walker when it got too far away (say 5 times
the radius of C') and start over with a new walker. This solution is not exact (may
introduce artificial correlations) and in addition not the most efficient. Instead, we
can define an outer circle C’, also centered around origin but larger than C'. When
the walker gets outside C’, we solve the problem of first contact with C: place it
back to the smallest enclosing circle in one step.

This problem is no longer rotational symmetric as the first-contact-from-infinity
case, but solvable[1]. Suppose the radius of C'is R¢, and the walker is at position
(r,0) in polar coordinates, outside C'. The new position will be at radius R¢ (on

circle C') and at azimuthal angle

0 =0+ 200 (1o gz tan(rR)) | (A1)
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where R is a uniform random number from [0, 1].
Since this method is exact for any C' larger than C', we can optimize the radius

of C' for computational efficiency. In our simulations we used
Rer =1.1- Re + 3 - Ryalker (A.2)

but the performance did not depend strongly on this selection.

It has to be noted that for simplicity in the above discussion we neglected the
radius of the walker. In practice it has to be taken into account, and the size of the
jumps need to be decreased, and R¢ increased, by a particle diameter to prevent
overlap.

To summarize the procedure we do the following steps to add a particle. First the
walker is deposited on the smallest enclosing circle C' with uniform probability. Then
it is allowed to take jumps in uncorrelated random directions, where the size of the
steps is a lower estimate of the current distance of the walker from the cluster. If at
any point it gets outside of the outer circle C’, then it is redeposited to C' according
to Eq. (A.1). However, we do not allow jumps smaller than the particle radius to
actually achieve contact: in case the walker overlaps with the cluster after such a
jump, it is pulled back on the path of this last jump until just touches the cluster,

and becomes part of it.

A.2 Hierarchical maps

We are still facing the problem of giving a lower estimate of the walker—cluster
distance in an efficient way. The naive approach of evaluating the minimum of the
n clusterparticle—walker distances is prohibitively slow: for a cluster of n particles,
each jump of the walker would take O(n) time, making the overall time complexity

at least O(n?).
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The technique of hierarchical maps(2] has a better solution: if the walker is “far
away” from the cluster, then it provides with a quick lower estimate of the distance
without even accessing the coordinates of cluster particles; if the walker is “close”
then it provides a list of the nearby particles so that the exact distance can be calcu-
lated. The computational time in both cases depends very weakly (logarithmically)
on cluster size.

The cluster is put on an adaptively refined square mesh. Each square — which
we call map —, and possibly its sub-squares, are subdivided into 4 sub-maps (lower
level maps), if the cluster is “sufficiently close” to it. The rule is the following:
initially each map adjacent to the origin is subdivided up to a predefined maximum
depth. In addition, when a map on any level contains cluster particles (through its
sub-maps), the surrounding 8 maps on the same level must exist, i.e. their parent
maps must be subdivided (except when this would go off the mapped area). This has
two consequences. First, all particles of the cluster will be in lowest level (smallest)
maps; the list of the contained particles is attached to these maps. Second, if a
certain (above lowest level) map is not subdivided, then its distance from the cluster
is at least half of its side length.

To see this, suppose map M is above lowest level, and there are particles closer
to it than half its side. Then there should be an adjacent (possibly subdivided) map
M’ containing particles, one level lower than M. According to the rule, M’ has to
be surrounded by same level maps as itself, therefore M has to be subdivided.

As the aggregate grows, the maps are updated. Each time a particle is added to
a previously empty lowest level map, it and its ancestors are checked whether they
satisfy the rule — if not, then the appropriate subdivisions take place.

When a walker lands somewhere, we find the smallest map containing the point.
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If it is higher than lowest level, then we are considered to be “far away” from the
cluster, and half of the side of the map is a lower estimate of the walker’s distance
from the aggregate. If, on the other hand, the walker lands in a lowest level map,
then it is “close” to the cluster: the particle lists of the map and of the neighboring
lowest level maps are checked to calculate the exact distance of the walker from the
aggregate.

The size of the smallest maps is an adjustable parameter, the optimum is around
8 particle diameters. The CPU time used for a single distance estimate is only
logarithmically depends on the cluster size: for larger cluster more map levels have
to be used. Overall, the memory requirements are linear to the size of the cluster,

L1in a range

and the computational time is close to linear (empirically time ~ n
103—107 particles); the stronger than logarithmic correction is probably due to the

fact that for larger cluster the walkers take more jumps.
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