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ABSTRACT

PATTERN FORMATION IN NONEQUILIBRIUM STATISTICAL PHYSICS

by

Ell�ak Somfai

Chairman: Leonard M. Sander

In this thesis we explore problems in surfae- and di�usion limited growth.

Moleular beam epitaxy, the tehnique used to grow strutures on rystal surfaes,

is studied with omputer simulations. Our fous is the multilayer stage of this

proess: how the growth onditions a�et the evolution of the forming mounds. We

also studied heteroepitaxial systems, where the elasti e�ets signi�antly hange the

growth proess, resulting in unusual phenomena like quantum dots.

The seond area of researh is the evolution of river networks. We propose a oarse

grained theory, oupling the equation of the surfae erosion with the onservation

law of surfae water ow. Computer simulation of the model produe patterns whih

show the statistial properties of natural rivers.

Lastly, we study di�usion limited aggregation (DLA), the disrete model of Lapla-

ian growth. Using DLAs grown in wedge geometry, we show the existene of angular

building bloks. In a di�erent approah, using onformal maps, we study the relation

between the saling properties of the model and the Laurent expansion of the map.
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CHAPTER 1

Introdution

1.1 Overview

Nonequilibrium statistial physis is one of the most rapidly growing branhes

of physis. The present understanding of far from equilibrium phenomena is behind

that of equilibrium physis, providing a wide range of interesting problems.

In nonequilibrium systems there exists a mehanism whih drives the system away

from its equilibrium state. These proesses give rise to rih and interesting pattern

forming phenomena, whih are the topi of this thesis.

A large lass of nonequilibrium proesses an be desribed as growth proesses,

in whih a phase (or aggregate, or luster) is growing. The main question is to

understand and explain the stati and dynami properties of the growing luster

from the physis of the growth proess.

In many ases the interfae between the growing luster and its environment is

smooth on large sales. These objets, as well as their relation to sale-invariane is

disussed in Setion 1.2. An appliation with pratial importane, moleular beam

epitaxy, is introdued in Setion 1.3. Systems of muh larger sale, geomorphologial

evolution, are desribed is Setion 1.4. Finally we introdue Laplaian growth and

di�usion limited aggregation (DLA) in Setion 1.5.

1
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The following hapters ontain our researh results. In Chapter 2 we study ho-

moepitaxial systems in the multilayer regime. Chapter 3 deals with heteroepitaxial

systems, where strain is a signi�ant fator. In Chapter 4 we present our oarse-

grained theory for the evolution of river networks. The topi of the next two hapters

is Laplaian growth and di�usion limited aggregation. Of these, Chapter 5 studies

aggregates in wedge geometry, to show the existene of wedge-shaped building bloks

in irular geometry. In Chapter 6 we use the approah of onformal maps to study

the saling properties of DLA lusters. Chapter 7 summarizes the results presented

in this thesis, and �nally in Appendix A we desribe the numerial tehniques to

simulate large o�-lattie DLA lusters.

1.2 Fratals and sale-invariane in surfae growth

In many physial systems there exist a range of lengths suh that the harater-

isti range of the underlying proess lie outside of this range. A system ould be

muh bigger than moleular dimensions, for example. It is natural to expet that

this lak of internal sales will be reeted on the whole evolved system as well. If

this range is large enough, then the desription of the system on this range beomes

meaningful. This desription has to be without harateristi sales also, the system

is sale invariant. Therefore the statistial quantities are also sale invariant; they

are in general power laws, with rossovers marking the ends of the saling range.

Fratals [1℄ are often found in these systems: these are sale invariant objets

whose mass enlosed in a sphere of radius R and entered around a point of the

objet sales with a power of the radius:

M(R) � R

D

(1.1)

where D, the fratal dimension, is typially a frational number (hene the term
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fratal). These objets in general are self-similar: after resaling they are statistially

idential (exept for the hange of rossover sales) to the original.

In ases when the system has a strong orientation, often the proess an be

desribed as the evolution of an interfae, whih is smooth on large sales. Often

these proesses are alled surfae growth [2, 3℄. The interfae is a single valued

funtion (height) of time and the lateral oordinates (the ones perpendiular to

the strong orientation). Sale invariant funtions are in general self-aÆne: they

remain statistially invariant under resaling with a di�erent fator horizontally and

vertially.

If the growth proess is inherently loal, then the time evolution should depend

on loal quantities only: the partial time derivative of the height should only depend

on the height, its derivatives, possibly inluding some probabilisti fator (noise).

This approah, usually alled ontinuum desription, is an important step towards

understanding, beause it is often possible to say something insightful about the

solutions of these partial di�erential equations.

1.3 Moleular beam epitaxy

An important pratial example of surfae growth is moleular beam epitaxy

(MBE). This tehnique is used to grow thin �lms on rystal surfaes, and has prati-

al appliations in the semiondutor industry. Typially a semiondutor or metal

rystal with at surfae is hosen as substrate, put inside ultra-high vauum, and

bombarded with low energy atoms. The proess is referred to homoepitaxial if the

deposited atoms are of the same kind as the ones making up the rystal, and het-

eroepitaxial otherwise.

After the atoms land on the surfae of the rystal, their thermal energy is large
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enough for di�usion, but desorption is usually not signi�ant (the sample is kept at

300 { 800

Æ

C). When the di�using atoms (alled adatoms) meet, they form immobile

strutures alled islands, whih are the ores of the next rystal layer. Additional

adatoms might join the island, or land on top of the islands. New islands may form

on top of island, reating wedding ake like strutures. Or the islands might grow,

oalese, and form the next rystal layer of the substrate.

A large number of materials exhibit the property that the atoms landed on top of

islands are not likely to hop down. This behavior results in an e�etive upward ur-

rent, and is responsible for the instability whih reates large strutures or mounds.

These mounds grow and oalese in time. This oarsening proess is investigated in

more detail in Chapter 2.

In ase of heteroepitaxy, the situation is more omplex. Even if the adatoms

are hemially similar enough to the substrate atoms that they start to form their

own rystal struture on top of the substrate, their size might be di�erent from the

substrate atoms, resulting in an elasti stress. During the evolution the system tries

to minimize the exess energy resulted from this stress. One possibility is to grow

high three-dimensional islands, where only the bottom of these islands is stressed. If

the three-dimensional islands have narrow size distribution (quantum dots) and are

ordered, then this ould have pratial importane for lasers and quantum omputing.

The issues of strained heteroepitaxial systems are disussed in Chapter 3.

1.4 Sale-invariane in geomorphologial proesses

Geomorphologial objets are among the �rst in whih sale invariane was ob-

served [1℄. There are various proesses whih form the surfae of the Earth: tetoni

motion, volani proesses, erosion by ie, water and temperature utuation, earth-
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quakes, sedimentation, mudslides et. Out of these, we restrit our attention only to

erosion by water ow, i.e. rivers.

A river system an be divided into three regions: the prodution zone, the soure

of most of the water the and sediments; the transportation zone, whih is typially

the meandering part of the river; and the deposition zone, where the river ends at a

sea or oean in a delta or estuary [4℄. The prodution zone is the most interesting

of these: this ontains the branhing network alled river basin.

In natural rivers this branhing network has remarkable statistial properties

whih annot be explained by simple onsiderations. In Chapter 4 we investigate

the evolution of this branhing network: how the erosion of streams produes these

omplex patterns.

1.5 Laplaian growth and di�usion-limited aggregation

There exists a wide range of growth proesses, where the rate limiting fator

is the di�usion of some quantity. These proesses an be desribed in terms of

Laplaian growth. A �eld an be de�ned outside of the growing luster, it satis�es

the Laplae equation, and has a �xed value on the boundary. The loal growth rate

of the luster is proportional to the gradient of the �eld at the boundary. This latter

quantity is also alled harmoni measure, referring to the �eld whih satis�es the

harmoni equation.

This piture in eletrostati terms is the following: the luster is a ondutor

arrying unit harge, the Laplaian �eld is the eletrostati potential, and the growth

rate is proportional to the eletrostati �eld or surfae harge density.

Disorderly thin branhing strutures are produed by this proess. The origin of

the rih patterns is the Mullins{Sekerka instability: suppose that the boundary of
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the luster is at with a small perturbation, then during growth the amplitude of

the perturbation is inreasing exponentially; the inrease is faster if the wavelength

of the perturbation is smaller. A small bump will grow into a large �nger, but this is

not stable either: it an have side �ngers of any size, reating rih branhed patterns.

The underlying physial proess an ontain possibly diretion-dependent surfae

tension, whih a�ets the growth proess. The presene of surfae tension energet-

ially forbids large urvatures of the surfae. On the other hand, at zero surfae

tension there are known exat solutions whih produe singularities (usps, where at

one point the urvature is in�nite) during �nite time. Any �nite surfae tension is

regularizing these singularities.

In many ases the growth ours in �nite hunks of material, here the growth

probability is proportional to the harmoni measure. The disrete model of this

proess is the Witten{Sander model or di�usion limited aggregation (DLA)[5℄. Here

the aggregate onsists of uniform partiles, originally only a single seed. A random

walker is released from in�nity, whih stiks to the luster on �rst ontat. Then a

new walker is released.

The shot noise inherent in the disrete proess has a signi�ant e�et on the

growth proess. Although the DLA model does not have expliit surfae tension, the

noise together with the uniform added hunks regularizes the instability.

The Witten{Sander model has attrated a good deal of attention in the sienti�

ommunity. (This is demonstrated by the more than 1850 itations for the original

paper | making it one of the top ited papers in ondensed matter theory.) While

the model has been known for almost two deades, and a large amount of empirial

knowledge has been aumulated, little theoretial understanding has been ahieved

so far.
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In Chapter 5 we study both theoretially and with omputer simulations 60{70

Æ

wide angular regions of DLA lusters, and show that the luster an be onsidered

to be formed of these building bloks.

In a di�erent approah to di�usion limited aggregation, developed only reently,

the two dimensional growth is desribed as a sequene of onformal maps. In Chap-

ter 6 we study the Laurent expansion of the map, and establish a relationship between

the saling properties of the model and the oeÆients of the expansion. For exam-

ple, the dimension of the luster is determined by the linear oeÆient, whih seems

to beome deterministi with inreasing luster size.
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CHAPTER 2

Coarsening of homoepitaxial strutures in 2+1

dimensions

The researh presented in this hapter was done with Professor Leonard M.

Sander; the numerial work was done by me, the analytial work was split between

us. It was published in \Dynamis of rystal surfaes and interfaes", edited by P.

M. Duxbury and T. J. Pene. (Plenum, New York, 1997).

When thin solid �lms are grown by MBE, the presene of Ehrlih{Shwoebel

barrier leads to the formation of mounds [M.D. Johnson et al., Phys. Rev. Lett.

72, 116 (1994)℄. As the �lm grows these mounds grow larger (oarsen). We study

this oarsening in 2+1 dimensions by omparing simulations of an ativated hopping

model with solutions to the ontinuum equations we introdued previously. The

prinipal mode of oarsening is the disappearane of saddle points from the surfae.

In 2+1 dimensions the evolution is haraterized mainly by nonequilibrium terms and

is not driven by apillary fores. We �nd that the mounds oarsen as a power law

in time. In strongly nonequilibrium growth onditions a low value of the oarsening

exponent (n = 1=6) is observed, while in the weakly nonequilibrium ase n = 1=4.

9
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2.1 Introdution

Moleular beam epitaxy is a widely used tehnique for growing strutures on

rystal surfaes. One of the goals is to be able to ontrol the growth proess to

suh extent that one an make the nanostrutures omplex enough for a partiular

purpose. An ambitious example is a quantum omputer [1℄.

In this hapter we investigate the e�et of the growth parameters (near equilib-

rium or far from equilibrium) on the growth proess. In many materials the di�usion

of an adatom on a singular surfae (terrae) is faster than aross a step edge: the

downward di�usion is suppressed by the Ehrlih{Shwoebel barrier [2℄. This bar-

rier gives rise to an instability in the growth proess against mound formation, as

proposed by Villain [3℄, and investigated by Johnson et al. [4℄ These 3-dimensional

mounds oarsen: their lateral size L inreases in time aording to L � t

n

. In this

hapter we fous on the question how n depends on the growth onditions. We

also show that the ontinuum equation proposed by the Mihigan group [4, 5℄ is a

reasonable desription of the proess.

2.2 Monte{Carlo simulation

One of our tools is an ativated hopping Monte-Carlo simulation. We imple-

mented a simple model for growth proesses: the solid-on-solid model on ubi lat-

tie. Although one expets that a model reeting the mirosopi details of the

rystal struture (e.g. f(001)) would better desribe the real situation [6℄, even

this very simple model aptures orretly the phenomenon of oarsening. Also, the

ubi lattie model appears to simulate very well the more ompliated semiondu-

tor growth, where one ube stands for e.g. a 2x4 blok of GaAs. In our model the

atoms land on the surfae at rate F . All atoms on the surfae undergo ativated dif-
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fusion with rate � � exp(�E=kT ), where � = kT=h is the attempt frequeny (k is the

Boltzmann onstant, h is the Plank onstant), and the energy barrier, E, depends

on the loal neighborhood of the di�using atom. We make a further simpli�ation:

E depends linearly on the number of nearest neighbors, n, of the atom at the initial

position (the number of bonds to break), and also on the hange in next-nearest

neighbors, �nn, if it is negative:

�nn =

8

<

:

nn

f

� nn

i

; if nn

f

� nn

i

< 0

0; otherwise.

where nn

f

and nn

i

is the number of next-nearest neighbors in the �nal and initial

state. The �rst fator takes are of island formation and attahment of adatoms to

step-edges, while the seond models the Ehrlih{Shwoebel barrier to some extent.

The entire form of the barrier is

E = E

0

+ n � E

n

��nn � E

nn

(2.1)

where E

0

is the barrier of a at terrae. Details of the model an be found in Johnson

et al. [4℄.

Fig. 2.1 shows surfaes obtained by this simulation. The surfae is symmetri

under the transformation h! �h in ase of high ux and high Ehrlih{Shwoebel

barrier, while for other regions of the parameter spae this symmetry is broken: the

mounds have at tops, and the valleys between them are narrow and deep. We an

trae the proess of oarsening. Initially the surfae onsists of many small mounds,

they an be haraterized by the maxima (tops) and the saddle points between

mounds. We now fous on the oarsening, i.e. how two of these mounds merge. The

mounds grow in time, and they ompete with eah other for the base area. Eventually

one of them beomes large by a utuation. Then the saddle point between the

mounds approahes the smaller maximum and annihilates it (Fig. 2.2): this is the
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Figure 2.1: Snapshots of the time evolution of the surfae obtained by the simula-

tion, the ux of the inoming atoms is F = 1

ML

se

, and the strength of the

Ehrlih{Shwoebel barrier is S = 0:653. In this regime of the parameter

spae the surfae grows symmetrially with respet to the transforma-

tion h! �h. The number of deposited monolayers is shown under the

images.

most important step of the oarsening proess. What is left is one large mound,

whih rearranges itself to be more-or-less symmetri. There an be utuations in

the other diretion: the top of a mound an split and merge again as observed by

�

Smilauer and Vvedenski [7℄.

The oarsening proess (growth of dominant wavelength) takes plae during the

approah to equilibrium as well. We arried out simulations verifying this. We

started the proess with two-dimensional sine wave initial onditions, and with no

inident ux, so that the surfae relaxed towards a plane. After a short transient
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Figure 2.2: Time evolution of the top (�) and the saddle point (Æ) on a ross-setional

view of two evolving mounds. The saddle point annihilates the top of

the small mound, while the maximum of the large mound only utuates.

Both the height and the lateral position are measured in lattie units.
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(during whih the surfae rearranged its pro�le aording to the strength of the

Ehrlih{Shwoebel barrier) the root-mean-square width dereased as w � exp(�st),

where the wavelength-dependene of the exponent, s, is

s = 4D

4

�

2�

L

�

4

(2.2)

showing that the equilibrium oarsening is dominated by di�usion proesses [8℄. That

is, we have �h=�t = �D

4

r

4

h, the Mullins equation. We have veri�ed that this

equation holds for our Monte-Carlo model, and we have measured D

4

.

2.3 Continuum equation

A di�erent way to approah the oarsening proess is to onentrate on the long

wavelength properties and analyze them in the framework of a ontinuum equation.

The height h(~x; t) of the surfae is measured from its mean height. Changes in height

arise from the divergene of the surfae mass urrent:

�h

�t

= �r

~

j : (2.3)

The surfae urrent onsists of a non-equilibrium part driven by the inident ux and

the Ehrlih{Shwoebel barrier, and the equilibrium part driven by apillary fores:

~

j =

FS�

2

rh

1 + (�rh)

2

+D

4

� rr

2

h+D

6

� rr

2

r

2

h+ : : : (2.4)

The parameters are the ux, F , of the inoming atoms; the strength, S, of the

Ehrlih{Shwoebel barrier (S = R � T with R being the probability of reetion

and T the probability of transmission aross a step edge). The length, �, is the

mean distane between nuleation enters on a terrae, and D

4

is the strength of

the equilibrium apillary fores. The last term in the urrent is the next term in the

expansion series onsistent with the symmetry. D

4

orresponds to healing of edges,
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while D

6

may orrespond to the healing of orners. This last term is negligible near

equilibrium ompared to the D

4

term, whih is why the lassi Mullins theory takes

the leading D

4

term only.

To give a physial interpretation of the non-equilibrium part of the urrent [4℄, let

us assume that the Ehrlih{Shwoebel barrier is in�nitely strong (no atoms an jump

down a step), and the up steps are perfet sinks. In this ase for small slopesrh, only

the atoms that land in strips of width � will reah the up steps, the rest will attah

to islands on the terrae, and do not ontribute to the net mass urrent. In this ase

the total urrent is the fration of the inoming ux whih ontributes to the urrent,

multiplied by the mean migration length of the adatoms:

~

j = F�

2

rh. For the large

slope limit, every inoming atom ontributes to the urrent, but the migration length

is only 1=jrhj, yielding j = F=jrhj. The generalization for �nite Ehrlih{Shwoebel

barriers (S < 1) is simply to multiply the urrent by S. A onvenient interpolation

between these expressions for the non-equilibrium urrent is given in Eq. (2.4).

The present form (2.4) of the surfae urrent is odd in h, so a surfae growing from

this urrent will be symmetri under the transformation h! �h. Another feature

of this urrent is that in the absene of urvature it is �nite for nonzero slopes rh.

Other terms in the urrent, whih we did not inlude, ould make the urrent zero [9℄

for a given slope m

0

. This stabilizes the slope of the growing strutures around m

0

,

and explains the phenomena of seleted slope. Although the seleted (or \magi")

slope has been observed in many experiments, it is not neessarily present in every

ase and is not believed to be important in the oarsening proess: oarsening ours

not only in ases where a seleted slope is ahieved, but also in di�erent experiments

where the slope grows inde�nitely.

By integrating Equations (2.3) and (2.4), negleting the D

6

term, with ran-
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Figure 2.3: Typial images of the surfaes obtained by the integration of the ontin-

uum equation. The resaled time is shown below the images.

dom initial onditions, mounds similar to those of the simulation an be obtained

(Fig. 2.3). These mounds also oarsen in time. However, there has not been diret

test of this equation as a desription of multilayer growth. In partiular, Eq. (2.4)

was derived by �tting to Monte-Carlo data in the submonolayer regime. In this hap-

ter we show that ertain aspets of multilayer growth by the Monte-Carlo model are

well represented by Eq. (2.3) and (2.4).

Results of Ref. 5 show that integrating these equations generates oarsening: the

time dependene of the lateral size, r



, of the mounds sales with a power of time,

r



� t

n

, with exponent n = 1=4. This exponent is assoiated with the leading D

4

term. Similarly, Strosio et al [10℄ found n = 1=6 numerially when only the D

6

term

was present. A detailed analytial proof is given by Golubovi [11℄.

2.4 Generalized free energy

In order to quantitatively ompare the simulation with the ontinuum equation,

we introdue a generalized free energy of the surfae, and write the equation of

motion in variational form.

By appropriate resaling of the variables ~x, t and h to

~

X, T andH, the parameters
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in the equation of motion an be saled out, leading to a dimensionless equation.

Considering the present form (2.4) of the urrent, without the D

6

term, the equation

of motion of the surfae an be written in form of a funtional derivative:

�H

�T

= �

ÆF [H℄

ÆH

(2.5)

where

F [H(X; T )℄ =

1

2

Z

�

� log(1 + (r

X

H)

2

) + (r

2

X

H)

2

�

d

2

X (2.6)

whih we all free energy. It is a funtional of the resaled height H. F onsists of

a non-equilibrium and an equilibrium term, like the urrent. This free energy does

not oinide with the onventional free energy of the surfae, but has the similar

property that in our non-equilibrium growth onditions F is the quantity driving

the system, and is a monotonially dereasing funtion of time. It is important to

point out, that ontrary to the previous laims [5℄, in ase of a urrent that produes

asymmetri surfaes, no free energy an be found. (The lowest order term in the free

energy density, whih breaks the H ! �H symmetry but onserves the

~

X ! �

~

X

symmetry and the translation invariane in H and X would be 3rd order in H and

6th order in X, thus an be exluded from our onsideration.)

At this point we are able to ompare the oarsening proess of the Monte-Carlo

simulation with that of the ontinuum equation, (2.5). We resale the surfaes ob-

tained in the simulation to the dimensionless variables H(

~

X; T ), and ompare the

time evolution of the free energy assoiated with the resaled surfae of the simulation

(with di�erent parameter values) with the free energy of the ontinuum equation.

As we expet, the free energy (Fig. 2.4) dereases in time. But it turns out that

the equilibrium part itself inreases, so it annot drive the proess. This is di�erent

from the ase of spinodal deomposition, whih also shows power law oarsening and
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Figure 2.4: The (a) nonequilibrium and the (b) equilibrium part of the free energy.

(The free energy itself is the sum of these two.) The dashed line orre-

sponds to the ontinuum equation, the solid lines are the resaled urves

of the simulation for di�erent parameter values (F; S).



19

whih an be mapped on to this problem in 1+1 dimensions. In that ase minimiza-

tion of the surfae energy drives the proess. Here the surfae energy inreases in

time.

It an be seen from the omparison that the non-equilibrium part (Fig. 2.4a),

whih in most ases dominates the free energy, is onsistent with that of the on-

tinuum equation. But on the other hand, although the equilibrium part (Fig. 2.4b)

more-or-less oinides with the result of the ontinuum equation for some parameter

values of the simulation, for an another domain of the parameter spae it does not.

This ould mean (and later we will argue that it does) that the D

6

term of Eq. (2.4)

is important in those ases. We will give an explanation for this later in this hapter.

2.5 Coarsening

An another way of desribing the oarsening proess is to study the time de-

pendene of the harateristi feature separation r



(the lateral size of the mounds,

de�ned as the �rst zero rossing of the orrelation funtion hh(0)h(~r)i). In most

ases r



sales as a power of time,

r



� t

n

(2.7)

where n is the oarsening exponent. As we mentioned before, for di�usion dominated

growth n = 1=4, and this is the ase for the ontinuum equation, in the absene of

the D

6

term [5, 9℄.

But in the oarsening proess of the Monte-Carlo simulations (Fig. 2.5) the ex-

ponent is n = 1=6 for a domain of the parameter spae (F; S), while for other regions

it is n = 1=4. The region where the value of the oarsening exponent does not equal

to the value of the di�usion dominated ase is the high ux, high Ehrlih{Shwoebel

barrier orner of the parameter spae. In this regime the growth onditions are
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Figure 2.5: The value of the oarsening exponent n of the Monte-Carlo surfaes and

two experimental surfaes as a funtion of the growth parameters. The

points (Æ) where n = 1=6 oinide with those simulations where the

equilibrium part of the free energy did not math that of the ontinuum

equation. The error bars show the parameter range/unertainty of an

Fe/Fe(100) experiment of Ref. [10℄ (Æ: measured n = 0:16 � 0:04) and

Ref. [12℄ (�: measured n = 0:23 � 0:02). The estimate of the Ehrlih{

Shwoebel barrier is taken from Ref. [13℄ (thin line) and Ref. [14℄ (thik

line).



21

strongly out of equilibrium: the high Ehrlih{Shwoebel barrier restrits the free dif-

fusion of the adatoms, and the high ux also keeps the system far from equilibrium,

the adatoms do not have enough time to �nd a preferred equilibrium position. This

oinides with the region where the equilibrium free energy did not math the equi-

librium free energy of the ontinuum equation. In this far from equilibrium regime

the D

6

term of the urrent ould be signi�ant, D

6

an depend on the ux and

the Ehrlih{Shwoebel barrier. This term an dominate the oarsening, and give

n = 1=6 if the D

4

term of Eq. (2.4) is missing, as �rst suggested by Strosio et al.

[10℄. The presene of the D

6

term, whih we negleted in our ontinuum equation,

is the explanation for the fat, that the equilibrium part of the free energy of the far

from equilibrium simulations deviates from that of the ontinuum equation.

Experimental results support this parameter-spae dependene of the oarsening

exponent as well. In ase of Fe/Fe(100) homoepitaxial growth (where there are

estimates for the value of the Ehrlih{Shwoebel barrier), at room temperature n =

1=6 has been measured [10℄ (n = 0:16� 0:02), while at elevated temperature [12℄ the

exponent is 1=4 (n = 0:23� 0:02). These results are in exellent agreement with our

preditions (Fig. 2.5).

In the near-equilibrium regime, n = 1=4 and both parts of the free energy (thus

the free energy itself also) oinide with that of the ontinuum equation. In these

ases Equations (2.3), (2.4) and (2.5) give a good desription of the evolution of

the surfae, the orret roughening behavior, and the orret funtional form of the

free energy. It should be noted that in order to �t the free energy of the ontinuum

equation to that of the simulations, we used only one free �tting parameter (the time

o�set of the ontinuum equation, sine its random initial onditions are arbitrary), all

other parameters were either input parameters of the Monte-Carlo model or measured
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diretly in the simulation, as in the ase of D

4

, above.

2.6 Summary

We have investigated the oarsening proess in homoepitaxial systems using

Monte-Carlo simulations and ontinuum equations. From the geometri aspets

of oarsening, the senario for merging two mounds is the following: after initial

ompetition between the mounds, the saddle point between them annihilates with

the maximum of the smaller mound, then the one big mound rearranges itself to be

symmetri.

In ase of relaxation to equilibrium, the proess is di�usion-dominated and the

presene of theD

4

term is veri�ed. For non-equilibrium onditions we have two ases:

For weakly out of equilibrium (low ux, low Ehrlih{Shwoebel barrier) the D

4

term

is still present and dominates the long-time oarsening, haraterized by n = 1=4.

However, for strongly out of equilibrium ases (high ux, high Ehrlih{Shwoebel

barrier) the D

4

term seems to be dominated by the D

6

term, ausing oarsening

with exponent n = 1=6.
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CHAPTER 3

Strain in heteroepitaxial growth

In this hapter we use atomisti simulations with an empirial potential (EAM) to

study the elasti e�ets of heteroepitaxial islands on adatom di�usion. We measure

the di�usion barrier on pure stressed substrate and near a mis�t island, as well as

the detahment barrier from islands of di�erent size.

The numerial work presented in this hapter was done by me, and the analytial

work was shared with Leonard M. Sander and Bradford G. Orr.

24
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3.1 Introdution

Moleular beam epitaxy is used extensively to grow thin �lms on rystal sur-

faes. Although homoepitaxial systems give rise to interesting questions, as seen in

Chapter 2, the ase of heteroepitaxy is muh more omplex.

One of the main onsequenes of the fat that the substrate and the adlayers are

made of di�erent atoms is the stress generated in the adlayers. Suppose that the

lattie onstant of the rystal made of adatoms is larger that the substrate lattie

onstant (the adatoms are \larger" than the substrate atoms). Then if the adlayers

are pseudomorphi (follow the periodi order of the substrate without disloations),

they have to be ompressed. The size di�erene is not neessarily the only soure of

stress: the ompressive stress of few monolayers of Ag on Pt(111) is measured to be

�ve times larger than expeted from the size di�erene [1℄. The reason is presumably

harge transfer from the adlayers to the substrate due to their hemial di�erene.

In lose to equilibrium onditions the growth is layer-by-layer (also alled Frank{

van der Merwe [2℄), if this is the energetially most favorable on�guration. However,

sine the elasti energy of the stressed layer is proportional to its height, the exess

elasti energy (over the on�guration of relaxed adlayers) will overome the barrier

of reating a disloation network at the bottom of the adlayers for relaxation. Thus

pseudomorphi growth annot be stable for abritrarily large thikness.

Relaxed layer-by-layer growth is not the only possibility to overome the exess

elasti energy. If the adatoms form tall, 3-dimensional islands, the lattie onstant

in the majority of an island an be lose to its bulk value, and only the bottom of

the island is stressed. In ase of Volmer{Weber growth [3℄, the 3-dimensional islands

nuleate right on the substrate, while in the Stranski{Krastanow senario [4℄ �rst few
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layers grow epitaxially (wetting layers), ontinued by the growth of 3-dimensional

islands on top of them.

The typial growth onditions in MBE are not neessarily lose to equilibrium.

In this ase the dynamial e�ets greatly modify the above thermodynami onsider-

ations. If the dynamial e�ets dominate the proess, then the nuleation dynamis

on di�erent layers and the interlayer transport beome important [5℄.

The 3-dimensional islands are important for pratial appliations, as they are a

good andidate for lateral eletron on�nement. Certain semiondutor systems (e.g.

InAs on GaAs) develop 3-dimensional island struture, where the size distribution of

the islands is narrow, free of disloations, and their spatial distribution is relatively

ordered [6℄. Sine this ordering takes plae during epitaxy without fabriation (e.g.

high resolution lithography), they are often alled self-organized quantum dots. The

self-organization an be enhaned by alternately growing GaAs and the strained

InAs: this results in a 3-dimensional struture where the suessive layers of InAs

are inreasingly more ordered [7℄.

However, the uniformity of urrent InAs quantum dots is insuÆient for laser

appliations. It has been suggested reently that the size distribution of the quantum

dots is similar to the distribution of the 2-dimensional islands, it follows the same

renormalized urve for a range of island densities, and therefore strain does not seem

to be relevant fator determining the size distribution [8℄.

An atomi level simulation of strained epitaxial systems has been done by Orr,

Kessler, Snyder and Sander [9℄. In this pioneering work the dynami Monte{Carlo

method has been applied in one dimension, whih inorporated linear elastiity. The

surfae partiles were able to hop to neighboring sites, with the hopping probability

depending upon both the bond and strain energy. The lattie was loally relaxed
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after eah motion, with global relaxation after �xed number of timesteps. The elasti

lattie was modelled with harmoni fores between nearest and next-nearest neigh-

bors.

It has been observed that tall islands form, and that their lateral size is smaller

with inreasing mis�t. The kinetis determine the morphology: the thermodynami

e�ets an reah only up to the di�usion length: the typial distane a walker di�uses

during the deposition of a monolayer. On larger sales the surfae is smooth | as

rough as it would be without strain.

Shroeder and Wolf [10℄ studied the e�et of strain on surfae di�usion. They

observed that the ativation barrier is with good approximation a linear funtion of

strain over a wide range: ompressive strain enhanes di�usion, while tensile strain

hinders it. The strain hanged mostly the energy of the saddle point, the stable sites

were not a�eted onsiderably. The strain �eld of a oherent two-dimensional island

is not uniform (the edges are more relaxed than the enter), therefore this is reeted

on the di�usion of adatoms on top of the island. In this work simple ubi, f and

b lattie has been used with Lennard{Jones potential.

It is tempting to write down a mean-�eld theory using self-onsistent rate equa-

tions. Refs. [11, 12℄ model the proess with the following dynamial variables: the

density of adatoms, the density of \typial size" 2-dimensional (2d) islands, and the

density of \typial size" 3-dimensional (3d) islands. The attahment, detahment,

di�usion, and 2d/3d onversion rates (see later) are given in terms of 6 parame-

ters: the ritial island size, the surfae di�usion barrier, the Ehrlih{Shwoebel

barrier[13℄, the binding energy of a ritial island, the attahment barrier (same for

2d and 3d islands), and one more parameter E

0

with dimensions of energy. The
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elasti e�ets are taken into aount in the detahment barrier from a 2d island:

E

detah

= E

0

log r

r

(3.1)

(r is the island radius), and also in the assumption that as soon as an island nuleates

in top of a 2d island, it immediately transforms to 3d island. The parameters are

seleted to math an InP/GaAs(001) metal-organi vapor phase epitaxy proess, and

an adequate desription is ahieved.

In the researh summarized in this hapter we study the e�ets of mis�t strain on

the energy landsape observed by the di�using adatoms, and also how that a�ets

the growth proess.

3.2 Simulational methods

In our simulations we use a substrate of slab geometry, whih is periodi in the

lateral diretions, has open surfae at the top, and bounded by a frozen lattie from

below. The atoms of the substrate and the adlayers or adatoms are allowed to relax

aording to the potential desribed below, but we did not introdue disloations to

the substrate. The relaxation is ahieved by using onjugate gradient methods.

It is neessary to have the relaxable substrate as deep as wide, beause the elasti

e�ets penetrate roughly isotropially[10℄. If the lattie was shallower, then that

would ut o� the deformation �eld suh a way that the e�etive range of the elasti

deformation in the lateral diretion would be limited to the depth, losing possibly

important long range e�ets. This restrition has severe onsequenes on the lattie

sizes that are omputationally tratable.

For interatomi potential, we used the embedded atom method (EAM). It belongs
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to the lass of pair funtionals: the form of the potential is

E

tot

=

1

2

X

i

X

j(6=i)

�

(ij)

(R

ij

) +

X

i

F

(i)

(�

host

i

) (3.2)

The upper index in parenthesis denotes dependene only through the type of the

atom. �

(ij)

(R) is the pair-potential part, F

(i)

(�

host

) is the embedding funtion, its

argument is the \eletron density at the host atom", given by

�

host

i

=

X

j(6=i)

�

j

(R

ij

) (3.3)

where �

(ij)

, F

(i)

and �

j

are given funtions.

The rationale of this type of potential is the following[15℄. For the transition

metals (for whih the potential is to be used) there is a relatively well de�ned sepa-

ration of positively harged ions and nonloal ondution eletrons. The interation

of the ions is desribed by �

(ij)

. The ions are embedded into the eletron density

ontributed by their neighbors (the name embedded atom omes from this), and their

interation with the eletron �eld is given in F

(i)

.

To write down the pair repulsion term, the ions are onsidered as harged spheres

of e�etive harge Z

(i)

(R):

�

(ij)

(R) =

Z

(i)

(R)Z

(j)

(R)

R

(3.4)

and the e�etive harge is given in parametri form:

Z(R) = Z

0

(1 + �R

�

)e

��R

: (3.5)

Z

0

is the number of outer d and s eletrons; �, � and � (the last one is integer)

are to be �tted. The eletron ontribution �

j

(R) is estimated from the Hartree-Fok

wavefuntions of the outer d and s eletrons. Finally the embedding funtion F

(i)

is
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de�ned suh that the equation of state of the isotropially ompressed or expanded

metals follow the universal funtion (a is lattie onstant):

E(a) = �E

sub

(1 + a

�

)e

�a

�

; (3.6)

where a

�

is a measure from the deviation from equilibrium lattie onstant:

a

�

=

a� a

0

a

0

�

9B


E

sub

�

1=2

: (3.7)

a

0

(the equilibrium lattie onstant), B (bulk modulus), E

sub

(sublimation energy),

and 
 (equilibrium volume per atom) are supplied diretly by experimental values,

the eletron orbitals are taken from Roothaan{Hartree{Fok tables of ground state

atoms, and the rest of the parameters are �tted aording to other experimental

values (shear moduli, vaany-formation energy, mixing enthalpies between di�erent

metals). The parameters used in our simulation are given in Ref. [15℄.

This pseudopotential provides reasonable values for a row of bulk properties.

There is some onern that it is similarly appropriate for surfae simulations. In

EAM, the atoms are onsidered spherial (whih is good approximation for bulk

transition metal atoms). Surfae atoms, however, are in an anisotropi environment.

The universal equation of state at very muh expanded state is not neessarily good

desription for the low oordinated surfae atoms sitting in low embedding eletron

density. Nevertheless, EAM is still more realisti approah than pair potentials, and

omputationally tratable for the neessary system sizes as opposed to �rst priniple

alulations.

3.3 Results

First we measured the e�et of strain on the di�usion barrier. The substrate

lattie was ompressed in the horizontal diretions by a given fator, and was allowed
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to relax vertially. Then an adatom was plaed on top, and the whole system was

allowed to fully relax. Fig. 3.1 shows the energy of the system when a Ag adatom

was plaed on a stable, metastable and bridge point of a stressed Ag(111) substrate.

The di�usion barrier (the di�erene of the bridge and the stable/metastable energy)

is also plotted.

Around zero stress the barrier was lose to be a linear funtion of the lattie

onstant, with inreasing barrier for tensile strain. This is the expeted behavior:

under ompressive strain the energy landsape beomes more uniform, while under

tensile strain the adatom feels more the separate attrating potential of the surfae

atoms. For large tensile strain this trend breaks down: the surfae beomes softer,

bringing down bridge energies, resulting in dereased di�usion barrier.

The same proedure has been applied to the Ag/Ni(111) heterodi�usion system,

the barriers and energies are depited on Fig. 3.2. While the behavior of the di�usion

barrier is qualitatively the same as in the Ag self-di�usion ase, the dependene of

energies on strain is di�erent. Around zero stress, here the stable sites are una�eted,

and the bridge energy is hanging. From this we an draw the onlusion that

whether the energy of the stable sites or the bridge point hanges under stress is

system dependent, no general statements an be made.

To test the reliability of our proedure, we plot on Fig. 3.1a the di�usion barrier

measured by the e�etive medium theory also (the values are from Ref. [16℄). While

the EAM values are onsistently lower by about 10 meV, the general trend of the

urves is very similar.

Our primary goal is to study the elasti e�ets of an island on the energy landsape

observed by the di�using adatoms. To persue this we deposited a large hetero-island

and an adatom on the substrate, and omputed the energy of the system for di�erent
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Figure 3.1: Di�usion barrier of Ag adatom on stressed Ag(111) substrate. a) Com-

parison of the di�usion barrier obtained by EAM potential and e�etive

medium theory (from Ref. [16℄). The barrier is plotted against the ratio

of the stressed and equilibrium lattie onstant. b) The e�et of strain

on the bridge energy and the stable and metastable energy of the same

system. Note that around zero stress, the bridge energy is relatively

onstant, while the stable/metastable energy is hanging.
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Figure 3.2: Di�usion barrier of Ag adatom on stressed Ni(111) substrate. a) di�usion

barrier and b) bridge and stable energies as funtion of the ratio of the

stressed and equilibrium lattie onstant. This ase the stable energy is

onstant near equilibrium, and the bridge energy is hanging.
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positions of the adatom, the on�guration is shown on Fig. 3.3.

On Fig. 3.4 we plot the di�usion barriers of a Ag adatom on top of Ni(111) sub-

strate, as a funtion of the distane from a Ag island of radius 4 atoms. The mis�t

between Ag and Ni is 16%, the Ag island is ompressed. We had to selet metals of

this large mis�t in order to see e�ets of the mis�t on the system sizes omputation-

ally available | 32

3

in this alulation. There are two di�erent barriers: one seen

by an adatom di�using away from the island, and a di�erent one for approahing

it. The osillation is due to the nature of the lattie: on top of an f(111) lattie

an adatom an be in the f position (stable) or hp position (metastable). The

di�usion barrier is measured between the bridge point and the stable or metastable

site.

Aording to the results, near the island it is easier to di�use away from a stable

site, and easier to di�use inward from a metastable site. The island does not have

a strong attrative or repulsive long-range e�et on the adatom. However if the

adatom is very lose, it an only di�use inwards: it is aptured by the island.

The small island of the previous result was pseudomorphi to the substrate. For

larger islands this is not the ase. Fig. 3.5 shows the di�usion barriers near an island

of radius 7 atoms, whih is already not pseudomorphi, as an be seen on Fig. 3.3.

The distortion of the energy landsape is muh larger in this ase, and the attration

of the island an be felt at larger distanes. The e�et of the island is not only attra-

tion (the outward barriers larger than the inward ones) but also enhaning di�usion

near the island: the di�usion barriers in both diretion are dereased. Probably this

is due to the fat that the substrate near the ompressed island is also ompressed.

To hek that how muh of this e�et is due to the presene of the ompressed

hetero-island, we repeated the previous alulation with homoepitaxial island: the
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Figure 3.3: The on�guration to measure the e�et of an island on the energy land-

sape. White irles denote substrate atoms, blak ones are the hetero

atoms. The hexagonal island is of radius 7 on this �gure, the blak

atoms on the top right orner are part of the island beause of the peri-

odi boundary onditions. The adatom is moved in the diretion of the

arrow.
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Figure 3.4: Di�usion barrier of Ag on Ni(111) near a small Ag island (radius is 4

atoms). The island is pseudomorphi. The bottom �gure is magni�ation

of the top �gure around the equilibrium barriers.
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Figure 3.5: Di�usion barrier of Ag on Ni(111) near a large Ag island (radius is 7

atoms as in Fig. 3.3). The island is not pseudomorphi. The sale of the

plots is the same as on the previous �gure.
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large Ag island has been replaed with same size Ni island. The obtained barriers

(Fig. 3.6) show even smaller e�et than the ase of the small hetero-island. On

a onsiderable range the energy landsape is deformed: the outward and inward

diretions are not equivalent (as in a sawtooth potential) but there is no global

attration or repulsion.

The detahment barrier from a strained island has also been measured. Fig. 3.7

shows the bonding energy as a funtion of island size, it is the same as detahment

barrier up to its sign. The trend is dereasing barrier for larger islands.

It has to be noted that the bonding energy of the island of radius 5 is very di�erent

ompared to the nearby sizes. The explanation is the following. The bonding energy

is de�ned as the energy of the island with an adjaent adatom, the zero point is

when the adatom is in�nitely far away. The island of this size is at the borderline

of pseudomorphi and not pseudomorphi islands. When we measured the energy of

the island in itself, the relaxation onverged to a pseudomorphi state, see Fig. 3.8.

But when the adatom was added, this was enough perturbation that the system

onverged to a not pseudomorphi state (Fig. 3.9). Thus the addition of the adatom

triggered a muh lower energy state, hene the large negative bonding energy. It is

possible that the bare island also has a lower energy non-pseudomorphi state, but

we did not do a detailed searh.

We also tried to obtain an energy landsape on top of an island. This was quite

diÆult, beause the island atoms are very soft, deform very muh in the presene

of an adatom on top, and there is no well de�ned stable, metastable and bridge site.

Fig. 3.10 depits a ase when a the adatom is in a deformed four-fold hollow site.
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Figure 3.6: Di�usion barrier of Ag on Ni(111) near a large Ni island (radius is 7

atoms). Same sale as previous �gure.
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Figure 3.7: Bonding energy to strained Ag islands as a funtion of island radius. The

ase of radius=5 is explained in the text.
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Figure 3.8: Relaxed island of radius 5. The \pseudomorphi atoms" are grey. (An

atom is onsidered pseudomorphi if it is loser to the stable site extrap-

olated from the lattie than to other stable or metastable sites.) The

majority of the island is pseudomorphi, only the edges are pushed out.

Note the deformed edges.
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Figure 3.9: Relaxed island of radius 5 with adjaent adatom | ompare with pre-

vious �gure. The \pseudomorphi atoms" are grey. The perturbation

of the adatom was enough that the nearby part of the island is pseudo-

morphi only. The other parts are also relaxed, with smooth disloation

network onneting the relaxed parts.
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Figure 3.10: Unusual deformations like this four-fold hollow site our on top of an

island.
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3.4 Summary

In this hapter we studied the elasti e�ets of heteroepitaxial islands on di�u-

sion using atomisti simulations with EAM potential. Compressive strain enhanes

di�usion, small tensile strain hinders it, but large tensile strain also tend to enhane

it. Whether the energy of the stable site hanges or the bridge energy, depends on

the system.

The energy landsape near a ompressed island is deformed: the island attrats

the adatom, and the di�usion is inreased near the island. Even homoepitaxial

island deforms the energy landsape, but the hange is muh smaller, and only the

symmetry of the potential is broken.

The detahment barrier from a ompressed island dereases with larger island

size. The di�usion barriers on top of an island is hard to measure, beause the island

is soft and distorted near an adatom, there is no well de�ned di�usion path.
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CHAPTER 4

Saling and river networks: A Landau theory for

erosion

The researh presented in this hapter was done with Professor Leonard M.

Sander; the numerial work was done by me, and the analytial work by Profes-

sor Leonard Sander. It was published in Phys. Rev. E 56, R5 (1997).

We propose a oarse-grained theory for the formation of a river network in the

form of a Langevin equation for the erosion of the landsape oupled to a onservation

law for the surfae water ow. We laim that this is the universal form for the large-

sale behavior. We show by simulations of a disrete model whih represents the

same dynamis that the slope-area law, the basin size distribution law, and Horton's

laws agree with real rivers. We disuss the relationship to optimal hannel networks

and to self-organized ritiality.
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Natural river networks have attrated a good deal of attention in the physis

and geophysis ommunities, and a large number of models have appeared whih

attempt to give an explanation for the remarkable statistial properties of these

systems [1, 2, 3, 4℄. The spirit of muh of this work is to try to abstrat from the

details of the geologial proesses a simple desription whih will aount for the

large-sale, oarse-grained properties of the network. In this hapter we present a

new model of this type. Our model is similar to that of Inaoka and Takayasu [2℄ and

of Sinlair and Ball [3℄ but also has signi�ant di�erenes. Our theory is intended to

serve as a uni�ed model of erosion and is based on a ontinuum formulation whih

we believe to apture the important features that survive on oarse-graining. If we

are orret, muh of the previous work will have the same large-sale properties as

the work we present here.

4.1 Statistial properties of river networks

The remarkable statistial properties of river basins have been known for some

time [5, 6℄. We will fous on a few of the laws whih we onsider to be entral, and

whih we have veri�ed for the model to be presented. The most important of these

is the slope{area law: whih was derived from �eld observations [7℄: the slope of the

river bed s sales with a power of the basin area Q:

s � Q

��

(4.1)

where the value of the exponent � � 0:5 has been arefully measured [7℄. The

distribution of the drainage area also obeys power law: P � Q

��

where P is the

fration of the landsape for whih the drainage area is larger than a given value Q.

The value of the exponent is � � 0:43 [4, 8℄.
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The best known of the statistial properties are Horton's laws [9℄ whih are re-

lations between the number and length of di�erent parts of the network. They say,

in e�et, that the streams form a random branhing fratal. Consider the Strahler

sheme for ordering the streams (i.e., up ends of the streams are order 1; when two

or more streams of same order join, the order inreases by one; when streams of

di�erent order join, the higher stream order prevails.) Let N

!

denote the number

of streams of order !, and L

!

their averaged length. Horton's laws state that the

branhing ratio R

B

= N

!

=N

!+1

and the length ratio R

L

= L

!+1

=L

!

are independent

of !. The fratal dimension [10℄ of the network is given by d



� log(R

B

)= log(R

L

),

where d



is the fratal dimension of the individual streams [11℄. For many networks

the values R

B

� 4; R

L

� 2 are found [9℄ along with d



� 1:1 | 1:2 [11, 12℄. Our

model will turn out to obey all these laws.

4.2 The model

We start with the observation that landsapes seem to have sale invariane

[13℄: they are lose to being self-aÆne fratals. This means that if we onsider a

topographi map and resale the oordinates, r on the map so that r 7! br, and

the height di�erenes by �h 7! b

�

�h, where � < 1 we get a statistially idential

landsape. Sine erosion by rivers are among the proesses that form landsapes,

the sale invariant statistial properties of mature river networks should have a lose

onnetion with the sale invariane of the landsape.

Now let us fous on the erosion proess, and make some simplifying assumptions

(whih ould be easily modi�ed): we assume that the only soure of water is from

a uniform rainfall and neglet underground ows. The land is geologially uniform

and initially strutureless. We also assume that the material washed away by the
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river is arried entirely to the sea, and is not redeposited. This is the limit of slow

erosion and fast ows.

To formulate the oarse-grained erosion law we use an argument whih is standard

in the theory of random rough surfaes [14℄ and whih, in turn, is based on the lassi

work of Landau and Ginsburg [15℄. We note �rst that the absolute height of the

landsape should play no role in the loal erosion. Thus we write:

�h=�t = F (rh;r

2

h; jrhj

2

; :::) + �(r; t) (4.2)

where �(r; t) is a noise term whih aounts for small sale random proesses.

Further, we argue that the funtional, F , is analyti in the gradients: it is the

result of averaging over loal utuating proesses

1

. Now we are interested in large-

sale statistial properties. When we resale a self-aÆne surfae the gradients de-

rease. Thus we should be able to expand F in a power series:

F = A +B � rh + Cjrhj

2

+Dr

2

h+ ::: (4.3)

We an interpret these terms. The �rst is a uniform hange in height whih might

orrespond to geologial uplift. For our ase we an set A = 0. The seond term

involves a vetor, B, whih introdues a preferred global diretion of water ow.

Sine loal ows have no preferred diretion (exept down) we must set B = 0. The

third term orresponds to erosion proportional to s

2

, the squared slope. This sort

of law has been onsidered in the literature [16℄ along with others. It has a speial

signi�ane sine it is the lowest order term, and thus the dominant one when we

resale. The last one whih we keep an be thought of sedimentation and smoothing:

1

This is the weakest part of our argument. For near-equilibrium dynamis F is related to the

Landau free energy and is neessarily analyti. For our ase the rigorous justi�ation of the method

is less evident. We do get interesting results, as we will see.
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it rounds hilltops and �lls valleys [17℄. The equation for the landform is:

�h=�t = Cjrhj

2

+Dr

2

h+ :::+ �(r; t): (4.4)

This is the KPZ equation [18℄ whih has been extensively studied. There has been

a previous appliation of this equation to river networks [19℄. In this form it is

lear that the equation an generate self-aÆne landsapes. The higher order terms

represented by the dots are irrelevant in the sense that they disappear upon resaling.

The other ingredient in our theory is the water. We de�ne q as the ux of water

per unit width of landsape. Our assumptions (uniform rainfall and no ground water)

imply that q / Q, where Q is the basin area. The vetor q satis�es the following:

r � q = R (4.5)

where R is the rainfall/unit area. Further, water runs downhill. Thus:

^
q � q=q / �rh: (4.6)

Finally, we insist that there be no erosion in the absene of water. That means

that the oeÆient, C of the erosion term must be a funtion of q, that vanishes as

q ! 0. There is no partiular reason why C should be analyti, so we propose on

the basis of simpliity, an erosion rate linear in the ow: C = �q. Putting this all

together we get:

�h=�t = �qjrhj

2

+Dr

2

h+ �(r; t): (4.7)

Equations (4.5, 4.6, 4.7) onstitute our Landau theory.

Formulations similar to this one have been proposed before. A theory of this type

was given by Smith and Bretherton [20℄ some time ago, and disussed by Tarboton

et al. [6℄ in the ontext of stream initiation. Our equations di�er from theirs in
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that they onserve sediment so that the right-hand side of Eq. (4.7) is of the form

�r � [
^
qq

m

s

n

℄. Our Eq. (4.7) orresponds (up to an irrelevant term) to m = n = 2.

The reent work of Sinlair and Ball [3℄ proposes a set of equations like ours with a

term of the form q

a

s

b

of whih our equation is a speial ase. (As we will see, our

solution to these equations is quite di�erent from that of Ref. [3℄).

Beause the landform generated by Eq. (4.7) is oupled to the water ow (whih

hanges with the landsape) the solutions to the oupled set are quite unlike those

of the ordinary KPZ equation. With suitable boundary onditions, the landsape

will approah a dynami steady state where the river network and the landform do

not hange. This steady state is a feature of many of the models whih have been

proposed. It orresponds to the simple statement that large rivers are long-lived

2

.

To understand the steady state we use the approah of Smith and Bretherton

[20℄ who point out that an obvious kind of steady state is one in whih the erosion

is uniform everywhere. If we neglet smoothing and noise (as we will do from this

point on), we an write:

�h=�t = Const: = �qjrhj

2

(4.8)

whih amounts to having s / 1=q

1=2

, that is, exatly the slope-area law

3

of Eq.

(4.1). If this state is attained it will have the observed slope-area law in a natural

way, and is ertainly stationary

4

. It remains to show that featureless landsapes

tend towards this state, and that it is stable. To investigate this question we turn to

2

We are not onsidering the meandering instability whih auses large rivers to hange ourse.

3

Sine only the ratio of the exponents of q and jrhj is signi�ant here, other ombinations like

q

2

jrhj

4

would yield the same slope-are law. The hoie of the exponents in Eq. (4.7) is motivated

by �nding the lowest order permitted term that produes the right slope-area relation.

4

In ontrast, Sinlair and Ball onsider another kind of state in whih the height at eah point

dereases as a power law. This may be appropriate for the late stages of erosion (the formation of

a penneplain) where the boundary onditions dominate the behavior throughout the river basin.

We give a more loal approah. The resulting slope-area law is di�erent in the two ases.
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numerial solutions of a disrete model whih is an approximate realization of our

set of equations.

4.3 Numerial simulations

Our disrete model is very similar to that of Refs. [2, 3℄ (though our boundary

onditions are not). We onsider a triangular lattie of mesh points whih represents

our landsape. Every point has two variables: the height h and the ow q. The

water ows on the bonds of the lattie, and every node has one outowing bond, the

one whih is the steepest. At every time step (doing parallel updates) the drainage

area is alulated from the landsape, and the height is dereased aording to the

erosion rule: �h = �jrhj

2

� q ��t. The gradient is measured on the outowing edge.

If there are no lakes in the initial height distribution (no nodes with all neighbors

higher then itself), then using suÆiently small �t, no lakes are reated. Thus we

were able to ignore the speial treatment of lakes, whih are generally present only

in the initial stages of the erosion proess, and do not a�et the stationary state.

Initially the landsape is a hillside with a little noise: h(x; y; t= 0) = s

0

� (y +

dy � rnd(x; y)), where y is the North{South oordinate, s

0

is the initial slope of the

hillside, rnd() is uniform random number from [0; 1℄, and dy is the lattie onstant.

These initial onditions ensure the absene of lakes. The boundary onditions are

periodi in the East{West diretion, in�nite wall on the North side (this is the upper

end of the hillside), and outowing on the South side. The slope of the outowing

edges on the outowing side are taken to be �xed. With these boundary onditions

the stationary state is suh that the whole landsape erodes with the same rate

everywhere. We an think of this as representing a plateau whih has been upthrust

and whih starts to erode. This boundary ondition is in ontrast with �xed height
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Figure 4.1: A typial stationary river network on a 256 x 256 triangular lattie. For

better visualization, the stream is drawn with line width proportional to

the square root of the disharge. Only streams with disharge q � 10 are

displayed.

at the outowing edge used by other authors [2, 3℄: in that ase the stationary

state ours when nearly all of the material has been washed away and a di�erent

slope-area law holds [3℄.

In our simulations we �nd that the initial stages of river formation orresponds

to rivers valleys that start at the bottom edge and elongate, ompete, and eventually

reah a stationary state with one large river. Fig. 4.1 depits a typial stationary

river network. Taking the lattie onstant to be unit length, the slopes at the

outowing edge also one, and measuring the disharge as the number of the nodes

in the basin area, the rivers reah the stationary state at around unit time. The

orresponding landsape is shown on Fig. 4.2.

The following statistial results were obtained by averaging 20 independent sim-

ulations of size 256 x 256. As expeted, the slope{area law (Fig. 4.3) holds with
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Figure 4.2: The landsape reated by the river of Fig. 4.1. The graysale is propor-

tional to height, with white orresponding to high.

exponent 1=2 � 10

�6

. The great auray is understandable if we aept that the

slope{area law is an attrative �xed point of the dynamis: if any node does not

satisfy the law, it will erode faster or slower than its neighbors towards a height

whih satis�es the law. The umulative distribution of the basin area is depited on

Fig. 4.4. The value of the exponent is � = 0:45� 0:02. Horton's laws are shown on

Fig. 4.5, the branhing ratio is R

B

= 4:0 � 0:2, the length ratio is R

L

= 2:3 � 0:1.

The dimension of the individual streams d



is measured [12℄ from the saling of the

average river length with the system size: hl

i

i � L

d



(where l

i

is the distane of site

i from the root on the network). Using L = 64; 128 and 256, we obtained d



= 1:05,

giving network fratal dimension 1:85 � 0:15. This value of the fratal dimension

is somewhat lower than the expeted 2 for spae �lling networks. The probable

explanation is the low value of d



: in our hillside initial onditions the rivers are

\strethed" in North{South diretion, making them more linear (d



loser to 1).
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Figure 4.3: The slope{area law obtained by the simulation. The exponent is � =

1=2 � 10

�6

. The great auray is the onsequene of the attrative

nature of the �xed point of the dynamis.
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Figure 4.4: The umulative basin area distribution P (Q) (the fration of the land-

sape for whih the drainage area is larger than a given Q). The value

of the exponent, � = 0:45� 0:02 agrees with Ref. [4℄.
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Figure 4.5: Horton's laws for the branhing ratio (Æ): R

B

= 4:0�0:2, and the length

ratio (�): R

L

= 2:3� 0:1. With stream dimension d



= 1:05, the fratal

dimension of the network is D = d



� log(R

B

)= log(R

L

) = 1:85 � 0:15,

somewhat lower than the expeted spae �lling D = 2.

There is another approah [4, 21℄ to the problem of river networks whih appears

quite di�erent from ours, namely the idea that rivers are optimal hannel networks

(OCN's): onneted branhing patterns whih minimize a funtional that represents

dissipation. It is well known that for systems far from equilibrium no funtional

exists in general whih gives the dynamis in the usual sense that �h=�t = ÆF=Æh. If

there were suh a funtional we ould understand OCN's by noting that �h=�t = 0,

the stationary state, would our if F is at a minimum. However, our equations are

not of this form.

The solution to this quandary was given by Sinlair and Ball [3℄ who point out

that a funtional an exist whih gives the stationary state, but not the omplete

dynamis. It is easy to see that the height funtion, h, and ow q whih minimize:

F [h;q℄ =

Z

n

h � (r � q� R) + q

1=2

o

d

2

x: (4.9)

obey both Eq. (4.5) and Eq. (4.1). However this variational priniple does not
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produe the dynamis (Eq. (4.7)). There is no free energy whih would produe the

dynamis of the initial stages of the erosion.

In the erosion proess there are sudden large-sale events whih have some simi-

larity with the avalanhes of self-organized ritial (SOC) systems [22℄. In fat, there

is a formulation of SOC dynamis [23℄ whih resembles ours in that it involves a

Langevin-like equation whose parameters are a dynamial variable (f. C = �q).

However, our theory does not represent SOC proesses, though there are similarities.

The events in our system whih are most like avalanhes are river basin apture: when

part of the basin area gets onneted to another river. These hange a marosopi

part of the ow pattern and are fast and nonloal like avalanhes, and they are essen-

tial during the evolution of the river network. But they ompletely disappear from

the stationary state, and are not dominant for the formation of the large-sale stru-

tures. In SOC the avalanhes are the only means to transmit information between

the di�erent parts of the system, and dominate any large-sale struture. In our ase

it is the river network itself, while eroding slowly, whih transmits information.

4.4 Summary

In summary, our treatment of river networks di�ers from earlier work in that it

emphasizes the properties of the dynamis whih should survive oarse-graining. We

make a strong laim, that the dynamis given by Eq. (4.5, 4.6, 4.7) is a universal

theory for the large-sale struture. We have shown that, at least, there is a rea-

sonably satisfatory agreement with the empirial statistial laws that are gleaned

from �eld observations of real rivers. We hope that generalizations of our work to

allow ground water, storms, et., ould shed some light on how these proesses a�et

landsapes, and ould even, in the best ase, give useful information on, for example,
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the statistis of oods.
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CHAPTER 5

Di�usion-limited aggregation and visous

�ngering in a wedge: Evidene for a ritial angle

The researh presented in this hapter was done with D. A. Kessler, Z. Olami,

J. Oz, I. Proaia, and Leonard M. Sander; large part of the numerial work was

done by me, while the analytial work was shared between the ollaborators. It was

published in Phys. Rev. E 57, 6913 (1997).

We show that both analyti and numerial evidene points to the existene of

a ritial angle of � � 60

o

� 70

o

in visous �ngers and di�usion-limited aggregates

growing in a wedge. The signi�ane of this angle is that it is the typial angular

spread of a major �nger. For wedges with angle larger than 2�, two �ngers an

oexist. Thus a �nger with this angular spread is a kind of building blok for visous

�ngering patterns and di�usion-limited aggregation lusters in radial geometry.

61
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The di�usion limited aggregation (DLA) [1, 2℄ model is a simple idealization of

a ommon natural proess, the formation of natural objets where the rate-limiting

step is di�usion. In the simplest examples (say, solidi�ation from solution, or dif-

fusion limited eletrohemial deposition) partiles random walk and then stik to

a growing aggregate. Di�usion-limited growth of this type gives rise to remark-

able morphologies whih are rami�ed, disorderly, and, in the ase of in�nite di�usion

length, fratal. It is this omplexity whih is the major interest in the model. Despite

more than a deade of work in this �eld [2℄ very little theoretial understanding has

been ahieved. In this hapter we attempt to ontribute to suh understanding by

demonstrating the existene of a kind of building blok for the pattern: there seems

to be a harateristi angular spread for the �ngers whih make up the struture.

5.1 Fingering instability

The fundamental origin of the omplexity of DLA patterns has been known from

the outset: it is in a �ngering instability: di�usion-limited growth is generially

linearly unstable for at growing surfaes, and forms �ngers. The proliferation of

the �ngers gives rise to the fratal pattern in a way whih we seek to larify here.

Another physial system that displays the �ngering instability is the displaement

of an invisid uid by a visous one, the visous �ngering problem. It has been

suspeted sine the work of Paterson [3℄ that the large sale features of DLA patterns

are similar to those in radial visous �ngering. They both obey the Laplaian growth

equations:

r

2

� = 0 (5.1)

n̂ � r� = n̂ � ~v (5.2)



63

Here � denotes the di�using �eld, i.e. the probability density to ever �nd a random

walker at point r in the ase of DLA or the pressure at r in visous �ngering. The

normal veloity of growth of the pattern is n̂ � ~v. The boundary value on the surfae

of the growing pattern, �

s

, is given by the Gibbs-Thomson relation �

s

= � for the

ase of visous �ngering where  is the surfae tension. DLA di�ers by having the

boundary ondition set impliitly by the �nite size of the areting partiles and

by the fat that the patterns are a�eted by shot noise. Some authors have argued

[4℄ that neither of these fats a�et the large-sale features of the pattern, and that

radial visous �ngering patterns are idential to DLA lusters in a oarse-grained

sense. We adopt this point of view.

This idea is attrative beause the theory of visous �ngering is quite well devel-

oped [5℄. In partiular, it is lear that visous �ngers in a hannel geometry are not

fratal [6℄, and attain a steady state of a single �nger. The striking di�erene from

the radial ase, where there is no indiation that a steady state is ever ahieved,

led Ben-Amar and ollaborators [7℄ to investigate the wedge geometry. The general

result is that in a wedge of any angle the seleted �nger grows in a self-similar way.

For �xed surfae tension they are stable for a �nite time, and they then beome

unstable against tip-splitting. This idea was used by Sarkar [8℄ to give an estimate

for the fratal dimension of DLA by ounting the tip-splittings.

However, we think that Sarkar's estimate left out a ruial e�et: that of �nger

ompetition. Our view is that this is the key to the whole problem: if �ngers split

in a wedge that is too narrow, they will ompete, and one will die. The result will

be a �nger with sidebranhes. On the other hand, if the wedge is wide enough,

then the �ngers will not ompete, and there will be two branhes to the pattern.

The wedge angle, � at whih this begins to happen will be twie the typial angle
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between �ngers, whih we all �. As a pattern grows the �ngers will split until they

form hannels of angle � for their neighbors. There is some experimental support

for this idea [9℄ in the mode of tip-splitting seen for various angles. However, the

experimental evidene is ambiguous beause the dynami range of a real �ngering

experiment is limited. Here we will try to verify our ideas by giving an analyti

estimate for �, and then show that these are reasonable by onsidering simulations

of DLA lusters in a wedge.

5.2 Finger ompetition

To begin, onsider two steady-state visous �ngers side by side in a wedge with

periodi boundary onditions at the sides. We will attempt to estimate how large

the angle must be so that there is no ompetition between them. For example, for

� = 2� the �ngers grow independently.

We now look at the stability of the two �nger solution in order to see if there is

ompetition. We prepare one �nger slightly longer than the other, and ask, in the

linear regime, if there is a di�erent growth rate for the two. We an see how the

alulation goes by using the mapping, due to Ben-Amar and Brener, [10℄, between

the wedge problem and the problem of di�usive (i.e. not Laplaian) growth in a

hannel. We �rst map the wedge to a strip using: ~z = [2=�℄ ln z: This transforms a

wedge of angle � entered around the x-axis in the z plane to a strip of width 2 in

the ~z plane. Sine the transformation is onformal, the �eld is Laplaian in the new

variables. Eq. (2) beomes:

^

~n �

~

r� = exp(�~x)

^

~n �

~

~v: (5.3)

The Gibbs-Thomson ondition on the interfae is ompliated in the new oordinates
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exept for small surfae tension, in whih ase it beomes:

�

s

= ~� exp(��~x=2) (5.4)

If we de�ne � � � exp(��~x) then � satis�es, up to terms of order �

2

, a quasi-

stati di�usion equation in the frame moving with Pelet number �:

r

2

� + 2�

d�

dx

= �

2

� � 0 (5.5)

Eq. (5.3) now reads

^

~n �

~

r� =

^

~n �

~

~v: Thus we have two steady-state �ngers

growing in a hannel with �nite di�usion onstant and with boundary ondition

on the interfaes �

s

= ~� exp(�3�~x=2): This equation implies a spae-dependent

e�etive urvature. Thus our problem is not exatly the same as that of dendrites

in a hannel, but it is qualitatively the same

1

. For the question of ompetition, the

exat form of the surfae-tension is probably not important. From Eq. 5.5 it follows

that 1=� plays the role of a di�usion length: the �eld is sreened over distanes larger

than 1=� and two �ngers that are separated by larger distane annot ompete. This

is an indiation that a ritial angle exists.

We have veri�ed this insight by a numerial stability analysis. We found that for

small � (weak sreening) �ngers ompete, and for large wedge angle they do not.

The numerial value for the threshold that we ompute in this way (� � 0:5) is too

large to be trusted beause of the small � approximation.

1

We have made a further approximation here. In our stability analysis we use the steady state

solution to the dendrite problem. For the wedge and for the hannel there are two solutions for

eah surfae tension orresponding to di�erent �nger widths. In the wedge, the solution with the

smaller width is the stable one, and the opposite is true in the hannel. However, for the question of

�nger ompetition, we think it does not matter whih solution one looks at, sine the two solutions

di�er only in their loal tip struture. Finger ompetition is a more global question.
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5.3 The two-needle model

In order to go further we do a di�erent estimate whih is more qualitative, but

not restrited to small angles. Consider, again, two visous �ngers in a wedge of

opening angle �. We now replae the problem with a simpler one that we an

solve analytially, that of two needles in the wedge. In omplex notation, the tips

of the needles are at z

1

= l

1

e

i�=4

; z

2

= l

1

e

3i�=4

: The Laplaian �eld � vanishes on

the needles, and we suppose that there is a uto� (�nite tip size) a and that the

growth rate of the needles is given by the ux of the Laplaian �eld, r� at the tips:

z = z

i

+ ae

i�

i

= z

i

+ Æz

i

; �

1;2

= �=4; 3�=4:

We solve by a series of onformal maps. First we map the z plane into the u plane

with u = z

�

; � = 2�=�. The two needles are now one needle along the imaginary

axis. Now enter the needle. De�ne L = [l

�

1

+ l

�

2

℄=2, and arrange things so that the

needle goes from �L to L by putting w = u� [l

�

1

� l

�

2

℄=2. Then we an map the line

segment onto the unit irle by putting w = [Li=2℄[~z + 1=~z℄: Now the two needles

have been mapped onto points on the exterior of the unit irle (~z

1

= 1; ~z

2

= �1).

It is now lear that the potential an be written � = Re ; = �

o

ln(~z), where

�

o

is proportional to the inoming ux. This potential satis�es periodi boundary

onditions. To get the growth rate it is suÆient to �nd d =dz beause jd =dzj

2

=

jr�j

2

. By a straightforward omputation we an write down the growth rate of tip

i:

d =dzj

i

= jd�=dzj /

l

��1

i

[Ll

��1

i

a℄

1=2

/

l

[��1℄=2

i

[l

�

1

+ l

�

2

℄

1=2

: (5.6)

Whenever one �nger is longer than the other, the longer one will get more ux,

and, it seems, grow faster. However, we know from the omputation above that there

is a point at whih �ngers ease ompeting. Physially this is beause the di�erene
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between a needle and a �nger is that a �nger must grow in area if it is self-similar.

Thus, even if the integrated ux to two �ngers is the same the fatter one will grow

more slowly sine it will advane aording to dA

i

=dt / d(l

2

i

)=dt / l

i

dl

i

=dt / G

i

where G

i

is the ux that �nger i gets in ompetition with the other. We estimate

G

i

/ l

[��1℄=2

i

from the needle alulation. That is dl

i

=dt / jd�=dzj=l

i

: Thus:

dl

1

=dt

dl

2

=dt

= [l

i

=l

2

℄

[��3℄=2

: (5.7)

When � = 3, that is, when � = 120

o

, the two �ngers stop ompeting. Thus eah

�nger oupies � = 60

o

. We should note that this is exatly the riterion of Derrida

and Hakim [11℄ who get it in a di�erent way, namely by demanding that, for some

�xed a, the ratio of the lengths of two spikes remain small (though the di�erene an

be large). That is, they make the following quantity derease, for l

1

> l

2

:

d

dt

(l

1

=l

2

) =

l

1

l

2

[(1=l

1

)d�

1

=dz � (1=l

2

)d�

2

=dz℄ (5.8)

whih is our estimate.

We an use this estimate in another way. Suppose that the �ngers are fratal, so

that we have A / l

D

where D is the fratal dimension. Now repeating the alulation

above, we must have (�� 1)=2 = D� 1, at the operating point. However, Turkevih

and Sher [12℄ have given another riterion: if the luster grows so that it has major

branhes, then the growth and the fratal dimension will be dominated by the tip

angle. The result of this onsideration, in our notation, amounts to saying that

D = 1+�=(�+�). Using � = �=� we �nd that � satis�es a quadrati equation, whose

solution is � = (

p

2� 1)� whih orresponds to � � 75

o

. Thus D = 1+1=

p

2 = 1:71

whih is exatly the observed fratal dimension. This estimate was given by Ball [13℄

some years ago using a di�erent argument.
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5.4 Numerial simulations

To verify these estimates we turn to numerial alulations for DLA in a wedge.

We grew a large number of o�-lattie DLA lusters in wedges of di�erent opening

angles �. For greater eÆieny we used the method of hierarhial maps [14℄ adapted

to the wedge geometry, so that our wedge was subdivided into setors whose radii

were in geometri ratios. The data whih we will report involve averages over 25

realizations for eah �, and the number of partiles,M in the wedge was determined

so that M = 10

6

�=2�. That is, eah wedge ated like a slie from a million-partile

luster. We report results for � = 30

o

; 60

o

; 90

o

; 120

o

, and 144

o

.

We measured the fratal dimension of our lusters and �nd that it depends weakly,

if at all, on �. This allows us to understand the remarkable auray of the estimate

of fratal dimension above. The Turkevih-Sher alulation implies that the fratal

dimension of a �nger would depend only on the tip veloity, whih in turn depends

on the tip struture. The invariane of the fratal dimension with � indiates that

the tip struture is not a�eted by boundaries, and thus probably not by the presene

of other �ngers. However, in the radial ase, the large sale struture (the number

of main surviving branhes) adjusts via �nger ompetition to be onsistent with the

loal growth rate. In our estimate we gave a representation of the tip whih is valid

only far away { we replaed the luster by a needle { but then used self-onsisteny

to �nd the fratal dimension.

In this work our main interest is not the fratal dimension but the overall shape.

To see this we omputed the angular density-density orrelation funtion,

(�) = [< �(� + �)�(�) > � < � >

2

℄j

�

: (5.9)

Here �(�) is the density of partiles in the luster in a 1

o

setor around � and we
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Figure 5.1: (a) Angular orrelation funtion, (�)=(0), for DLA lusters in a wedge

of angle � as a funtion of �=�. (b) Correlation funtions using the

measure M

1

.

Figure 5.2: DLA lusters grown in wedges for � = 30

o

; 144

o

.

average over the starting angle. All of the angles are taken as periodi with period �

so that the funtion is reetion-symmetri around �=2. In Fig. 5.1(a) we show the

orrelation funtion averaged over 25 realizations, and in Fig. 5.2 a typial luster

for small and large angles.

There is a very lear di�erene between large and small � in the behavior of (�).

For small angles there is an antiorrelation between the origin and other angles. This

orresponds to the matter being lustered in one branh. For � between 90

o

and 144

o
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the nature of the orrelations hanges. The appearane of a seond peak and the

positive orrelation funtion indiates that there are now two oexisting branhes

[15℄.

We have examined the individual realizations that make up the average. The

appearane of the seond peak orresponds to strutures whih sometimes have one,

and sometimes two (or more) large branhes. In the ase of 120

o

and 144

o

there is

onsiderable utuation in the orrelation funtions (and the visual appearane) of

eah individual realization. This is a further indiation that for some � in this range

there is a ritial point.

We have seen no indiation that the orrelation funtions depend on the luster

size. For the ase of 30

o

we grew lusters ten times larger than those desribed above

to hek this, with the result that the orrelations were the same. The orrelation

funtion depends on the angular spread of the wedge, not on the spae available to

spread out, whih indiates that the branhes are self-similar in shape. If we take the

point at whih the (�=2) rosses 0 as the riterion for determining � we �nd that

the typial distane between di�erent major branhes is � = �=2 � 60 � 70

o

. This

is in rough agreement with our analyti estimates, and we take this as a veri�ation

of our basi idea.

We made another hek by trying to quantify exatly what we mean by a 'major

branh'. We fous on the idea that for asymptoti behavior the most important

feature is that some branhes die, and some survive ompetition. To see this quan-

titatively we introdue a measure on DLA lusters whih we all the desendent

measure, M

x

. For this quantity we weight eah point aording to the number of

desendents it has in the last fration x of the growth. Thus M

1

measures the total

number of points that grow from a given one, and, say, M

0:01

the number of desen-
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Figure 5.3: DLA lusters plotted with gray level proportional toM

1

for � = 30

o

; 144

o

dent points in a tiny ative zone on the outside of the luster. The appearane of

major branhes derived this way is quite robust, and doesn't depend muh on x.

Clusters with M

1

weighting are shown in Fig. 5.3, and Fig. 5.1(b) illustrates that

the orrelation funtions near the ritial angle are not muh di�erent with the M

x

weighting. The ritial angle is robust, but for small angles the measure learly lo-

alizes the main branh muh more leanly than the measure that uniformly weights

the mass sine it prunes sidebranhes. The M

x

weighting ould be interesting in

other ontexts sine it provides a de�nition of a bakbone for DLA.

Some aspets of the idea that we have proposed here have appeared in other

forms previously. For example, Arneodo and ollaborators have observed some hints

of a 5-fold struture in DLA [16℄. This is more or less what we �nd sine our angle �

is lose to 2�=5. Many workers have noted that DLA lusters seem to have 5 major

arms, but this qualitative impression was not supported by a quantitative estimate

of the type we have given here.

We think that we should follow up our idea by heking it for radial visous

�ngering in diret simulations. We hope that sophistiated methods suh as the

vortex sheet tehnique [17℄ ould allow us to do this, though this is a omputation

intensive approah. The e�et of the exat form of the surfae tension an also be
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heked, although in our opinion the role of the surfae tension is only to regularize

the equations; its exat form (e.g. the �nite size of the DLA partiles ats as an

e�etive surfae tension) is unimportant. Ideally we should also try to put this idea

of a struture made up of building bloks with some typial angle into a more general

theoretial ontext. However, we do not see any obvious relationship between what

we have done and the other theoretial approahes to Laplaian growth [18℄.
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CHAPTER 6

Di�usion-limited aggregation and iterated

onformal maps

The researh presented in this hapter was done with Benny Davidovith, H.G.E

Hentshel, Zeev Olami, Itamar Proaia, and Leonard M. Sander; most of the nu-

merial work was done by me, while the analytial work was shared between the

ollaborators. It was published in Phys. Rev. E 59, 1368 (1999).

The reation of fratal lusters by di�usion limited aggregation (DLA) is studied

by using iterated stohasti onformal maps following the method proposed reently

by Hastings and Levitov. The objet of interest is the funtion �

(n)

whih onformally

maps the exterior of the unit irle to the exterior of an n-partile DLA. The map

�

(n)

is obtained from n stohasti iterations of a funtion � that maps the unit

irle to the unit irle with a bump. The saling properties usually studied in

the literature on DLA appear in a new light using this language. The dimension

of the luster is determined by the linear oeÆient in the Laurent expansion of

�

(n)

, whih asymptotially beomes a deterministi funtion of n. We �nd new

relationships between the generalized dimensions of the harmoni measure and the

saling behavior of the Laurent oeÆients.

74
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6.1 Introdution

The di�usion limited aggregation (DLA) model was introdued in 1981 by T.

Witten and L. Sander [1℄. The model has been shown to underlie many pattern

forming proesses inluding dieletri breakdown [2℄, two-uid ow [3℄, and eletro-

hemial deposition [4℄. The model begins with �xing one partile at the enter

of oordinates in d-dimensions, and follows the reation of a luster by releasing

random walkers from in�nity, allowing them to walk around until they hit any partile

belonging to the luster. Upon hitting they are attahed to the growing luster. The

model was studied on- and o�- lattie in several dimensions d � 2; here we are only

interested in the o�-lattie versions in two dimensions.

DLA has attrated enormous interest over the years sine it is a remarkable exam-

ple of the spontaneous reation of fratal objets. It is believed that asymptotially

(when the number of partiles n !1) the dimension D of the luster is very lose

to 1.71 [5℄, although there exists to date no proof for this fat in spite of several

interesting attempts [6, 7℄. In addition, the model has attrated interest sine it was

among the �rst [8℄ to o�er a true multifratal measure: the harmoni measure (whih

determines the probability that a random walker from in�nity will hit a point at the

boundary) exhibits singularities that are usefully desribed using the multifratal

formalism [9℄. Nevertheless DLA still poses more unsolved problems than answers.

It is obvious that a new language is needed in order to allow fresh attempts to ex-

plain the growth patterns, the fratal dimension, and the multifratal properties of

the harmoni measure.

Suh a new language was proposed reently by Hastings and Levitov [10, 11℄.

These authors showed that DLA in two dimensions an be grown by iterating stohas-
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ti onformal maps. We adopt their basi strategy and will see that it provides a

new formulation of the problem whih may lead to new insights and results.

The basi idea is to follow the evolution of the onformal mapping �

(n)

(w) whih

maps the exterior of the unit irle in the mathematialw{plane onto the omplement

of the luster of n partiles in the physial z{plane. �

(n)

is unique by the Riemann

mapping theorem, provided that it satis�es the boundary ondition

�

(n)

(w) � F

(n)

1

w as w!1 : (6.1)

Here F

(n)

1

is a real positive oeÆient, �xing the argument of [�

(n)

(w)℄

0

to be zero at

in�nity. �

(n)

(w) is related to the omplex eletri potential 	

(n)

(z) by

	

(n)

(z) = lnh

(n)

(z) ; (6.2)

where h

(n)

(z) = [�

(n)

℄

�1

(z) is the inverse mapping. Letting z !1 in Eq.(6.1) it is

easy to verify that Eq.(6.2) implies

	

(n)

(z) � ln z when z !1 (6.3)

as it should be at d = 2.

The equation of motion for �

(n)

(w) is determined reursively. The hoie of the

initial map �

(0)

(w) is rather exible, and in this hapter we selet (arbitrarily) an

initial ondition �

(0)

(w) = w. We expet the asymptoti luster to be independent

of this hoie. Then suppose that �

(n�1)

(w) is given. The luster of n \partiles"

is reated by adding a new \partile" of onstant shape and linear sale

p

�

0

to the

luster of (n � 1) \partiles" at a position whih is hosen randomly aording to

the harmoni measure. We denote points on the boundary of the luster by Z(s)

where s is an ar-length parametrization. The probability to add a partile on an

in�nitesimal ar ds entered at the point z(s) on the luster boundary is

P (s; ds) � jr	(s)jds : (6.4)
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n

 ω− z-plane plane

Φ

Φ

Φ
φ

n-1

n-1

Figure 6.1: Diagrammati representation of the mappings � and �.

The pre-image of z(s) and ds in the w-plane are e

i�

and d� respetively. Clearly,

ds = j[�

(n�1)

℄

0

(e

i�

)jd�. From Eq.(6.2) we onlude that

P (s; ds) � jr	(s)jj�

0

jd� = d� ; (6.5)

so the harmoni measure on the real luster translates to a uniform measure on the

unit irle in the mathematial plane.

The image of the luster of n partiles under h

(n)

(z) is, by de�nition, just the unit

irle. On the other hand, the image of the luster of n partiles under h

(n�1)

(z) is

the unit irle with a small bump whose linear sale is

p

�

0

=j�

0

(n�1)

(e

i�

n

)j where e

i�

n

is the image (under h

(n�1)

) of the point z

n

on the real luster at whih the growth

ourred.

Let us de�ne now a new funtion �

�

n

;�

n

(w). This funtion maps the unit irle to

the unit irle with a bump of linear sale

p

�

n

around the point e

i�

n

. For w !1,

�

�

n

;�

n

(w) � w (with positive real proportionality oeÆient). Using �

�

n

;�

n

(w) the

reursion relation for �

(n)

(w) is given by (see Fig. 6.1):

�

(n)

(w) = �

(n�1)

(�

�

n

;�

n

(w)) : (6.6)
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Aording to the above disussion �

n

is given by

�

n

=

�

0

j�

(n�1)

0

(e

i�

n

)j

2

(6.7)

so the RHS of Eq.(6.6) is determined ompletely by �

(n�1)

(w); Eq.(6.6) indues the

reursive dynamis of �

(n)

(w).

The reursive dynamis an be represented as iterations of the map �

�

n

;�

n

(w),

�

(n)

(w) = �

�

1

;�

1

Æ �

�

2

;�

2

Æ : : : Æ �

�

n

;�

n

(!) : (6.8)

This omposition appears as a standard iteration of stohasti maps. This is not

so. The order of iterations is inverted { the last point of the trajetory is the inner

argument in this iteration. As a result the transition from �

(n)

(w) to �

(n+1)

(w) is not

ahieved by one additional iteration, but by omposing the n former maps Eq.(6.8)

starting from a di�erent seed whih is no longer ! but �

�

n+1

;�

n+1

(w).

We note that in the physial plane the \partiles" are roughly of the same size.

To ahieve this the linear sales

p

�

n

vary widely as a funtion of n and �. We will see

that the distribution of

p

�

n

and their orrelations for di�erent values of n determine

many of the saling properties of the resulting luster. In partiular their moments

are related to the generalized dimensions of the harmoni measure.

There are many funtions �

�;�

whih onformally map the unit irle to the unit

irle with a bump. A simple hoie is a funtion whih behaves linearly for large w

and has a simple pole inside the unit irle whih will indue a bump in the image.

The pole has to be at w

0

= 1�� in order to loalize the bump near w = 1 and make

it of linear size of the order

p

�. The residue has to be �

3=2

, in order for the bump's

height to be also of the order

p

�. Consider then

�(w) = (1 + �)w +

�

3=2

w � w

0

:
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Careful thinking leads to the onlusion that this funtion and other similar funtions

are inappropriate: they have long \tails". In other words, the unit irle is slightly

distorted everywhere. This small global distortion may result in a loss of onformality

or in the growth of non- onstant size partiles in the physial plane in numerial

appliations.

It was proposed in Ref. [10℄ that a hoie for �

�

n

;�

n

(w) that is free of global

distortion is given by

�

�;0

(w) = w

1�a

(

(1 + �)

2w

(1 + w)

�

2

4

1 + w + w

 

1 +

1

w

2

�

2

w

1� �

1 + �

!

1=2

3

5

� 1

9

=

;

a

(6.9)

�

�;�

(w) = e

i�

�

�;0

(e

�i�

w) ; (6.10)

The parameter a is on�ned in the range 0 < a < 1. As a dereases the bump beomes

atter, with the identity map obtained for a = 0. As a inreases towards unity the

bump beomes elongated normally to the unit irle, with a limit of beoming a line

(\strike" in the language of [10℄) when a = 1. Naively one might think that the

shape of the individual partile is irrelevant for the large sale fratal statistis; we

will see that this is not the ase. The dependene on a is important and needs to be

taken into aount. Notie that this map has two branh points on the unit irle.

The advantage of this is that the bump is strongly loalized. On the other hand

repeated iterations of this map leads to rather omplex analyti struture.

The aim of this hapter is therefore to investigate the saling and statistial

properties of suh iterated stohasti onformal maps with a view to disovering the

saling properties indued by the dynamis whih any analyti theory must ulti-

mately explain. In Setion II we present the numerial proedure used to generate

the fratal lusters, and in Setion III give the neessary mathematial bakground



80

to desribe suh mappings. In partiular we disuss the Laurent expansion of the

onformal map from the unit irle to the n-partile luster; the oeÆients of the

Laurent series have interesting saling behaviour with the size of the luster whih

is intimately related to the fratal dimension of the luster and to the generalized

dimensions of the harmoni measure. In Setion IV we present numerial results

regarding the saling properties of averages of the Laurent oeÆients and of the size

parameter �

n

. The results are aompanied by a theoretial analysis and interpreta-

tion. In Setion V we onlude with some remarks on the road ahead.

6.2 Numerial proedure

The algorithm simulating the growth of the luster is based on Ref. [10℄. The

n \partile" luster is enoded by the series of pairs f(�

i

; �

i

)g

n

i=1

. Having the �rst

n� 1 pairs, the n

th

pair is found as follows: hoose �

n

from a uniform distribution in

[0; 2�℄, independent of previous history. Then ompute �

n

from Eq.(6.7), where the

derivative of the iterated funtion �

(n�1)

involves �

0

�

n�1

;�

n�1

, �

0

�

n�2

;�

n�2

, �

0

�

n�3

;�

n�3

et,

omputed respetively at the points e

i�

n

; �

�

n�1

;�

n�1

(e

i�

n

); �

�

n�2

;�

n�2

(�

�

n�1

;�

n�1

(e

i�

n

)),

et. Notie that the evaluation of both �

0

and � after the addition of one partile

involves O(n) operations sine the seed hanges at every n. This translates into

n

2

time omplexity for the growth of an n-partile luster. This is inferior to the

best algorithms to grow DLA (using hierarhial maps [12℄, with lose to linear

eÆieny), but the present algorithm is not aimed at eÆieny. Rather, it is used

sine the Laplaian �eld and the growth probability whih is derived from it are

readily available at every point of the luster and away from it. The typial time to

grow a 10,000 partile luster is 8 minutes on a 300 MHz Pentium-II.

Naively one would expet that any hoie of 0 < a < 1 would yield DLA lusters,
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a=1/2 a=2/3 a=4/5

Figure 6.2: Typial lusters of 10,000 partiles. The blak regions represent the

interiors of the images of the unit irle under the map �

(10;000)

for three

values of a. The large enlosed areas for the a = 1=2 luster are the

unwanted \�ll-up" events disussed in Setion II. However, the blak

area in the a = 4=5 luster is only a numerial artifat: that region is

not resolved by double preision arithmeti.

sine a only determines the shape of the partiles (the aspet ratio is

1

2

a=(1� a) for

small �), and the mirosopi details of the partiles (exept their linear size) should

not a�et the global properties. Three typial lusters with partiles of various aspet

ratios a are shown in Fig. 6.2.

We mark in blak the interior of the image of the unit irle under the onformal

map �

(n)

(w). The objets look very muh like typial DLA lusters grown by stan-

dard o�-lattie tehniques, and in the next setion we demonstrate that they have

fratal dimensions in lose agreement with the latter. For a signi�antly di�erent

from 2=3, disadvantages of the algorithm get ampli�ed. Sine the funtional form of

� is �xed (only the size and position of the \bump" hange), partiles of onstant

shape and size are obtained only if the magni�ation fator j�

(n�1)

0

j (the inverse

of the �eld) is approximately onstant in the w{plane around the \bump" of �. If

the partiles are elongated along the luster, then the variation of the �eld along

the luster a�ets the shape: large otherwise deeply invaginated regions, where �

0
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is large, are �lled up with a single partile, and the resulting luster tends to be

more ompat. This e�et, slightly notieable even at a = 2=3, is quite signi�ant

at the otherwise natural hoie of a = 1=2, where the partiles are half irles. In

Fig. 6.2 we show suh a luster and point out to the area �lling dark regions whih

represent suh unwanted events. The other extreme, when the partiles stik out of

the luster, leads to sensitivity to variations in the �eld going away from the luster.

Espeially if a bump is grown on a tip of a branh, where the �eld dereases rapidly

as one goes away from the tip (suh that �

0

inreases signi�antly), then the map of

the bump gets magni�ed, resulting in partiles of very unequal sizes.

It is neessary to stress that even for a = 2=3, when this proedure appears to

yield nie rami�ed strutures, the problem of �ll-ups does not go away: in a few rare

ases the partile { if it happens to land on a plae where j�

00

j is large { is signi�antly

distorted. The net e�et is that large areas surrounded by the luster (where the

growth probability is small) are �lled up entirely by one distorted partile. For the

value of a = 1=2 it appeared that the errors may be unbounded. Our numeris

indiates that for a = 2=3 the errors were bounded for the luster sizes that we

onsidered. We do not have a mathematial proof of boundedness of the errors, and

our disregard of this danger is only based on the sensible appearane of our lusters

at this value of a.

6.3 Mathematial Bakground

In this setion we disuss the Laurent expansion of our onformal maps, and

introdue the statistial objets that are studied numerially in the next setion.



83

6.3.1 Laurent Expansion

Sine the funtions �

(n)

(w) and �

�;�

(w) are required to be linear in w at in�nity,

they an be expanded in a Laurent series in whih the highest power is w:

�

(n)

(w) = F

(n)

1

w + F

(n)

0

+ F

(n)

�1

w

�1

+ F

(n)

�2

w

�2

+ : : : (6.11)

�

�;�

(w) = f

1

w + f

0

+ f

�1

w

�1

+ f

�2

w

�2

+ : : : (6.12)

where

f

1

= (1 + �)

a

f

0

=

2a� e

i�

(1 + �)

1�a

f

�1

=

2a� e

2i�

(1 + �)

2�a

�

1 +

2a� 1

2

�

�

f

�2

=

2a� e

3i�

(1 + �)

3�a

 

1 + 2(a� 1)�+

2a

2

� 3a+ 1

3

�

2

!

The reursion equations for the Laurent oeÆients of �

(n)

(w) an be obtained by

substituting the series of � and � into the reursion formula (6.6). We �nd

F

(n)

1

= F

(n�1)

1

f

(n)

1

(6.13)

F

(n)

0

= F

(n�1)

1

f

(n)

0

+ F

(n�1)

0

F

(n)

�1

= F

(n�1)

1

f

(n)

�1

+ F

(n�1)

�1

=f

(n)

1

F

(n)

�2

= F

(n�1)

1

f

(n)

�2

� F

(n�1)

�1

f

(n)

0

(f

(n)

1

)

2

+ F

(n�1)

�2

1

(f

(n)

1

)

2

(6.14)

� � �

We note that the n-dependene of f

(n)

i

follows from the dependene on the randomly

hosen �

n

at the nth step, from whih follows the dependene of �

n

on n. The latter

is however a funtion of all the previous growth steps, making the iteration (6.13)

-(6.14) rather diÆult to analyze.
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A general relation between the Laurent oeÆients is furnished by the so-alled

area theorem whih applies to univalent mappings. Sine our maps solve the Laplae

equations with boundary onditions only at in�nity and on the luster boundary

where the potential is zero, they map the w plane uniquely (and with a unique

inverse) to the z plane. In other words, the pressure lines and the stream lines are

non-degenerate. Suh mappings have the property [13℄ that the area of the image of

the unit dis in the nth step is given by:

S

n

=

�

�

�F

(n)

1

�

�

�

2

�

1

X

k=1

k

�

�

�F

(n)

�k

�

�

�

2

(6.15)

A seond theorem that will be useful in our thinking is a onsequene of the so-alled

one-fourth theorem, see Appendix A. There a statement is proven that the interior

of the urve fz : z = �

(n)

(e

i�

)g is ontained in the z-plane by a irle of radius 4F

(n)

1

.

Now as the area S

n

is obtained simply from the superposition of n bumps of roughly

the same area �

0

, it has to sale like S

n

� n�

0

, for large n. On the other hand any

typial radius of the luster should sale like n

1=D

p

�

0

where D is the dimension of

the luster. We an thus expet a saling of F

(n)

1

that goes like

F

(n)

1

� n

1=D

q

�

0

(6.16)

. We note in passing that this saling law o�ers us a very onvenient way to measure

the fratal dimension of the growing luster. Indeed, we measured the dimension D

for a range of a in this way by averaging F

(n)

1

over 100 lusters. We found that for

a range of a spanning the interval [1/3,8/9℄ the dimension is onstant, around 1.7.

We an infer therefore that the sum in Eq. (6.15) whih subtrats positive on-

tributions from jF

(n)

1

j

2

ontains terms that anel the behavior of n

2=D

(remember

that D < 2), leaving a power of unity for the saling of S

n

. Indeed, we will show
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below both numerial and theoretial evidene for the saling behavior of the jF

(n)

�k

j

2

for k > 6 whih is in agreement with n

2=D

.

We an give a diret physial interpretation for the oeÆients F

(n)

k

by omparing

them to the oeÆients of the series for 	

(n)

, f. Eq.(6.2):

	

(n)

(z) = ln(z)� ln(r

0

) +

1

X

1

 

k

z

k

(6.17)

The oeÆient of ln(z) is unity so that the eletri ux is unity. This orresponds

to the normalization of the probability. The onstant r

0

is the Laplae radius whih

is the radius of a harged disk whih would give the same �eld far away. The rest of

the �

k

's are onventional multipole moments.

The relations between the Laurent oeÆients of 	

(n)

and �

(n)

are:

r

0

= F

1

 

1

= �F

0

 

2

= �F

�1

F

1

�

1

2

F

2

0

 

3

= �F

�2

F

2

1

� 2F

0

F

�1

F

1

�

1

3

F

3

0

 

4

= �F

�3

F

3

1

�

3

2

F

2

�1

F

2

1

� 3F

1

F

2

0

F

�1

�3F

�2

F

0

F

2

1

�

1

4

F

4

0

(6.18)

The �rst line shows that F

1

= r

0

, the Laplae radius, in aordane with the

one-fourth theorem.

The seond line shows that the dipole moment  

1

is �F

0

. We an interpret this

oeÆient as a distane, the wandering of the enter of harge due to the random

addition of the partiles. We will take the point of view that this quantity is less

\intrinsi" than the others to the dynamis of the DLA growth. In fat, if we set

F

0

=  

1

= 0, (we ould imagine shifting the luster as we grow it) we an rewrite
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the rest of the equations:

�F

�1

�  

2

=r

0

�F

�2

�  

3

=r

2

0

�F

�3

� ( 

4

+

3

2

 

2

2

)=r

3

0

; (6.19)

et. This leads to the interpretation of F

�k

in terms of the multipole expansion of

the eletri �eld.

6.3.2 Statistial objets and the relations to generalized dimensions

Our growth proess is stohasti. Aordingly, it is natural to introdue averages

over the randomness. In our thinking there are two important averages, one over

histories of the whole random trajetory f�

i

g

n

i=1

, and the other only over the random

hoie of �

n

at the nth step. To distinguish between the two we denote the �rst by

angular brakets and refer to it as \history-average", while the seond is denoted by

an overbar and referred to as a \luster-average". There is a possibility that for very

large lusters (n ! 1) the two averages result in the same numbers. We will refer

to suh a property as \self-averaging".

The luster average of moments of �

n

o�ers a relationship to the generalized

dimensions of the harmoni measure [14℄. The latter are de�ned by dividing the

plane into boxes of size �, and estimating the probability for a random walker to hit

the piee of the boundary of the luster whih is inluded in the ith box by

p

i

(�) = jE

i

j� ; (6.20)

where jE

i

j is the modulus of the eletri �eld jr	

i

j at some point in the ith box.

The generalized dimensions are de�ned by the relation

N(�)

X

i=1

p

q

i

(�) �

�

�

R

�

(q�1)D

q

(6.21)



87

where N(�) is the number of boxes of size � that are needed to over the boundary,

and R is the linear size of the largest possible box, whih is of the order of the radius

of the luster. Substituting (6.20) we �nd

�

q�1

N(�)

X

i=1

jE

i

j

q

� �

�

�

R

�

(q�1)D

q

(6.22)

Taking � very small, of the order of

p

�

0

, and assuming that the �eld is smooth on

this sale we have:

Z

L

0

jE

i

j

q

ds � (

q

�

0

)

1�q

n

(1�q)D

q

=D

(6.23)

where L is the length of the boundary, ds is an ar-length di�erential, and we have

used the saling law n � S

n

=�

2

� (R=�)

1=D

.

The onnetion to our language is obtained by onsidering the luster average of

powers of �

n

. We grow a luster of n� 1 partiles, perform repeated random hoies

of growth sites (without growing), and ompute �

n

for eah hoie. The luster

average an be represented as an integral over the unit irle, �

q

n

, and is given by

�

q

n

� (1=2�)

Z

2�

0

�

q

n

(�)d� : (6.24)

Realling Eq. (6.7) we observe that �

q

n

(�) = �

q

0

jE(�)j

2q

. The last relation, Eq.(6.5),

and Eq.(6.23) imply the saling relation

�

q

n

� n

�2qD

2q+1

=D

: (6.25)

6.4 Numerial results and their interpretation

In this setion we present results on three topis:

(i) The oeÆients of the Laurent expansion. The saling behaviour of these quan-

tities is desribed and disussed in the �rst subsetion.

(ii) The mirosopi utuations in the onformal map. We show that the assump-

tion of self-averaging is valid for Eq.(6.25) and that the multi-fratal exponents are
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in a good agreement with the known ones.

(iii) Distribution funtions of the Laurent oeÆients. We analyze numerially the

width of those funtions and �nd that F

(n)

1

tends to a deterministi funtion of n.

We attribute this e�et to non-trivial temporal orrelations in the �eld, and give

some evidene of their existene.

6.4.1 Laurent CoeÆients of �

(n)

All the oeÆients of the Laurent series of �

(n)

(w) are omplex numbers exept

F

1

whih is real by the hoie of zero phase at in�nity, see Eq.(6.1). Most of our

disussion below pertains to the amplitudes of the oeÆients F

k

. We need to stress,

however, that the phases are not irrelevant. If we attempted to use the orret

amplitudes with random phases, the resulting series will in general not be onformal.

One of the main results of this hapter is that in addition to the expeted saling

behavior of the linear oeÆient F

(n)

1

(given in Eq. (6.16) the rest of the amplitudes

of the Laurent oeÆients jF

(n)

�k

j exhibit also a saling behavior. We �nd numerially

that in the mean the magnitudes of the Laurent oeÆients sale as powers of n:

hjF

(n)

k

j

2

i = a

k

n

x

k

: (6.26)

The exponents x

k

are given in Fig. 6.3. We �rst disuss the onsequenes of the

saling behavior of F

(n)

1

.

Saling of F

1

The saling behavior (6.16) has immediate onsequenes for the saling behavior

of the bump areas �

n

that are the subjet of the next subsetion. The onnetion

appears from the reursion Eq.(6.13) of F

(n)

1

whih together with f

1

= (1+�)

a

reads

F

(n)

1

=

n

Y

k=1

[1 + �

k

℄

a

: (6.27)
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Figure 6.3: The saling exponents of the Laurent oeÆients: hjF

�k

j

2

i � n

x

k

. The

values are obtained by averaging 400 independent realizations of 10,000

partile lusters.

Taking history averages we �nd

hF

(n)

1

i = h

n

Y

k=1

[1 + �

k

℄

a

i (6.28)

lnhF

(n)

1

i � a

n

X

k=1

h�

k

i (6.29)

d lnhF

(n)

1

i=dn � ah�

n

i: (6.30)

The last two equations are obtained by expanding the logarithm and keeping only

divergent sums. Both the mean of F

(n)

1

and the mean of the sum of �

k

inrease as

a funtion of n. All other sums of powers of �

k

onverge as a funtion of n: f.

subsetion B. Thus, if we assume that hF

(n)

1

i / n

1=D

, fratal saling of the radius

(see below), implies that [10℄

h�

n

i = 1=naD: (6.31)

In the next subsetion we show that this is indeed supported by the simulations.

Note that h�

n

i is inversely proportional to n for any value of the fratal dimension

D. On the other hand, if we assume the property of self-averaging, Eq. (6.31) implies



90

10
0

10
1

10
2

10
3

10
4

10
5

n

10
0

10
1

10
2

10
3

10
4

<
|F

02 |>

slope = 0.7

Figure 6.4: The saling of hjF

(n)

0

j

2

i (thik lines) and the sum of diagonal terms (thin

lines, see Eq.(51)) with size n. Clearly the two have di�erent saling

exponents. The solid lines are averages over 400 lusters of size 10,000,

the dashed lines are averages over 30 lusters of size 100,000.

a relationship between the generalized dimension D

3

and the fratal dimension D.

Comparing Eqs. (6.25) and (6.31) leads immediately to the relation

D

3

= D=2 : (6.32)

This saling relation was derived by Halsey [15℄ using muh more elaborate onsid-

erations. We see that in the present formalism this saling relation is obtained very

naturally. In fat the present formulation is more powerful sine Eq.(6.31) predits

not only the exponent of the third moment of the eletri �eld, but also the prefator.

It is also noteworthy that the saling relation (6.32) results simply from the existene

of a power law behavior for the radius F

(n)

1

.

Saling of F

0

We found the exponent of hjF

0

j

2

i to be x

0

= 0:7� 0:1, see Fig. 6.4. To estimate
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the saling behaviour of F

0

theoretially we note that

F

0

=

1

2�

Z

2�

0

�

(n)

(�)d� =

1

2�

Z

L

0

z(s)jE(s)jds : (6.33)

Aordingly we an write

jF

0

j

2

= (1=4�

2

)

Z

L

0

ds

Z

L

0

ds

0

z(s)z(s

0

)

�

jE(s)jjE(s

0

)j

� �

0

R

2

Z

L

0

dshjE(s)j

2

i (6.34)

In writing the seond line we assumed that the main ontribution to the orrelation

funtion is short ranged,

hz(s)z(s

0

)

�

jE(s)jjE(s

0

)ji � �

0

R

2

jE(s)j

2

Æ(s� s

0

) : (6.35)

The justi�ation for this is that the �eld is expeted to exhibit wild variations as

we trae the boundary z(s). In addition the main ontribution to the integral is

expeted to ome from the support of the harmoni measure where the radius is of

the order of R. From the estimate (6.34) and Eq.(6.23) we then �nd

x

0

=

2�D

2

D

� 0:64 (6.36)

in agreement with our measurement of x

0

. (We used here D

2

= 0:90 in orrespon-

dene with the numerial �nding reported in Setion IV C. Any of the values of D

2

quoted in the literature would yield x

0

in the range 0:7� 0:1.)

Saling of F

�k

The exponents x

k

for k < 0 are smaller than 2=D but approah it asymptotially,

see Fig. 6.3. This behavior is expeted from the area theorem, and also from a diret

estimate of the integral representation of the oeÆient for large k

jF

�k

j

2

=

1

4�

2

Z

L

0

ds

�

Z

L

0

ds

0

z(s)z(s

0

)

�

jE(s)jjE(s

0

)je

ik(�(s)��(s

0

)

: (6.37)



92

In Appendix B we show that this integral an be estimated using the multifratal

formalism of the harmoni measure with the �nal result

jF

�k

j

2

� (R=4k)

2

Z

d�(2k=�)

f(�)=�

; (6.38)

where � and f(�) are the strength of singularities of the harmoni measure and the

dimension of the sets of points that exhibit these singularities respetively [9℄. For

our purposes the important onsequene of Eq.(6.38) is the saling relation (assuming

self-averaging)

hjF

�k

j

2

i = �

0

n

2=D

g(k) (6.39)

with g(k) � 1=k

2

R

d�k

f(�)=�

. One knows from the theory of multifratals that

f(�)=� � 1, and therefore we an bound g(k) from above and from below, Ak

�2

<

g(k) < Bk

�1

. This is in aord with our numerial simulations in the range 3 � k �

10, although the alulation in the appendix is only valid for large values o k. We

found agreement with Eq.(6.26) with x

k

! 2=D and a

k

� k

��

with 1 < � < 2 .

Note that this saling behaviour has important onsequenes for both the area

theorem and for onformality. Absolute onvergene of the sum

P

1

k=1

kjF

(n)

�k

j

2

in

the area theorem requires � > 2 whih is not the ase. The situation is even more

serious for the existene of onformality. To insure the latter the sum

P

1

k=1

kjF

(n)

�k

j

must exist. This would require � > 4. The reason that the sums exist in the theory

is only due to the ultraviolet uto� at

p

�

0

. This uto� introdues a highest k in

the Laurent expansion whih we estimate as 2�k

max

� L=

p

�

0

� n where L is the

perimeter of the luster.

6.4.2 Multi-fratal exponents

Here we test Eq.(6.25). In Fig. 6.5 we display double-logarithmi plots of h�

q

n

i

vs. n for q = 0:5; 1; 1:5; 2; 2:5; 3 and 3:5. The values of the generalized dimensions
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Figure 6.5: Saling of the moments h�

q

n

i with powers of n. The urves from top to

bottom orrespond to q = 0:5; 1; 1:5; 2; 2:5; 3 and 3:5. The exponents

�2qD

2q+1

=D are in agreement with theoretial preditions (see text) and

with numerial values for the generalized dimensions in the literature.

D

q

obtained from our simulations agree very well (within the unertainties) with the

generalized dimensions D

q

obtained in the past [5℄ for D

2

; � � � ; D

8

using standard

methods. In addition we reprodue numbers in agreement with the theoretial pre-

dition of D

0

= D � 1:71 and D

3

= D=2. This agreement is a strong indiation for

self averaging at least for the purpose of omputing moments of �

n

(i.e. h�

q

n

i �

�

�

q

n

).

6.4.3 Flutuations of the averages

We previously disussed the saling behavior of jF

(n)

�k

j

2

and showed that their

history averages obey Eq. (6.26). However jF

(n)

�k

j are random variables with broad

saling distributions. Fig. 6.6 desribes the resaled standard deviation �

(n)

k

of the

Laurent oeÆients,

�

(n)

k

=

r

hjF

(n)

k

j

4

i � hjF

(n)

k

j

2

i

2

=hjF

(n)

k

j

2

i ; (6.40)
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k
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as n ! 1, demonstrating the asymptoti sharpness of the distribution

of F

1

. The solid lines are averages over 400 lusters of size 10,000, the

dashed lines are averages over 30 lusters of size 100,000.
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for k = 1; 0;�1;�2 as a funtion of the luster size n. As is seen learly from the

graphs the widths of the distributions for all k � 0 tend asymptotially to a �nite

value. This is the normal behaviour for saling distributions. The exeptional ase

is k = 1. Even though it exhibits a saling law of the type (6.26) (see Setion III),

with

x

1

=

2

D

� 1:18 ;

the resaled distribution width of jF

(n)

1

j

2

tends to zero as n goes to in�nity. This

means that the resaled distribution funtion of F

(n)

1

tends asymptotially to a delta

funtion. The importane of this result for the evaluation of the fratal dimension

of the luster warrants an immediate disussion of this sharpening phenomenon.

The onlusion of the numeris on F

1

is that there exists a universal onstant

(�

0

) suh that

n

�1=D

F

(n)

1

! (�

0

) (6.41)

where (�

0

) is luster independent! Moreover, we found that (�

0

) = 

p

�

0

, whih is

in aordane with the role played by

p

�

0

as an ultraviolet inner lengthsale, whih

is the only lengthsale that appears in the mappings. Note that the onstant  in

Eq. (6.41) depends on the parameter a. We measured  values of 0.6, 0.87, 1.2 and

1.8 for a values of 1/3, 1/2, 2/3 and 4/5 respetively.

The observed sharpening is not obvious sine we know that F

(n)

1

is built from

a produt of random variables �

n

, whose moments hange with n in multi-fratal

manner aording to Eq. (6.25).

One ould attempt to onnet the sharpening of F

(n)

1

to the existene of other

sharp funtions of n. Considering the full expansion of Eq.(6.27) we �nd

1

a

lnF

(n)

1

=

n

X

i=1

ln(1 + �

i

) (6.42)
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�

1

2

n

X

i=1

�

2

i

+

1

3

n

X

i=1

�

3

i

+ � � � : (6.43)

We ould understand Eq. (6.41) easily if all the sums of all the powers of �

i

onverged

to onstants,

n

X

i=1

�

i

�

2

D

lnn ! 

1

(6.44)

n

X

i=1

�

i

2

! 

2

(6.45)

� � � (6.46)

with 

i

luster independent. In fat, this is not the ase. The sums of powers are

not luster independent. A lear demonstration of this is a simulation whih begins

with initial onditions whih are very far from the irle. The individual sums in

Eq. (6.43) are very di�erent from the average values, but nevertheless

P

n

i=1

ln(1+�

i

)

seems to onverge to the right value. It is our onlusion that eah of the sums in

(6.43) is not luster independent, and yet somehow the resummed form is luster

independent.

This remarkable sharpening alls for further disussion; it appears that its in-

terpretation requires better understanding of the time orrelations of the �eld: an

independent hoie of random realization of a series of �

i

aording to their multi-

fratal distribution an only generate F

(n)

1

with the proper saling exponent but

annot trivially yield a highly peaked distribution of F

(n)

1

. Therefore we onsider

now some evidene for the existene of temporal orrelations.

The �rst outstanding evidene appears in the ontext of the saling behavior of

F

0

, whih was disussed in the �rst subsetion. We show that if we assume that

there exist no orrelations between di�erent growth stages, the exponent x

0

will be

very di�erent from the measured and alulated value. From the reursion relations
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of the Laurent oeÆients (Eq. 6.14) we an estimate, in the limit of large n when

�

n

is very small on the average,

hjF

(n)

0

j

2

i �

n

X

m=1

n

X

m

0

=1

hF

(m)

1

F

(m

0

)

1

�

m

�

m

0

e

i(�

m

��

m

0

)

i (6.47)

�

n

X

m=1

n

X

m

0

=1

hF

(m)

1

F

(m

0

)

1

ih�

m

�

m

0

e

i(�

m

��

m

0

)

i (6.48)

The seond line is obtained beause F

(m)

1

is proportional to the radius of the whole

luster and should not be orrelated with �

m

. The ruial approximation omes next:

if �

m

and �

m

0

an be treated as independent for m 6= m

0

, then (sine �

m

and �

m

0

are

independent) Eq.(6.48) simpli�es to

h�

m

�

m

0

e

i(�

m

��

m

0

)

i � h�

2

m

iÆ

m;m

0

(6.49)

hjF

(n)

0

j

2

i �

n

X

m=1

h(F

(m))

2

1

ih�

2

m

i � n

1+2=D�4D

5

=D

� n

0:3

(6.50)

The numerial simulation resulted in an exponent of the order of 0.7, in serious

disagreement with Eq. (6.50). We think that the assumption of independene, Eq.

(6.49) is the ulprit.

Another fat whih illustrates the importane of the time-angle orrelation (see

Eq. (6.49)) is the di�erene between the exponents of F

0

and F

�1

(hjF

0

j

2

i � n

0:7

whereas hjF

�1

j

2

i � n

0:9

). Their equations of motion (6.14) di�er, for small �

n

, by

two terms only. The �rst one is the term �

n

F

(n�1)

�1

in the RHS of the equation for F

�1

whih is absent in the equation for F

0

. We heked numerially that negleting this

term leads to a very small hange in the exponent. The seond di�erene between

is that the term �

n

�

n�k

e

i(�

n

��

n�k

)

in Eq. (6.48) is replaed by �

n

�

n�k

e

2i(�

n

��

n�k

)

.

The hange in the exponent an therefore be diretly attributed to the existene of

important time-angle orrelations.
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Figure 6.7: Time-angle orrelations of the �eld. In order to redue statistial noise,

the values plotted are averaged in bins [n; 1:1n℄.

We tried to analyze numerially the time-angle orrelations h�

n

�

n�k

e

i(�

n

��

n�k

)

i.

The results for some k's are shown in Fig. 6.7. It appears that as we inrease the

size of the ensemble, h�

n

�

n�k

e

i(�

n

��

n�k

)

i ! 0 with the usual N

�1=2

dependene on

the ensemble size. If we believe these numerial results (doubts may exist due to

the relative smallness of the ensemble analyzed), then the previous results must be

related to more subtle orrelation of higher order nature.

Lastly we would like to disuss the importane of early stages of the growth.

hF

(n)

1

i might be written in the following way

hF

(n)

1

i = h

n

Y

i=1

(1 + �

i

)

a

i : (6.51)

(see Eq. (6.13). Negleting the orrelations in time in the above produt one may

approximate

h

n

Y

i=1

(1 + �

i

)

a

i �

n

Y

i=1

h(1 + �

i

)

a

i : (6.52)

Numerial evaluation of the two objets in Eq.(6.52) shows that they di�er by a
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with time orrelations negleted and the full F

1

:

Q

n

i=1

h(1 + �

i

)

a

i=h

Q

n

i=1

(1 + �

i

)

a

i (thik line). The quantities h

Q

k

i=1

(1 +

�

i

)

a

i

Q

n

i=k+1

h(1 + �

i

)

a

i are also plotted for k = 10; 100 and 1000.

few perent (see Fig. 6.8). The numeris indiate the saling laws

h

n

Y

i=1

(1 + �

i

)

a

i = �

0

n

2=D

; (6.53)

n

Y

i=1

h(1 + �

i

)

a

i = 

1

�

0

n

2=D

; (6.54)

where 

1

= � 1:06.

To get further intuition we heked also the objet

h

k

Y

i=1

(1 + �

i

)

a

i

n

Y

i=k+1

h(1 + �

i

)

a

i

for various values of k. The results are shown in Fig. 6.8. As it seems from this

graph, time orrelations in the initial stages of the growth are muh more important

than loal orrelations in the late stages.

We heked also two-point time orrelations h�

n

�

n�k

i for some k's. The results

are plotted in Fig. 6.9. As it turns out from this graph, h�

n

�

n�k

i � h�

n

ih�

n�k

i up

to statistial utuations.
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6.5 Summary and disussion

The language proposed by Hastings and Levitov appears to o�er many appealing

features. It generates DLA lusters in suh a way that the onformal map �

(n)

from

the irle to the boundary of the luster is known at every instant. In this hapter we

examined arefully the numerial proedure used to generate the onformal maps,

and pointed out the advantages and the shortoming of the algorithm.

The new results of this hapter pertain to the saling behavior of the Laurent

oeÆients jF

k

j of the onformal map �

(n)

and of the moments of �

n

whih are re-

lated to moments of the �eld. We presented a theoretial disussion of the exponents

haraterizing moments of jF

k

j and �

n

. We pointed out the relations to the multi-

fratal analysis of the harmoni measure, and derived saling relations. Of partiular

interest is the saling relation D

3

= D=2 that was derived �rst by Halsey and whih
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appears here as a very natural onsequene of the formalism.

One important results whih is not adequately interpreted in this hapter is the

sharpness of the distribution of F

1

. This oeÆient is proportional to the radius of

the luster, and its sharpness is diretly related to the existene of a universal fratal

dimension independently of the details of the shape of the luster. Understanding the

sharpness appears to be onneted to understanding the existene of universal fratal

dimension, and we believe that it poses a very worthwhile and foussed question for

the immediate future.
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CHAPTER 7

Conlusion

In this thesis we investigated various problems in nonequilibrium statistial phys-

is. Common to these problems is that they are all related to pattern formation, and

saling onepts are essential to their thorough understanding. Our methods were

mostly disrete: we modeled individual atoms, bloks of material, partiles, and

studied disretized partial di�erential equations.

In general, we did not attempt to losely mimi experimental onditions. Rather,

we were interested in the basi priniples. The exeption is the ase of epitaxial

proesses, where our models were loser to experiments|here we were also suessful

explaining the observations.

To summarize our results, we observed two di�erent saling regime, depending on

growth parameters, in multilayer heteroepitaxial systems. In heteroepitaxial systems

we studied how the elasti e�ets modify the growth proess. To better understand

the formation of river networks, we proposed a oarse grained theory, whih ouples

the equation of the surfae erosion with the onservation law of surfae water ow.

In the area of Laplaian growth, using di�usion-limited aggregation lusters grown

in wedge geometry, we showed the existene of angular building bloks. And �nally,

using a onformal map approah to DLAs, we studied the relation between the

103
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Laurent oeÆients of the map, the generalized dimensions of the harmoni measure

and other relevant physial quantities, and their saling.
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APPENDIX A

Fast o�-lattie DLA algorithms

In this Appendix we explain the urrent best algorithms to simulate o�-lattie

DLA lusters. The details given here are for the 2-dimensional ase, but an be

generalized to higher dimensions.

When simulating DLA, in eah step a partile is added to the luster: we have

to ompute the �rst ontat position of the random walker (or Brownian path) with

the luster using the smallest amount of resoures (CPU time, memory) possible.

A.1 EÆient random walk

Ideally the walker is released at in�nity. However, before it gets in ontat with

the luster, it has to ross a irle of arbitrary radius enlosing the luster, entered

around the origin. Suppose we selet the smallest irle enlosing the luster, denoted

by C. Beause of symmetry onsiderations, the �rst ontat point of the walker with

this irle is uniformly distributed on the irle. Thus we an model the path of the

walker from in�nity to the point of �rst ontat to the irle in one step: plae it on

the irle with uniform probability.

Now suppose that at some point P on its path the walker is at some distane from

the luster. One an selet a bounded region D, whih ontains the walker and does



107

not interset with the luster. Before the walker ontats the luster, it has to ome

out of this region, spei�ally there will be a point P

0

in the path were it �rst rosses

the boundary of the region. Given the position P of the walker and the region D,

this segment PP

0

of the path is independent of the luster, and an be in priniple

alulated in one step. The goal is to selet an appropriate region D suh that the

distribution of P

0

is easily omputable. One suh hoie is a irle entered around

P with radius r stritly smaller than the distane of P from the luster (but the

bigger the irle, the more eÆient is the simulation). Then P

0

would be uniformly

distributed on the irle. Given the luster and P , an eÆient seletion of the radius

r is not easy, but a good method will be given later in this Appendix.

An exeption from this diÆulty is the ase when P is outside the smallest enlos-

ing irle C: then a quik hoie for r is the distane of P from the irle. However,

if the walker wanders too far away from the luster then this method beomes inef-

�ient. Early works used the kill the walker when it got too far away (say 5 times

the radius of C) and start over with a new walker. This solution is not exat (may

introdue arti�ial orrelations) and in addition not the most eÆient. Instead, we

an de�ne an outer irle C

0

, also entered around origin but larger than C. When

the walker gets outside C

0

, we solve the problem of �rst ontat with C: plae it

bak to the smallest enlosing irle in one step.

This problem is no longer rotational symmetri as the �rst-ontat-from-in�nity

ase, but solvable[1℄. Suppose the radius of C is R

C

, and the walker is at position

(r; �) in polar oordinates, outside C

0

. The new position will be at radius R

C

(on

irle C) and at azimuthal angle

�

0

= � + 2 tan

�1

�

r � R

C

r +R

C

tan(�R)

�

; (A.1)
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where R is a uniform random number from [0; 1℄.

Sine this method is exat for any C

0

larger than C, we an optimize the radius

of C

0

for omputational eÆieny. In our simulations we used

R

C

0

= 1:1 �R

C

+ 3 �R

walker

; (A.2)

but the performane did not depend strongly on this seletion.

It has to be noted that for simpliity in the above disussion we negleted the

radius of the walker. In pratie it has to be taken into aount, and the size of the

jumps need to be dereased, and R

C

inreased, by a partile diameter to prevent

overlap.

To summarize the proedure we do the following steps to add a partile. First the

walker is deposited on the smallest enlosing irle C with uniform probability. Then

it is allowed to take jumps in unorrelated random diretions, where the size of the

steps is a lower estimate of the urrent distane of the walker from the luster. If at

any point it gets outside of the outer irle C

0

, then it is redeposited to C aording

to Eq. (A.1). However, we do not allow jumps smaller than the partile radius to

atually ahieve ontat: in ase the walker overlaps with the luster after suh a

jump, it is pulled bak on the path of this last jump until just touhes the luster,

and beomes part of it.

A.2 Hierarhial maps

We are still faing the problem of giving a lower estimate of the walker{luster

distane in an eÆient way. The naive approah of evaluating the minimum of the

n lusterpartile{walker distanes is prohibitively slow: for a luster of n partiles,

eah jump of the walker would take O(n) time, making the overall time omplexity

at least O(n

2

).
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The tehnique of hierarhial maps[2℄ has a better solution: if the walker is \far

away" from the luster, then it provides with a quik lower estimate of the distane

without even aessing the oordinates of luster partiles; if the walker is \lose"

then it provides a list of the nearby partiles so that the exat distane an be alu-

lated. The omputational time in both ases depends very weakly (logarithmially)

on luster size.

The luster is put on an adaptively re�ned square mesh. Eah square { whih

we all map {, and possibly its sub-squares, are subdivided into 4 sub-maps (lower

level maps), if the luster is \suÆiently lose" to it. The rule is the following:

initially eah map adjaent to the origin is subdivided up to a prede�ned maximum

depth. In addition, when a map on any level ontains luster partiles (through its

sub-maps), the surrounding 8 maps on the same level must exist, i.e. their parent

maps must be subdivided (exept when this would go o� the mapped area). This has

two onsequenes. First, all partiles of the luster will be in lowest level (smallest)

maps; the list of the ontained partiles is attahed to these maps. Seond, if a

ertain (above lowest level) map is not subdivided, then its distane from the luster

is at least half of its side length.

To see this, suppose map M is above lowest level, and there are partiles loser

to it than half its side. Then there should be an adjaent (possibly subdivided) map

M

0

ontaining partiles, one level lower than M . Aording to the rule, M

0

has to

be surrounded by same level maps as itself, therefore M has to be subdivided.

As the aggregate grows, the maps are updated. Eah time a partile is added to

a previously empty lowest level map, it and its anestors are heked whether they

satisfy the rule | if not, then the appropriate subdivisions take plae.

When a walker lands somewhere, we �nd the smallest map ontaining the point.
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If it is higher than lowest level, then we are onsidered to be \far away" from the

luster, and half of the side of the map is a lower estimate of the walker's distane

from the aggregate. If, on the other hand, the walker lands in a lowest level map,

then it is \lose" to the luster: the partile lists of the map and of the neighboring

lowest level maps are heked to alulate the exat distane of the walker from the

aggregate.

The size of the smallest maps is an adjustable parameter, the optimum is around

8 partile diameters. The CPU time used for a single distane estimate is only

logarithmially depends on the luster size: for larger luster more map levels have

to be used. Overall, the memory requirements are linear to the size of the luster,

and the omputational time is lose to linear (empirially time � n

1:1

in a range

10

3

|10

7

partiles); the stronger than logarithmi orretion is probably due to the

fat that for larger luster the walkers take more jumps.



111

Referenes

[1℄ E. Sander, L. M. Sander and R. Zi�, Computers in Physis 8, 420 (1994).

[2℄ R. C. Ball and R. M. Brady, J. Phys. A 18, L8009 (1985).


