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ABSTRACT

PATTERN FORMATION IN NONEQUILIBRIUM STATISTICAL PHYSICS

by

Ell�ak Somfai

Chairman: Leonard M. Sander

In this thesis we explore problems in surfa
e- and di�usion limited growth.

Mole
ular beam epitaxy, the te
hnique used to grow stru
tures on 
rystal surfa
es,

is studied with 
omputer simulations. Our fo
us is the multilayer stage of this

pro
ess: how the growth 
onditions a�e
t the evolution of the forming mounds. We

also studied heteroepitaxial systems, where the elasti
 e�e
ts signi�
antly 
hange the

growth pro
ess, resulting in unusual phenomena like quantum dots.

The se
ond area of resear
h is the evolution of river networks. We propose a 
oarse

grained theory, 
oupling the equation of the surfa
e erosion with the 
onservation

law of surfa
e water 
ow. Computer simulation of the model produ
e patterns whi
h

show the statisti
al properties of natural rivers.

Lastly, we study di�usion limited aggregation (DLA), the dis
rete model of Lapla-


ian growth. Using DLAs grown in wedge geometry, we show the existen
e of angular

building blo
ks. In a di�erent approa
h, using 
onformal maps, we study the relation

between the s
aling properties of the model and the Laurent expansion of the map.
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CHAPTER 1

Introdu
tion

1.1 Overview

Nonequilibrium statisti
al physi
s is one of the most rapidly growing bran
hes

of physi
s. The present understanding of far from equilibrium phenomena is behind

that of equilibrium physi
s, providing a wide range of interesting problems.

In nonequilibrium systems there exists a me
hanism whi
h drives the system away

from its equilibrium state. These pro
esses give rise to ri
h and interesting pattern

forming phenomena, whi
h are the topi
 of this thesis.

A large 
lass of nonequilibrium pro
esses 
an be des
ribed as growth pro
esses,

in whi
h a phase (or aggregate, or 
luster) is growing. The main question is to

understand and explain the stati
 and dynami
 properties of the growing 
luster

from the physi
s of the growth pro
ess.

In many 
ases the interfa
e between the growing 
luster and its environment is

smooth on large s
ales. These obje
ts, as well as their relation to s
ale-invarian
e is

dis
ussed in Se
tion 1.2. An appli
ation with pra
ti
al importan
e, mole
ular beam

epitaxy, is introdu
ed in Se
tion 1.3. Systems of mu
h larger s
ale, geomorphologi
al

evolution, are des
ribed is Se
tion 1.4. Finally we introdu
e Lapla
ian growth and

di�usion limited aggregation (DLA) in Se
tion 1.5.

1
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The following 
hapters 
ontain our resear
h results. In Chapter 2 we study ho-

moepitaxial systems in the multilayer regime. Chapter 3 deals with heteroepitaxial

systems, where strain is a signi�
ant fa
tor. In Chapter 4 we present our 
oarse-

grained theory for the evolution of river networks. The topi
 of the next two 
hapters

is Lapla
ian growth and di�usion limited aggregation. Of these, Chapter 5 studies

aggregates in wedge geometry, to show the existen
e of wedge-shaped building blo
ks

in 
ir
ular geometry. In Chapter 6 we use the approa
h of 
onformal maps to study

the s
aling properties of DLA 
lusters. Chapter 7 summarizes the results presented

in this thesis, and �nally in Appendix A we des
ribe the numeri
al te
hniques to

simulate large o�-latti
e DLA 
lusters.

1.2 Fra
tals and s
ale-invarian
e in surfa
e growth

In many physi
al systems there exist a range of lengths su
h that the 
hara
ter-

isti
 range of the underlying pro
ess lie outside of this range. A system 
ould be

mu
h bigger than mole
ular dimensions, for example. It is natural to expe
t that

this la
k of internal s
ales will be re
e
ted on the whole evolved system as well. If

this range is large enough, then the des
ription of the system on this range be
omes

meaningful. This des
ription has to be without 
hara
teristi
 s
ales also, the system

is s
ale invariant. Therefore the statisti
al quantities are also s
ale invariant; they

are in general power laws, with 
rossovers marking the ends of the s
aling range.

Fra
tals [1℄ are often found in these systems: these are s
ale invariant obje
ts

whose mass en
losed in a sphere of radius R and 
entered around a point of the

obje
t s
ales with a power of the radius:

M(R) � R

D

(1.1)

where D, the fra
tal dimension, is typi
ally a fra
tional number (hen
e the term
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fra
tal). These obje
ts in general are self-similar: after res
aling they are statisti
ally

identi
al (ex
ept for the 
hange of 
rossover s
ales) to the original.

In 
ases when the system has a strong orientation, often the pro
ess 
an be

des
ribed as the evolution of an interfa
e, whi
h is smooth on large s
ales. Often

these pro
esses are 
alled surfa
e growth [2, 3℄. The interfa
e is a single valued

fun
tion (height) of time and the lateral 
oordinates (the ones perpendi
ular to

the strong orientation). S
ale invariant fun
tions are in general self-aÆne: they

remain statisti
ally invariant under res
aling with a di�erent fa
tor horizontally and

verti
ally.

If the growth pro
ess is inherently lo
al, then the time evolution should depend

on lo
al quantities only: the partial time derivative of the height should only depend

on the height, its derivatives, possibly in
luding some probabilisti
 fa
tor (noise).

This approa
h, usually 
alled 
ontinuum des
ription, is an important step towards

understanding, be
ause it is often possible to say something insightful about the

solutions of these partial di�erential equations.

1.3 Mole
ular beam epitaxy

An important pra
ti
al example of surfa
e growth is mole
ular beam epitaxy

(MBE). This te
hnique is used to grow thin �lms on 
rystal surfa
es, and has pra
ti-


al appli
ations in the semi
ondu
tor industry. Typi
ally a semi
ondu
tor or metal


rystal with 
at surfa
e is 
hosen as substrate, put inside ultra-high va
uum, and

bombarded with low energy atoms. The pro
ess is referred to homoepitaxial if the

deposited atoms are of the same kind as the ones making up the 
rystal, and het-

eroepitaxial otherwise.

After the atoms land on the surfa
e of the 
rystal, their thermal energy is large
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enough for di�usion, but desorption is usually not signi�
ant (the sample is kept at

300 { 800

Æ

C). When the di�using atoms (
alled adatoms) meet, they form immobile

stru
tures 
alled islands, whi
h are the 
ores of the next 
rystal layer. Additional

adatoms might join the island, or land on top of the islands. New islands may form

on top of island, 
reating wedding 
ake like stru
tures. Or the islands might grow,


oales
e, and form the next 
rystal layer of the substrate.

A large number of materials exhibit the property that the atoms landed on top of

islands are not likely to hop down. This behavior results in an e�e
tive upward 
ur-

rent, and is responsible for the instability whi
h 
reates large stru
tures or mounds.

These mounds grow and 
oales
e in time. This 
oarsening pro
ess is investigated in

more detail in Chapter 2.

In 
ase of heteroepitaxy, the situation is more 
omplex. Even if the adatoms

are 
hemi
ally similar enough to the substrate atoms that they start to form their

own 
rystal stru
ture on top of the substrate, their size might be di�erent from the

substrate atoms, resulting in an elasti
 stress. During the evolution the system tries

to minimize the ex
ess energy resulted from this stress. One possibility is to grow

high three-dimensional islands, where only the bottom of these islands is stressed. If

the three-dimensional islands have narrow size distribution (quantum dots) and are

ordered, then this 
ould have pra
ti
al importan
e for lasers and quantum 
omputing.

The issues of strained heteroepitaxial systems are dis
ussed in Chapter 3.

1.4 S
ale-invarian
e in geomorphologi
al pro
esses

Geomorphologi
al obje
ts are among the �rst in whi
h s
ale invarian
e was ob-

served [1℄. There are various pro
esses whi
h form the surfa
e of the Earth: te
toni


motion, vol
ani
 pro
esses, erosion by i
e, water and temperature 
u
tuation, earth-
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quakes, sedimentation, mudslides et
. Out of these, we restri
t our attention only to

erosion by water 
ow, i.e. rivers.

A river system 
an be divided into three regions: the produ
tion zone, the sour
e

of most of the water the and sediments; the transportation zone, whi
h is typi
ally

the meandering part of the river; and the deposition zone, where the river ends at a

sea or o
ean in a delta or estuary [4℄. The produ
tion zone is the most interesting

of these: this 
ontains the bran
hing network 
alled river basin.

In natural rivers this bran
hing network has remarkable statisti
al properties

whi
h 
annot be explained by simple 
onsiderations. In Chapter 4 we investigate

the evolution of this bran
hing network: how the erosion of streams produ
es these


omplex patterns.

1.5 Lapla
ian growth and di�usion-limited aggregation

There exists a wide range of growth pro
esses, where the rate limiting fa
tor

is the di�usion of some quantity. These pro
esses 
an be des
ribed in terms of

Lapla
ian growth. A �eld 
an be de�ned outside of the growing 
luster, it satis�es

the Lapla
e equation, and has a �xed value on the boundary. The lo
al growth rate

of the 
luster is proportional to the gradient of the �eld at the boundary. This latter

quantity is also 
alled harmoni
 measure, referring to the �eld whi
h satis�es the

harmoni
 equation.

This pi
ture in ele
trostati
 terms is the following: the 
luster is a 
ondu
tor


arrying unit 
harge, the Lapla
ian �eld is the ele
trostati
 potential, and the growth

rate is proportional to the ele
trostati
 �eld or surfa
e 
harge density.

Disorderly thin bran
hing stru
tures are produ
ed by this pro
ess. The origin of

the ri
h patterns is the Mullins{Sekerka instability: suppose that the boundary of
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the 
luster is 
at with a small perturbation, then during growth the amplitude of

the perturbation is in
reasing exponentially; the in
rease is faster if the wavelength

of the perturbation is smaller. A small bump will grow into a large �nger, but this is

not stable either: it 
an have side �ngers of any size, 
reating ri
h bran
hed patterns.

The underlying physi
al pro
ess 
an 
ontain possibly dire
tion-dependent surfa
e

tension, whi
h a�e
ts the growth pro
ess. The presen
e of surfa
e tension energet-

i
ally forbids large 
urvatures of the surfa
e. On the other hand, at zero surfa
e

tension there are known exa
t solutions whi
h produ
e singularities (
usps, where at

one point the 
urvature is in�nite) during �nite time. Any �nite surfa
e tension is

regularizing these singularities.

In many 
ases the growth o

urs in �nite 
hunks of material, here the growth

probability is proportional to the harmoni
 measure. The dis
rete model of this

pro
ess is the Witten{Sander model or di�usion limited aggregation (DLA)[5℄. Here

the aggregate 
onsists of uniform parti
les, originally only a single seed. A random

walker is released from in�nity, whi
h sti
ks to the 
luster on �rst 
onta
t. Then a

new walker is released.

The shot noise inherent in the dis
rete pro
ess has a signi�
ant e�e
t on the

growth pro
ess. Although the DLA model does not have expli
it surfa
e tension, the

noise together with the uniform added 
hunks regularizes the instability.

The Witten{Sander model has attra
ted a good deal of attention in the s
ienti�



ommunity. (This is demonstrated by the more than 1850 
itations for the original

paper | making it one of the top 
ited papers in 
ondensed matter theory.) While

the model has been known for almost two de
ades, and a large amount of empiri
al

knowledge has been a

umulated, little theoreti
al understanding has been a
hieved

so far.



7

In Chapter 5 we study both theoreti
ally and with 
omputer simulations 60{70

Æ

wide angular regions of DLA 
lusters, and show that the 
luster 
an be 
onsidered

to be formed of these building blo
ks.

In a di�erent approa
h to di�usion limited aggregation, developed only re
ently,

the two dimensional growth is des
ribed as a sequen
e of 
onformal maps. In Chap-

ter 6 we study the Laurent expansion of the map, and establish a relationship between

the s
aling properties of the model and the 
oeÆ
ients of the expansion. For exam-

ple, the dimension of the 
luster is determined by the linear 
oeÆ
ient, whi
h seems

to be
ome deterministi
 with in
reasing 
luster size.
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CHAPTER 2

Coarsening of homoepitaxial stru
tures in 2+1

dimensions

The resear
h presented in this 
hapter was done with Professor Leonard M.

Sander; the numeri
al work was done by me, the analyti
al work was split between

us. It was published in \Dynami
s of 
rystal surfa
es and interfa
es", edited by P.

M. Duxbury and T. J. Pen
e. (Plenum, New York, 1997).

When thin solid �lms are grown by MBE, the presen
e of Ehrli
h{S
hwoebel

barrier leads to the formation of mounds [M.D. Johnson et al., Phys. Rev. Lett.

72, 116 (1994)℄. As the �lm grows these mounds grow larger (
oarsen). We study

this 
oarsening in 2+1 dimensions by 
omparing simulations of an a
tivated hopping

model with solutions to the 
ontinuum equations we introdu
ed previously. The

prin
ipal mode of 
oarsening is the disappearan
e of saddle points from the surfa
e.

In 2+1 dimensions the evolution is 
hara
terized mainly by nonequilibrium terms and

is not driven by 
apillary for
es. We �nd that the mounds 
oarsen as a power law

in time. In strongly nonequilibrium growth 
onditions a low value of the 
oarsening

exponent (n = 1=6) is observed, while in the weakly nonequilibrium 
ase n = 1=4.

9
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2.1 Introdu
tion

Mole
ular beam epitaxy is a widely used te
hnique for growing stru
tures on


rystal surfa
es. One of the goals is to be able to 
ontrol the growth pro
ess to

su
h extent that one 
an make the nanostru
tures 
omplex enough for a parti
ular

purpose. An ambitious example is a quantum 
omputer [1℄.

In this 
hapter we investigate the e�e
t of the growth parameters (near equilib-

rium or far from equilibrium) on the growth pro
ess. In many materials the di�usion

of an adatom on a singular surfa
e (terra
e) is faster than a
ross a step edge: the

downward di�usion is suppressed by the Ehrli
h{S
hwoebel barrier [2℄. This bar-

rier gives rise to an instability in the growth pro
ess against mound formation, as

proposed by Villain [3℄, and investigated by Johnson et al. [4℄ These 3-dimensional

mounds 
oarsen: their lateral size L in
reases in time a

ording to L � t

n

. In this


hapter we fo
us on the question how n depends on the growth 
onditions. We

also show that the 
ontinuum equation proposed by the Mi
higan group [4, 5℄ is a

reasonable des
ription of the pro
ess.

2.2 Monte{Carlo simulation

One of our tools is an a
tivated hopping Monte-Carlo simulation. We imple-

mented a simple model for growth pro
esses: the solid-on-solid model on 
ubi
 lat-

ti
e. Although one expe
ts that a model re
e
ting the mi
ros
opi
 details of the


rystal stru
ture (e.g. f

(001)) would better des
ribe the real situation [6℄, even

this very simple model 
aptures 
orre
tly the phenomenon of 
oarsening. Also, the


ubi
 latti
e model appears to simulate very well the more 
ompli
ated semi
ondu
-

tor growth, where one 
ube stands for e.g. a 2x4 blo
k of GaAs. In our model the

atoms land on the surfa
e at rate F . All atoms on the surfa
e undergo a
tivated dif-
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fusion with rate � � exp(�E=kT ), where � = kT=h is the attempt frequen
y (k is the

Boltzmann 
onstant, h is the Plan
k 
onstant), and the energy barrier, E, depends

on the lo
al neighborhood of the di�using atom. We make a further simpli�
ation:

E depends linearly on the number of nearest neighbors, n, of the atom at the initial

position (the number of bonds to break), and also on the 
hange in next-nearest

neighbors, �nn, if it is negative:

�nn =

8

<

:

nn

f

� nn

i

; if nn

f

� nn

i

< 0

0; otherwise.

where nn

f

and nn

i

is the number of next-nearest neighbors in the �nal and initial

state. The �rst fa
tor takes 
are of island formation and atta
hment of adatoms to

step-edges, while the se
ond models the Ehrli
h{S
hwoebel barrier to some extent.

The entire form of the barrier is

E = E

0

+ n � E

n

��nn � E

nn

(2.1)

where E

0

is the barrier of a 
at terra
e. Details of the model 
an be found in Johnson

et al. [4℄.

Fig. 2.1 shows surfa
es obtained by this simulation. The surfa
e is symmetri


under the transformation h! �h in 
ase of high 
ux and high Ehrli
h{S
hwoebel

barrier, while for other regions of the parameter spa
e this symmetry is broken: the

mounds have 
at tops, and the valleys between them are narrow and deep. We 
an

tra
e the pro
ess of 
oarsening. Initially the surfa
e 
onsists of many small mounds,

they 
an be 
hara
terized by the maxima (tops) and the saddle points between

mounds. We now fo
us on the 
oarsening, i.e. how two of these mounds merge. The

mounds grow in time, and they 
ompete with ea
h other for the base area. Eventually

one of them be
omes large by a 
u
tuation. Then the saddle point between the

mounds approa
hes the smaller maximum and annihilates it (Fig. 2.2): this is the
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Figure 2.1: Snapshots of the time evolution of the surfa
e obtained by the simula-

tion, the 
ux of the in
oming atoms is F = 1

ML

se


, and the strength of the

Ehrli
h{S
hwoebel barrier is S = 0:653. In this regime of the parameter

spa
e the surfa
e grows symmetri
ally with respe
t to the transforma-

tion h! �h. The number of deposited monolayers is shown under the

images.

most important step of the 
oarsening pro
ess. What is left is one large mound,

whi
h rearranges itself to be more-or-less symmetri
. There 
an be 
u
tuations in

the other dire
tion: the top of a mound 
an split and merge again as observed by

�

Smilauer and Vvedenski [7℄.

The 
oarsening pro
ess (growth of dominant wavelength) takes pla
e during the

approa
h to equilibrium as well. We 
arried out simulations verifying this. We

started the pro
ess with two-dimensional sine wave initial 
onditions, and with no

in
ident 
ux, so that the surfa
e relaxed towards a plane. After a short transient
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Figure 2.2: Time evolution of the top (�) and the saddle point (Æ) on a 
ross-se
tional

view of two evolving mounds. The saddle point annihilates the top of

the small mound, while the maximum of the large mound only 
u
tuates.

Both the height and the lateral position are measured in latti
e units.
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(during whi
h the surfa
e rearranged its pro�le a

ording to the strength of the

Ehrli
h{S
hwoebel barrier) the root-mean-square width de
reased as w � exp(�st),

where the wavelength-dependen
e of the exponent, s, is

s = 4D

4

�

2�

L

�

4

(2.2)

showing that the equilibrium 
oarsening is dominated by di�usion pro
esses [8℄. That

is, we have �h=�t = �D

4

r

4

h, the Mullins equation. We have veri�ed that this

equation holds for our Monte-Carlo model, and we have measured D

4

.

2.3 Continuum equation

A di�erent way to approa
h the 
oarsening pro
ess is to 
on
entrate on the long

wavelength properties and analyze them in the framework of a 
ontinuum equation.

The height h(~x; t) of the surfa
e is measured from its mean height. Changes in height

arise from the divergen
e of the surfa
e mass 
urrent:

�h

�t

= �r

~

j : (2.3)

The surfa
e 
urrent 
onsists of a non-equilibrium part driven by the in
ident 
ux and

the Ehrli
h{S
hwoebel barrier, and the equilibrium part driven by 
apillary for
es:

~

j =

FS�

2

rh

1 + (�rh)

2

+D

4

� rr

2

h+D

6

� rr

2

r

2

h+ : : : (2.4)

The parameters are the 
ux, F , of the in
oming atoms; the strength, S, of the

Ehrli
h{S
hwoebel barrier (S = R � T with R being the probability of re
e
tion

and T the probability of transmission a
ross a step edge). The length, �, is the

mean distan
e between nu
leation 
enters on a terra
e, and D

4

is the strength of

the equilibrium 
apillary for
es. The last term in the 
urrent is the next term in the

expansion series 
onsistent with the symmetry. D

4


orresponds to healing of edges,
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while D

6

may 
orrespond to the healing of 
orners. This last term is negligible near

equilibrium 
ompared to the D

4

term, whi
h is why the 
lassi
 Mullins theory takes

the leading D

4

term only.

To give a physi
al interpretation of the non-equilibrium part of the 
urrent [4℄, let

us assume that the Ehrli
h{S
hwoebel barrier is in�nitely strong (no atoms 
an jump

down a step), and the up steps are perfe
t sinks. In this 
ase for small slopesrh, only

the atoms that land in strips of width � will rea
h the up steps, the rest will atta
h

to islands on the terra
e, and do not 
ontribute to the net mass 
urrent. In this 
ase

the total 
urrent is the fra
tion of the in
oming 
ux whi
h 
ontributes to the 
urrent,

multiplied by the mean migration length of the adatoms:

~

j = F�

2

rh. For the large

slope limit, every in
oming atom 
ontributes to the 
urrent, but the migration length

is only 1=jrhj, yielding j = F=jrhj. The generalization for �nite Ehrli
h{S
hwoebel

barriers (S < 1) is simply to multiply the 
urrent by S. A 
onvenient interpolation

between these expressions for the non-equilibrium 
urrent is given in Eq. (2.4).

The present form (2.4) of the surfa
e 
urrent is odd in h, so a surfa
e growing from

this 
urrent will be symmetri
 under the transformation h! �h. Another feature

of this 
urrent is that in the absen
e of 
urvature it is �nite for nonzero slopes rh.

Other terms in the 
urrent, whi
h we did not in
lude, 
ould make the 
urrent zero [9℄

for a given slope m

0

. This stabilizes the slope of the growing stru
tures around m

0

,

and explains the phenomena of sele
ted slope. Although the sele
ted (or \magi
")

slope has been observed in many experiments, it is not ne
essarily present in every


ase and is not believed to be important in the 
oarsening pro
ess: 
oarsening o

urs

not only in 
ases where a sele
ted slope is a
hieved, but also in di�erent experiments

where the slope grows inde�nitely.

By integrating Equations (2.3) and (2.4), negle
ting the D

6

term, with ran-
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Figure 2.3: Typi
al images of the surfa
es obtained by the integration of the 
ontin-

uum equation. The res
aled time is shown below the images.

dom initial 
onditions, mounds similar to those of the simulation 
an be obtained

(Fig. 2.3). These mounds also 
oarsen in time. However, there has not been dire
t

test of this equation as a des
ription of multilayer growth. In parti
ular, Eq. (2.4)

was derived by �tting to Monte-Carlo data in the submonolayer regime. In this 
hap-

ter we show that 
ertain aspe
ts of multilayer growth by the Monte-Carlo model are

well represented by Eq. (2.3) and (2.4).

Results of Ref. 5 show that integrating these equations generates 
oarsening: the

time dependen
e of the lateral size, r




, of the mounds s
ales with a power of time,

r




� t

n

, with exponent n = 1=4. This exponent is asso
iated with the leading D

4

term. Similarly, Stros
io et al [10℄ found n = 1=6 numeri
ally when only the D

6

term

was present. A detailed analyti
al proof is given by Golubovi
 [11℄.

2.4 Generalized free energy

In order to quantitatively 
ompare the simulation with the 
ontinuum equation,

we introdu
e a generalized free energy of the surfa
e, and write the equation of

motion in variational form.

By appropriate res
aling of the variables ~x, t and h to

~

X, T andH, the parameters
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in the equation of motion 
an be s
aled out, leading to a dimensionless equation.

Considering the present form (2.4) of the 
urrent, without the D

6

term, the equation

of motion of the surfa
e 
an be written in form of a fun
tional derivative:

�H

�T

= �

ÆF [H℄

ÆH

(2.5)

where

F [H(X; T )℄ =

1

2

Z

�

� log(1 + (r

X

H)

2

) + (r

2

X

H)

2

�

d

2

X (2.6)

whi
h we 
all free energy. It is a fun
tional of the res
aled height H. F 
onsists of

a non-equilibrium and an equilibrium term, like the 
urrent. This free energy does

not 
oin
ide with the 
onventional free energy of the surfa
e, but has the similar

property that in our non-equilibrium growth 
onditions F is the quantity driving

the system, and is a monotoni
ally de
reasing fun
tion of time. It is important to

point out, that 
ontrary to the previous 
laims [5℄, in 
ase of a 
urrent that produ
es

asymmetri
 surfa
es, no free energy 
an be found. (The lowest order term in the free

energy density, whi
h breaks the H ! �H symmetry but 
onserves the

~

X ! �

~

X

symmetry and the translation invarian
e in H and X would be 3rd order in H and

6th order in X, thus 
an be ex
luded from our 
onsideration.)

At this point we are able to 
ompare the 
oarsening pro
ess of the Monte-Carlo

simulation with that of the 
ontinuum equation, (2.5). We res
ale the surfa
es ob-

tained in the simulation to the dimensionless variables H(

~

X; T ), and 
ompare the

time evolution of the free energy asso
iated with the res
aled surfa
e of the simulation

(with di�erent parameter values) with the free energy of the 
ontinuum equation.

As we expe
t, the free energy (Fig. 2.4) de
reases in time. But it turns out that

the equilibrium part itself in
reases, so it 
annot drive the pro
ess. This is di�erent

from the 
ase of spinodal de
omposition, whi
h also shows power law 
oarsening and
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Figure 2.4: The (a) nonequilibrium and the (b) equilibrium part of the free energy.

(The free energy itself is the sum of these two.) The dashed line 
orre-

sponds to the 
ontinuum equation, the solid lines are the res
aled 
urves

of the simulation for di�erent parameter values (F; S).
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whi
h 
an be mapped on to this problem in 1+1 dimensions. In that 
ase minimiza-

tion of the surfa
e energy drives the pro
ess. Here the surfa
e energy in
reases in

time.

It 
an be seen from the 
omparison that the non-equilibrium part (Fig. 2.4a),

whi
h in most 
ases dominates the free energy, is 
onsistent with that of the 
on-

tinuum equation. But on the other hand, although the equilibrium part (Fig. 2.4b)

more-or-less 
oin
ides with the result of the 
ontinuum equation for some parameter

values of the simulation, for an another domain of the parameter spa
e it does not.

This 
ould mean (and later we will argue that it does) that the D

6

term of Eq. (2.4)

is important in those 
ases. We will give an explanation for this later in this 
hapter.

2.5 Coarsening

An another way of des
ribing the 
oarsening pro
ess is to study the time de-

penden
e of the 
hara
teristi
 feature separation r




(the lateral size of the mounds,

de�ned as the �rst zero 
rossing of the 
orrelation fun
tion hh(0)h(~r)i). In most


ases r




s
ales as a power of time,

r




� t

n

(2.7)

where n is the 
oarsening exponent. As we mentioned before, for di�usion dominated

growth n = 1=4, and this is the 
ase for the 
ontinuum equation, in the absen
e of

the D

6

term [5, 9℄.

But in the 
oarsening pro
ess of the Monte-Carlo simulations (Fig. 2.5) the ex-

ponent is n = 1=6 for a domain of the parameter spa
e (F; S), while for other regions

it is n = 1=4. The region where the value of the 
oarsening exponent does not equal

to the value of the di�usion dominated 
ase is the high 
ux, high Ehrli
h{S
hwoebel

barrier 
orner of the parameter spa
e. In this regime the growth 
onditions are
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Figure 2.5: The value of the 
oarsening exponent n of the Monte-Carlo surfa
es and

two experimental surfa
es as a fun
tion of the growth parameters. The

points (Æ) where n = 1=6 
oin
ide with those simulations where the

equilibrium part of the free energy did not mat
h that of the 
ontinuum

equation. The error bars show the parameter range/un
ertainty of an

Fe/Fe(100) experiment of Ref. [10℄ (Æ: measured n = 0:16 � 0:04) and

Ref. [12℄ (�: measured n = 0:23 � 0:02). The estimate of the Ehrli
h{

S
hwoebel barrier is taken from Ref. [13℄ (thin line) and Ref. [14℄ (thi
k

line).
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strongly out of equilibrium: the high Ehrli
h{S
hwoebel barrier restri
ts the free dif-

fusion of the adatoms, and the high 
ux also keeps the system far from equilibrium,

the adatoms do not have enough time to �nd a preferred equilibrium position. This


oin
ides with the region where the equilibrium free energy did not mat
h the equi-

librium free energy of the 
ontinuum equation. In this far from equilibrium regime

the D

6

term of the 
urrent 
ould be signi�
ant, D

6


an depend on the 
ux and

the Ehrli
h{S
hwoebel barrier. This term 
an dominate the 
oarsening, and give

n = 1=6 if the D

4

term of Eq. (2.4) is missing, as �rst suggested by Stros
io et al.

[10℄. The presen
e of the D

6

term, whi
h we negle
ted in our 
ontinuum equation,

is the explanation for the fa
t, that the equilibrium part of the free energy of the far

from equilibrium simulations deviates from that of the 
ontinuum equation.

Experimental results support this parameter-spa
e dependen
e of the 
oarsening

exponent as well. In 
ase of Fe/Fe(100) homoepitaxial growth (where there are

estimates for the value of the Ehrli
h{S
hwoebel barrier), at room temperature n =

1=6 has been measured [10℄ (n = 0:16� 0:02), while at elevated temperature [12℄ the

exponent is 1=4 (n = 0:23� 0:02). These results are in ex
ellent agreement with our

predi
tions (Fig. 2.5).

In the near-equilibrium regime, n = 1=4 and both parts of the free energy (thus

the free energy itself also) 
oin
ide with that of the 
ontinuum equation. In these


ases Equations (2.3), (2.4) and (2.5) give a good des
ription of the evolution of

the surfa
e, the 
orre
t roughening behavior, and the 
orre
t fun
tional form of the

free energy. It should be noted that in order to �t the free energy of the 
ontinuum

equation to that of the simulations, we used only one free �tting parameter (the time

o�set of the 
ontinuum equation, sin
e its random initial 
onditions are arbitrary), all

other parameters were either input parameters of the Monte-Carlo model or measured
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dire
tly in the simulation, as in the 
ase of D

4

, above.

2.6 Summary

We have investigated the 
oarsening pro
ess in homoepitaxial systems using

Monte-Carlo simulations and 
ontinuum equations. From the geometri
 aspe
ts

of 
oarsening, the s
enario for merging two mounds is the following: after initial


ompetition between the mounds, the saddle point between them annihilates with

the maximum of the smaller mound, then the one big mound rearranges itself to be

symmetri
.

In 
ase of relaxation to equilibrium, the pro
ess is di�usion-dominated and the

presen
e of theD

4

term is veri�ed. For non-equilibrium 
onditions we have two 
ases:

For weakly out of equilibrium (low 
ux, low Ehrli
h{S
hwoebel barrier) the D

4

term

is still present and dominates the long-time 
oarsening, 
hara
terized by n = 1=4.

However, for strongly out of equilibrium 
ases (high 
ux, high Ehrli
h{S
hwoebel

barrier) the D

4

term seems to be dominated by the D

6

term, 
ausing 
oarsening

with exponent n = 1=6.
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CHAPTER 3

Strain in heteroepitaxial growth

In this 
hapter we use atomisti
 simulations with an empiri
al potential (EAM) to

study the elasti
 e�e
ts of heteroepitaxial islands on adatom di�usion. We measure

the di�usion barrier on pure stressed substrate and near a mis�t island, as well as

the deta
hment barrier from islands of di�erent size.

The numeri
al work presented in this 
hapter was done by me, and the analyti
al

work was shared with Leonard M. Sander and Bradford G. Orr.

24
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3.1 Introdu
tion

Mole
ular beam epitaxy is used extensively to grow thin �lms on 
rystal sur-

fa
es. Although homoepitaxial systems give rise to interesting questions, as seen in

Chapter 2, the 
ase of heteroepitaxy is mu
h more 
omplex.

One of the main 
onsequen
es of the fa
t that the substrate and the adlayers are

made of di�erent atoms is the stress generated in the adlayers. Suppose that the

latti
e 
onstant of the 
rystal made of adatoms is larger that the substrate latti
e


onstant (the adatoms are \larger" than the substrate atoms). Then if the adlayers

are pseudomorphi
 (follow the periodi
 order of the substrate without dislo
ations),

they have to be 
ompressed. The size di�eren
e is not ne
essarily the only sour
e of

stress: the 
ompressive stress of few monolayers of Ag on Pt(111) is measured to be

�ve times larger than expe
ted from the size di�eren
e [1℄. The reason is presumably


harge transfer from the adlayers to the substrate due to their 
hemi
al di�eren
e.

In 
lose to equilibrium 
onditions the growth is layer-by-layer (also 
alled Frank{

van der Merwe [2℄), if this is the energeti
ally most favorable 
on�guration. However,

sin
e the elasti
 energy of the stressed layer is proportional to its height, the ex
ess

elasti
 energy (over the 
on�guration of relaxed adlayers) will over
ome the barrier

of 
reating a dislo
ation network at the bottom of the adlayers for relaxation. Thus

pseudomorphi
 growth 
annot be stable for abritrarily large thi
kness.

Relaxed layer-by-layer growth is not the only possibility to over
ome the ex
ess

elasti
 energy. If the adatoms form tall, 3-dimensional islands, the latti
e 
onstant

in the majority of an island 
an be 
lose to its bulk value, and only the bottom of

the island is stressed. In 
ase of Volmer{Weber growth [3℄, the 3-dimensional islands

nu
leate right on the substrate, while in the Stranski{Krastanow s
enario [4℄ �rst few
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layers grow epitaxially (wetting layers), 
ontinued by the growth of 3-dimensional

islands on top of them.

The typi
al growth 
onditions in MBE are not ne
essarily 
lose to equilibrium.

In this 
ase the dynami
al e�e
ts greatly modify the above thermodynami
 
onsider-

ations. If the dynami
al e�e
ts dominate the pro
ess, then the nu
leation dynami
s

on di�erent layers and the interlayer transport be
ome important [5℄.

The 3-dimensional islands are important for pra
ti
al appli
ations, as they are a

good 
andidate for lateral ele
tron 
on�nement. Certain semi
ondu
tor systems (e.g.

InAs on GaAs) develop 3-dimensional island stru
ture, where the size distribution of

the islands is narrow, free of dislo
ations, and their spatial distribution is relatively

ordered [6℄. Sin
e this ordering takes pla
e during epitaxy without fabri
ation (e.g.

high resolution lithography), they are often 
alled self-organized quantum dots. The

self-organization 
an be enhan
ed by alternately growing GaAs and the strained

InAs: this results in a 3-dimensional stru
ture where the su

essive layers of InAs

are in
reasingly more ordered [7℄.

However, the uniformity of 
urrent InAs quantum dots is insuÆ
ient for laser

appli
ations. It has been suggested re
ently that the size distribution of the quantum

dots is similar to the distribution of the 2-dimensional islands, it follows the same

renormalized 
urve for a range of island densities, and therefore strain does not seem

to be relevant fa
tor determining the size distribution [8℄.

An atomi
 level simulation of strained epitaxial systems has been done by Orr,

Kessler, Snyder and Sander [9℄. In this pioneering work the dynami
 Monte{Carlo

method has been applied in one dimension, whi
h in
orporated linear elasti
ity. The

surfa
e parti
les were able to hop to neighboring sites, with the hopping probability

depending upon both the bond and strain energy. The latti
e was lo
ally relaxed
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after ea
h motion, with global relaxation after �xed number of timesteps. The elasti


latti
e was modelled with harmoni
 for
es between nearest and next-nearest neigh-

bors.

It has been observed that tall islands form, and that their lateral size is smaller

with in
reasing mis�t. The kineti
s determine the morphology: the thermodynami


e�e
ts 
an rea
h only up to the di�usion length: the typi
al distan
e a walker di�uses

during the deposition of a monolayer. On larger s
ales the surfa
e is smooth | as

rough as it would be without strain.

S
hroeder and Wolf [10℄ studied the e�e
t of strain on surfa
e di�usion. They

observed that the a
tivation barrier is with good approximation a linear fun
tion of

strain over a wide range: 
ompressive strain enhan
es di�usion, while tensile strain

hinders it. The strain 
hanged mostly the energy of the saddle point, the stable sites

were not a�e
ted 
onsiderably. The strain �eld of a 
oherent two-dimensional island

is not uniform (the edges are more relaxed than the 
enter), therefore this is re
e
ted

on the di�usion of adatoms on top of the island. In this work simple 
ubi
, f

 and

b

 latti
e has been used with Lennard{Jones potential.

It is tempting to write down a mean-�eld theory using self-
onsistent rate equa-

tions. Refs. [11, 12℄ model the pro
ess with the following dynami
al variables: the

density of adatoms, the density of \typi
al size" 2-dimensional (2d) islands, and the

density of \typi
al size" 3-dimensional (3d) islands. The atta
hment, deta
hment,

di�usion, and 2d/3d 
onversion rates (see later) are given in terms of 6 parame-

ters: the 
riti
al island size, the surfa
e di�usion barrier, the Ehrli
h{S
hwoebel

barrier[13℄, the binding energy of a 
riti
al island, the atta
hment barrier (same for

2d and 3d islands), and one more parameter E

0

with dimensions of energy. The
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elasti
 e�e
ts are taken into a

ount in the deta
hment barrier from a 2d island:

E

deta
h

= E

0

log r

r

(3.1)

(r is the island radius), and also in the assumption that as soon as an island nu
leates

in top of a 2d island, it immediately transforms to 3d island. The parameters are

sele
ted to mat
h an InP/GaAs(001) metal-organi
 vapor phase epitaxy pro
ess, and

an adequate des
ription is a
hieved.

In the resear
h summarized in this 
hapter we study the e�e
ts of mis�t strain on

the energy lands
ape observed by the di�using adatoms, and also how that a�e
ts

the growth pro
ess.

3.2 Simulational methods

In our simulations we use a substrate of slab geometry, whi
h is periodi
 in the

lateral dire
tions, has open surfa
e at the top, and bounded by a frozen latti
e from

below. The atoms of the substrate and the adlayers or adatoms are allowed to relax

a

ording to the potential des
ribed below, but we did not introdu
e dislo
ations to

the substrate. The relaxation is a
hieved by using 
onjugate gradient methods.

It is ne
essary to have the relaxable substrate as deep as wide, be
ause the elasti


e�e
ts penetrate roughly isotropi
ally[10℄. If the latti
e was shallower, then that

would 
ut o� the deformation �eld su
h a way that the e�e
tive range of the elasti


deformation in the lateral dire
tion would be limited to the depth, losing possibly

important long range e�e
ts. This restri
tion has severe 
onsequen
es on the latti
e

sizes that are 
omputationally tra
table.

For interatomi
 potential, we used the embedded atom method (EAM). It belongs
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to the 
lass of pair fun
tionals: the form of the potential is

E

tot

=

1

2

X

i

X

j(6=i)

�

(ij)

(R

ij

) +

X

i

F

(i)

(�

host

i

) (3.2)

The upper index in parenthesis denotes dependen
e only through the type of the

atom. �

(ij)

(R) is the pair-potential part, F

(i)

(�

host

) is the embedding fun
tion, its

argument is the \ele
tron density at the host atom", given by

�

host

i

=

X

j(6=i)

�

j

(R

ij

) (3.3)

where �

(ij)

, F

(i)

and �

j

are given fun
tions.

The rationale of this type of potential is the following[15℄. For the transition

metals (for whi
h the potential is to be used) there is a relatively well de�ned sepa-

ration of positively 
harged ions and nonlo
al 
ondu
tion ele
trons. The intera
tion

of the ions is des
ribed by �

(ij)

. The ions are embedded into the ele
tron density


ontributed by their neighbors (the name embedded atom 
omes from this), and their

intera
tion with the ele
tron �eld is given in F

(i)

.

To write down the pair repulsion term, the ions are 
onsidered as 
harged spheres

of e�e
tive 
harge Z

(i)

(R):

�

(ij)

(R) =

Z

(i)

(R)Z

(j)

(R)

R

(3.4)

and the e�e
tive 
harge is given in parametri
 form:

Z(R) = Z

0

(1 + �R

�

)e

��R

: (3.5)

Z

0

is the number of outer d and s ele
trons; �, � and � (the last one is integer)

are to be �tted. The ele
tron 
ontribution �

j

(R) is estimated from the Hartree-Fo
k

wavefun
tions of the outer d and s ele
trons. Finally the embedding fun
tion F

(i)

is
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de�ned su
h that the equation of state of the isotropi
ally 
ompressed or expanded

metals follow the universal fun
tion (a is latti
e 
onstant):

E(a) = �E

sub

(1 + a

�

)e

�a

�

; (3.6)

where a

�

is a measure from the deviation from equilibrium latti
e 
onstant:

a

�

=

a� a

0

a

0

�

9B


E

sub

�

1=2

: (3.7)

a

0

(the equilibrium latti
e 
onstant), B (bulk modulus), E

sub

(sublimation energy),

and 
 (equilibrium volume per atom) are supplied dire
tly by experimental values,

the ele
tron orbitals are taken from Roothaan{Hartree{Fo
k tables of ground state

atoms, and the rest of the parameters are �tted a

ording to other experimental

values (shear moduli, va
an
y-formation energy, mixing enthalpies between di�erent

metals). The parameters used in our simulation are given in Ref. [15℄.

This pseudopotential provides reasonable values for a row of bulk properties.

There is some 
on
ern that it is similarly appropriate for surfa
e simulations. In

EAM, the atoms are 
onsidered spheri
al (whi
h is good approximation for bulk

transition metal atoms). Surfa
e atoms, however, are in an anisotropi
 environment.

The universal equation of state at very mu
h expanded state is not ne
essarily good

des
ription for the low 
oordinated surfa
e atoms sitting in low embedding ele
tron

density. Nevertheless, EAM is still more realisti
 approa
h than pair potentials, and


omputationally tra
table for the ne
essary system sizes as opposed to �rst prin
iple


al
ulations.

3.3 Results

First we measured the e�e
t of strain on the di�usion barrier. The substrate

latti
e was 
ompressed in the horizontal dire
tions by a given fa
tor, and was allowed
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to relax verti
ally. Then an adatom was pla
ed on top, and the whole system was

allowed to fully relax. Fig. 3.1 shows the energy of the system when a Ag adatom

was pla
ed on a stable, metastable and bridge point of a stressed Ag(111) substrate.

The di�usion barrier (the di�eren
e of the bridge and the stable/metastable energy)

is also plotted.

Around zero stress the barrier was 
lose to be a linear fun
tion of the latti
e


onstant, with in
reasing barrier for tensile strain. This is the expe
ted behavior:

under 
ompressive strain the energy lands
ape be
omes more uniform, while under

tensile strain the adatom feels more the separate attra
ting potential of the surfa
e

atoms. For large tensile strain this trend breaks down: the surfa
e be
omes softer,

bringing down bridge energies, resulting in de
reased di�usion barrier.

The same pro
edure has been applied to the Ag/Ni(111) heterodi�usion system,

the barriers and energies are depi
ted on Fig. 3.2. While the behavior of the di�usion

barrier is qualitatively the same as in the Ag self-di�usion 
ase, the dependen
e of

energies on strain is di�erent. Around zero stress, here the stable sites are una�e
ted,

and the bridge energy is 
hanging. From this we 
an draw the 
on
lusion that

whether the energy of the stable sites or the bridge point 
hanges under stress is

system dependent, no general statements 
an be made.

To test the reliability of our pro
edure, we plot on Fig. 3.1a the di�usion barrier

measured by the e�e
tive medium theory also (the values are from Ref. [16℄). While

the EAM values are 
onsistently lower by about 10 meV, the general trend of the


urves is very similar.

Our primary goal is to study the elasti
 e�e
ts of an island on the energy lands
ape

observed by the di�using adatoms. To persue this we deposited a large hetero-island

and an adatom on the substrate, and 
omputed the energy of the system for di�erent
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Figure 3.1: Di�usion barrier of Ag adatom on stressed Ag(111) substrate. a) Com-

parison of the di�usion barrier obtained by EAM potential and e�e
tive

medium theory (from Ref. [16℄). The barrier is plotted against the ratio

of the stressed and equilibrium latti
e 
onstant. b) The e�e
t of strain

on the bridge energy and the stable and metastable energy of the same

system. Note that around zero stress, the bridge energy is relatively


onstant, while the stable/metastable energy is 
hanging.
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Figure 3.2: Di�usion barrier of Ag adatom on stressed Ni(111) substrate. a) di�usion

barrier and b) bridge and stable energies as fun
tion of the ratio of the

stressed and equilibrium latti
e 
onstant. This 
ase the stable energy is


onstant near equilibrium, and the bridge energy is 
hanging.
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positions of the adatom, the 
on�guration is shown on Fig. 3.3.

On Fig. 3.4 we plot the di�usion barriers of a Ag adatom on top of Ni(111) sub-

strate, as a fun
tion of the distan
e from a Ag island of radius 4 atoms. The mis�t

between Ag and Ni is 16%, the Ag island is 
ompressed. We had to sele
t metals of

this large mis�t in order to see e�e
ts of the mis�t on the system sizes 
omputation-

ally available | 32

3

in this 
al
ulation. There are two di�erent barriers: one seen

by an adatom di�using away from the island, and a di�erent one for approa
hing

it. The os
illation is due to the nature of the latti
e: on top of an f

(111) latti
e

an adatom 
an be in the f

 position (stable) or h
p position (metastable). The

di�usion barrier is measured between the bridge point and the stable or metastable

site.

A

ording to the results, near the island it is easier to di�use away from a stable

site, and easier to di�use inward from a metastable site. The island does not have

a strong attra
tive or repulsive long-range e�e
t on the adatom. However if the

adatom is very 
lose, it 
an only di�use inwards: it is 
aptured by the island.

The small island of the previous result was pseudomorphi
 to the substrate. For

larger islands this is not the 
ase. Fig. 3.5 shows the di�usion barriers near an island

of radius 7 atoms, whi
h is already not pseudomorphi
, as 
an be seen on Fig. 3.3.

The distortion of the energy lands
ape is mu
h larger in this 
ase, and the attra
tion

of the island 
an be felt at larger distan
es. The e�e
t of the island is not only attra
-

tion (the outward barriers larger than the inward ones) but also enhan
ing di�usion

near the island: the di�usion barriers in both dire
tion are de
reased. Probably this

is due to the fa
t that the substrate near the 
ompressed island is also 
ompressed.

To 
he
k that how mu
h of this e�e
t is due to the presen
e of the 
ompressed

hetero-island, we repeated the previous 
al
ulation with homoepitaxial island: the



35

Figure 3.3: The 
on�guration to measure the e�e
t of an island on the energy land-

s
ape. White 
ir
les denote substrate atoms, bla
k ones are the hetero

atoms. The hexagonal island is of radius 7 on this �gure, the bla
k

atoms on the top right 
orner are part of the island be
ause of the peri-

odi
 boundary 
onditions. The adatom is moved in the dire
tion of the

arrow.
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Figure 3.4: Di�usion barrier of Ag on Ni(111) near a small Ag island (radius is 4

atoms). The island is pseudomorphi
. The bottom �gure is magni�
ation

of the top �gure around the equilibrium barriers.
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Figure 3.5: Di�usion barrier of Ag on Ni(111) near a large Ag island (radius is 7

atoms as in Fig. 3.3). The island is not pseudomorphi
. The s
ale of the

plots is the same as on the previous �gure.
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large Ag island has been repla
ed with same size Ni island. The obtained barriers

(Fig. 3.6) show even smaller e�e
t than the 
ase of the small hetero-island. On

a 
onsiderable range the energy lands
ape is deformed: the outward and inward

dire
tions are not equivalent (as in a sawtooth potential) but there is no global

attra
tion or repulsion.

The deta
hment barrier from a strained island has also been measured. Fig. 3.7

shows the bonding energy as a fun
tion of island size, it is the same as deta
hment

barrier up to its sign. The trend is de
reasing barrier for larger islands.

It has to be noted that the bonding energy of the island of radius 5 is very di�erent


ompared to the nearby sizes. The explanation is the following. The bonding energy

is de�ned as the energy of the island with an adja
ent adatom, the zero point is

when the adatom is in�nitely far away. The island of this size is at the borderline

of pseudomorphi
 and not pseudomorphi
 islands. When we measured the energy of

the island in itself, the relaxation 
onverged to a pseudomorphi
 state, see Fig. 3.8.

But when the adatom was added, this was enough perturbation that the system


onverged to a not pseudomorphi
 state (Fig. 3.9). Thus the addition of the adatom

triggered a mu
h lower energy state, hen
e the large negative bonding energy. It is

possible that the bare island also has a lower energy non-pseudomorphi
 state, but

we did not do a detailed sear
h.

We also tried to obtain an energy lands
ape on top of an island. This was quite

diÆ
ult, be
ause the island atoms are very soft, deform very mu
h in the presen
e

of an adatom on top, and there is no well de�ned stable, metastable and bridge site.

Fig. 3.10 depi
ts a 
ase when a the adatom is in a deformed four-fold hollow site.
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Figure 3.6: Di�usion barrier of Ag on Ni(111) near a large Ni island (radius is 7

atoms). Same s
ale as previous �gure.
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Figure 3.7: Bonding energy to strained Ag islands as a fun
tion of island radius. The


ase of radius=5 is explained in the text.
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Figure 3.8: Relaxed island of radius 5. The \pseudomorphi
 atoms" are grey. (An

atom is 
onsidered pseudomorphi
 if it is 
loser to the stable site extrap-

olated from the latti
e than to other stable or metastable sites.) The

majority of the island is pseudomorphi
, only the edges are pushed out.

Note the deformed edges.
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Figure 3.9: Relaxed island of radius 5 with adja
ent adatom | 
ompare with pre-

vious �gure. The \pseudomorphi
 atoms" are grey. The perturbation

of the adatom was enough that the nearby part of the island is pseudo-

morphi
 only. The other parts are also relaxed, with smooth dislo
ation

network 
onne
ting the relaxed parts.
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Figure 3.10: Unusual deformations like this four-fold hollow site o

ur on top of an

island.
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3.4 Summary

In this 
hapter we studied the elasti
 e�e
ts of heteroepitaxial islands on di�u-

sion using atomisti
 simulations with EAM potential. Compressive strain enhan
es

di�usion, small tensile strain hinders it, but large tensile strain also tend to enhan
e

it. Whether the energy of the stable site 
hanges or the bridge energy, depends on

the system.

The energy lands
ape near a 
ompressed island is deformed: the island attra
ts

the adatom, and the di�usion is in
reased near the island. Even homoepitaxial

island deforms the energy lands
ape, but the 
hange is mu
h smaller, and only the

symmetry of the potential is broken.

The deta
hment barrier from a 
ompressed island de
reases with larger island

size. The di�usion barriers on top of an island is hard to measure, be
ause the island

is soft and distorted near an adatom, there is no well de�ned di�usion path.
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CHAPTER 4

S
aling and river networks: A Landau theory for

erosion

The resear
h presented in this 
hapter was done with Professor Leonard M.

Sander; the numeri
al work was done by me, and the analyti
al work by Profes-

sor Leonard Sander. It was published in Phys. Rev. E 56, R5 (1997).

We propose a 
oarse-grained theory for the formation of a river network in the

form of a Langevin equation for the erosion of the lands
ape 
oupled to a 
onservation

law for the surfa
e water 
ow. We 
laim that this is the universal form for the large-

s
ale behavior. We show by simulations of a dis
rete model whi
h represents the

same dynami
s that the slope-area law, the basin size distribution law, and Horton's

laws agree with real rivers. We dis
uss the relationship to optimal 
hannel networks

and to self-organized 
riti
ality.
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Natural river networks have attra
ted a good deal of attention in the physi
s

and geophysi
s 
ommunities, and a large number of models have appeared whi
h

attempt to give an explanation for the remarkable statisti
al properties of these

systems [1, 2, 3, 4℄. The spirit of mu
h of this work is to try to abstra
t from the

details of the geologi
al pro
esses a simple des
ription whi
h will a

ount for the

large-s
ale, 
oarse-grained properties of the network. In this 
hapter we present a

new model of this type. Our model is similar to that of Inaoka and Takayasu [2℄ and

of Sin
lair and Ball [3℄ but also has signi�
ant di�eren
es. Our theory is intended to

serve as a uni�ed model of erosion and is based on a 
ontinuum formulation whi
h

we believe to 
apture the important features that survive on 
oarse-graining. If we

are 
orre
t, mu
h of the previous work will have the same large-s
ale properties as

the work we present here.

4.1 Statisti
al properties of river networks

The remarkable statisti
al properties of river basins have been known for some

time [5, 6℄. We will fo
us on a few of the laws whi
h we 
onsider to be 
entral, and

whi
h we have veri�ed for the model to be presented. The most important of these

is the slope{area law: whi
h was derived from �eld observations [7℄: the slope of the

river bed s s
ales with a power of the basin area Q:

s � Q

��

(4.1)

where the value of the exponent � � 0:5 has been 
arefully measured [7℄. The

distribution of the drainage area also obeys power law: P � Q

��

where P is the

fra
tion of the lands
ape for whi
h the drainage area is larger than a given value Q.

The value of the exponent is � � 0:43 [4, 8℄.



48

The best known of the statisti
al properties are Horton's laws [9℄ whi
h are re-

lations between the number and length of di�erent parts of the network. They say,

in e�e
t, that the streams form a random bran
hing fra
tal. Consider the Strahler

s
heme for ordering the streams (i.e., up ends of the streams are order 1; when two

or more streams of same order join, the order in
reases by one; when streams of

di�erent order join, the higher stream order prevails.) Let N

!

denote the number

of streams of order !, and L

!

their averaged length. Horton's laws state that the

bran
hing ratio R

B

= N

!

=N

!+1

and the length ratio R

L

= L

!+1

=L

!

are independent

of !. The fra
tal dimension [10℄ of the network is given by d




� log(R

B

)= log(R

L

),

where d




is the fra
tal dimension of the individual streams [11℄. For many networks

the values R

B

� 4; R

L

� 2 are found [9℄ along with d




� 1:1 | 1:2 [11, 12℄. Our

model will turn out to obey all these laws.

4.2 The model

We start with the observation that lands
apes seem to have s
ale invarian
e

[13℄: they are 
lose to being self-aÆne fra
tals. This means that if we 
onsider a

topographi
 map and res
ale the 
oordinates, r on the map so that r 7! br, and

the height di�eren
es by �h 7! b

�

�h, where � < 1 we get a statisti
ally identi
al

lands
ape. Sin
e erosion by rivers are among the pro
esses that form lands
apes,

the s
ale invariant statisti
al properties of mature river networks should have a 
lose


onne
tion with the s
ale invarian
e of the lands
ape.

Now let us fo
us on the erosion pro
ess, and make some simplifying assumptions

(whi
h 
ould be easily modi�ed): we assume that the only sour
e of water is from

a uniform rainfall and negle
t underground 
ows. The land is geologi
ally uniform

and initially stru
tureless. We also assume that the material washed away by the
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river is 
arried entirely to the sea, and is not redeposited. This is the limit of slow

erosion and fast 
ows.

To formulate the 
oarse-grained erosion law we use an argument whi
h is standard

in the theory of random rough surfa
es [14℄ and whi
h, in turn, is based on the 
lassi


work of Landau and Ginsburg [15℄. We note �rst that the absolute height of the

lands
ape should play no role in the lo
al erosion. Thus we write:

�h=�t = F (rh;r

2

h; jrhj

2

; :::) + �(r; t) (4.2)

where �(r; t) is a noise term whi
h a

ounts for small s
ale random pro
esses.

Further, we argue that the fun
tional, F , is analyti
 in the gradients: it is the

result of averaging over lo
al 
u
tuating pro
esses

1

. Now we are interested in large-

s
ale statisti
al properties. When we res
ale a self-aÆne surfa
e the gradients de-


rease. Thus we should be able to expand F in a power series:

F = A +B � rh + Cjrhj

2

+Dr

2

h+ ::: (4.3)

We 
an interpret these terms. The �rst is a uniform 
hange in height whi
h might


orrespond to geologi
al uplift. For our 
ase we 
an set A = 0. The se
ond term

involves a ve
tor, B, whi
h introdu
es a preferred global dire
tion of water 
ow.

Sin
e lo
al 
ows have no preferred dire
tion (ex
ept down) we must set B = 0. The

third term 
orresponds to erosion proportional to s

2

, the squared slope. This sort

of law has been 
onsidered in the literature [16℄ along with others. It has a spe
ial

signi�
an
e sin
e it is the lowest order term, and thus the dominant one when we

res
ale. The last one whi
h we keep 
an be thought of sedimentation and smoothing:

1

This is the weakest part of our argument. For near-equilibrium dynami
s F is related to the

Landau free energy and is ne
essarily analyti
. For our 
ase the rigorous justi�
ation of the method

is less evident. We do get interesting results, as we will see.
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it rounds hilltops and �lls valleys [17℄. The equation for the landform is:

�h=�t = Cjrhj

2

+Dr

2

h+ :::+ �(r; t): (4.4)

This is the KPZ equation [18℄ whi
h has been extensively studied. There has been

a previous appli
ation of this equation to river networks [19℄. In this form it is


lear that the equation 
an generate self-aÆne lands
apes. The higher order terms

represented by the dots are irrelevant in the sense that they disappear upon res
aling.

The other ingredient in our theory is the water. We de�ne q as the 
ux of water

per unit width of lands
ape. Our assumptions (uniform rainfall and no ground water)

imply that q / Q, where Q is the basin area. The ve
tor q satis�es the following:

r � q = R (4.5)

where R is the rainfall/unit area. Further, water runs downhill. Thus:

^
q � q=q / �rh: (4.6)

Finally, we insist that there be no erosion in the absen
e of water. That means

that the 
oeÆ
ient, C of the erosion term must be a fun
tion of q, that vanishes as

q ! 0. There is no parti
ular reason why C should be analyti
, so we propose on

the basis of simpli
ity, an erosion rate linear in the 
ow: C = �
q. Putting this all

together we get:

�h=�t = �
qjrhj

2

+Dr

2

h+ �(r; t): (4.7)

Equations (4.5, 4.6, 4.7) 
onstitute our Landau theory.

Formulations similar to this one have been proposed before. A theory of this type

was given by Smith and Bretherton [20℄ some time ago, and dis
ussed by Tarboton

et al. [6℄ in the 
ontext of stream initiation. Our equations di�er from theirs in
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that they 
onserve sediment so that the right-hand side of Eq. (4.7) is of the form

�r � [
^
qq

m

s

n

℄. Our Eq. (4.7) 
orresponds (up to an irrelevant term) to m = n = 2.

The re
ent work of Sin
lair and Ball [3℄ proposes a set of equations like ours with a

term of the form q

a

s

b

of whi
h our equation is a spe
ial 
ase. (As we will see, our

solution to these equations is quite di�erent from that of Ref. [3℄).

Be
ause the landform generated by Eq. (4.7) is 
oupled to the water 
ow (whi
h


hanges with the lands
ape) the solutions to the 
oupled set are quite unlike those

of the ordinary KPZ equation. With suitable boundary 
onditions, the lands
ape

will approa
h a dynami
 steady state where the river network and the landform do

not 
hange. This steady state is a feature of many of the models whi
h have been

proposed. It 
orresponds to the simple statement that large rivers are long-lived

2

.

To understand the steady state we use the approa
h of Smith and Bretherton

[20℄ who point out that an obvious kind of steady state is one in whi
h the erosion

is uniform everywhere. If we negle
t smoothing and noise (as we will do from this

point on), we 
an write:

�h=�t = Const: = �
qjrhj

2

(4.8)

whi
h amounts to having s / 1=q

1=2

, that is, exa
tly the slope-area law

3

of Eq.

(4.1). If this state is attained it will have the observed slope-area law in a natural

way, and is 
ertainly stationary

4

. It remains to show that featureless lands
apes

tend towards this state, and that it is stable. To investigate this question we turn to

2

We are not 
onsidering the meandering instability whi
h 
auses large rivers to 
hange 
ourse.

3

Sin
e only the ratio of the exponents of q and jrhj is signi�
ant here, other 
ombinations like

q

2

jrhj

4

would yield the same slope-are law. The 
hoi
e of the exponents in Eq. (4.7) is motivated

by �nding the lowest order permitted term that produ
es the right slope-area relation.

4

In 
ontrast, Sin
lair and Ball 
onsider another kind of state in whi
h the height at ea
h point

de
reases as a power law. This may be appropriate for the late stages of erosion (the formation of

a penneplain) where the boundary 
onditions dominate the behavior throughout the river basin.

We give a more lo
al approa
h. The resulting slope-area law is di�erent in the two 
ases.
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numeri
al solutions of a dis
rete model whi
h is an approximate realization of our

set of equations.

4.3 Numeri
al simulations

Our dis
rete model is very similar to that of Refs. [2, 3℄ (though our boundary


onditions are not). We 
onsider a triangular latti
e of mesh points whi
h represents

our lands
ape. Every point has two variables: the height h and the 
ow q. The

water 
ows on the bonds of the latti
e, and every node has one out
owing bond, the

one whi
h is the steepest. At every time step (doing parallel updates) the drainage

area is 
al
ulated from the lands
ape, and the height is de
reased a

ording to the

erosion rule: �h = �jrhj

2

� q ��t. The gradient is measured on the out
owing edge.

If there are no lakes in the initial height distribution (no nodes with all neighbors

higher then itself), then using suÆ
iently small �t, no lakes are 
reated. Thus we

were able to ignore the spe
ial treatment of lakes, whi
h are generally present only

in the initial stages of the erosion pro
ess, and do not a�e
t the stationary state.

Initially the lands
ape is a hillside with a little noise: h(x; y; t= 0) = s

0

� (y +

dy � rnd(x; y)), where y is the North{South 
oordinate, s

0

is the initial slope of the

hillside, rnd() is uniform random number from [0; 1℄, and dy is the latti
e 
onstant.

These initial 
onditions ensure the absen
e of lakes. The boundary 
onditions are

periodi
 in the East{West dire
tion, in�nite wall on the North side (this is the upper

end of the hillside), and out
owing on the South side. The slope of the out
owing

edges on the out
owing side are taken to be �xed. With these boundary 
onditions

the stationary state is su
h that the whole lands
ape erodes with the same rate

everywhere. We 
an think of this as representing a plateau whi
h has been upthrust

and whi
h starts to erode. This boundary 
ondition is in 
ontrast with �xed height
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Figure 4.1: A typi
al stationary river network on a 256 x 256 triangular latti
e. For

better visualization, the stream is drawn with line width proportional to

the square root of the dis
harge. Only streams with dis
harge q � 10 are

displayed.

at the out
owing edge used by other authors [2, 3℄: in that 
ase the stationary

state o

urs when nearly all of the material has been washed away and a di�erent

slope-area law holds [3℄.

In our simulations we �nd that the initial stages of river formation 
orresponds

to rivers valleys that start at the bottom edge and elongate, 
ompete, and eventually

rea
h a stationary state with one large river. Fig. 4.1 depi
ts a typi
al stationary

river network. Taking the latti
e 
onstant to be unit length, the slopes at the

out
owing edge also one, and measuring the dis
harge as the number of the nodes

in the basin area, the rivers rea
h the stationary state at around unit time. The


orresponding lands
ape is shown on Fig. 4.2.

The following statisti
al results were obtained by averaging 20 independent sim-

ulations of size 256 x 256. As expe
ted, the slope{area law (Fig. 4.3) holds with
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Figure 4.2: The lands
ape 
reated by the river of Fig. 4.1. The grays
ale is propor-

tional to height, with white 
orresponding to high.

exponent 1=2 � 10

�6

. The great a

ura
y is understandable if we a

ept that the

slope{area law is an attra
tive �xed point of the dynami
s: if any node does not

satisfy the law, it will erode faster or slower than its neighbors towards a height

whi
h satis�es the law. The 
umulative distribution of the basin area is depi
ted on

Fig. 4.4. The value of the exponent is � = 0:45� 0:02. Horton's laws are shown on

Fig. 4.5, the bran
hing ratio is R

B

= 4:0 � 0:2, the length ratio is R

L

= 2:3 � 0:1.

The dimension of the individual streams d




is measured [12℄ from the s
aling of the

average river length with the system size: hl

i

i � L

d




(where l

i

is the distan
e of site

i from the root on the network). Using L = 64; 128 and 256, we obtained d




= 1:05,

giving network fra
tal dimension 1:85 � 0:15. This value of the fra
tal dimension

is somewhat lower than the expe
ted 2 for spa
e �lling networks. The probable

explanation is the low value of d




: in our hillside initial 
onditions the rivers are

\stret
hed" in North{South dire
tion, making them more linear (d





loser to 1).
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Figure 4.3: The slope{area law obtained by the simulation. The exponent is � =

1=2 � 10

�6

. The great a

ura
y is the 
onsequen
e of the attra
tive

nature of the �xed point of the dynami
s.
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Figure 4.4: The 
umulative basin area distribution P (Q) (the fra
tion of the land-

s
ape for whi
h the drainage area is larger than a given Q). The value

of the exponent, � = 0:45� 0:02 agrees with Ref. [4℄.
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Figure 4.5: Horton's laws for the bran
hing ratio (Æ): R

B

= 4:0�0:2, and the length

ratio (�): R

L

= 2:3� 0:1. With stream dimension d




= 1:05, the fra
tal

dimension of the network is D = d




� log(R

B

)= log(R

L

) = 1:85 � 0:15,

somewhat lower than the expe
ted spa
e �lling D = 2.

There is another approa
h [4, 21℄ to the problem of river networks whi
h appears

quite di�erent from ours, namely the idea that rivers are optimal 
hannel networks

(OCN's): 
onne
ted bran
hing patterns whi
h minimize a fun
tional that represents

dissipation. It is well known that for systems far from equilibrium no fun
tional

exists in general whi
h gives the dynami
s in the usual sense that �h=�t = ÆF=Æh. If

there were su
h a fun
tional we 
ould understand OCN's by noting that �h=�t = 0,

the stationary state, would o

ur if F is at a minimum. However, our equations are

not of this form.

The solution to this quandary was given by Sin
lair and Ball [3℄ who point out

that a fun
tional 
an exist whi
h gives the stationary state, but not the 
omplete

dynami
s. It is easy to see that the height fun
tion, h, and 
ow q whi
h minimize:

F [h;q℄ =

Z

n

h � (r � q� R) + q

1=2

o

d

2

x: (4.9)

obey both Eq. (4.5) and Eq. (4.1). However this variational prin
iple does not
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produ
e the dynami
s (Eq. (4.7)). There is no free energy whi
h would produ
e the

dynami
s of the initial stages of the erosion.

In the erosion pro
ess there are sudden large-s
ale events whi
h have some simi-

larity with the avalan
hes of self-organized 
riti
al (SOC) systems [22℄. In fa
t, there

is a formulation of SOC dynami
s [23℄ whi
h resembles ours in that it involves a

Langevin-like equation whose parameters are a dynami
al variable (
f. C = �
q).

However, our theory does not represent SOC pro
esses, though there are similarities.

The events in our system whi
h are most like avalan
hes are river basin 
apture: when

part of the basin area gets 
onne
ted to another river. These 
hange a ma
ros
opi


part of the 
ow pattern and are fast and nonlo
al like avalan
hes, and they are essen-

tial during the evolution of the river network. But they 
ompletely disappear from

the stationary state, and are not dominant for the formation of the large-s
ale stru
-

tures. In SOC the avalan
hes are the only means to transmit information between

the di�erent parts of the system, and dominate any large-s
ale stru
ture. In our 
ase

it is the river network itself, while eroding slowly, whi
h transmits information.

4.4 Summary

In summary, our treatment of river networks di�ers from earlier work in that it

emphasizes the properties of the dynami
s whi
h should survive 
oarse-graining. We

make a strong 
laim, that the dynami
s given by Eq. (4.5, 4.6, 4.7) is a universal

theory for the large-s
ale stru
ture. We have shown that, at least, there is a rea-

sonably satisfa
tory agreement with the empiri
al statisti
al laws that are gleaned

from �eld observations of real rivers. We hope that generalizations of our work to

allow ground water, storms, et
., 
ould shed some light on how these pro
esses a�e
t

lands
apes, and 
ould even, in the best 
ase, give useful information on, for example,
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the statisti
s of 
oods.
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CHAPTER 5

Di�usion-limited aggregation and vis
ous

�ngering in a wedge: Eviden
e for a 
riti
al angle

The resear
h presented in this 
hapter was done with D. A. Kessler, Z. Olami,

J. Oz, I. Pro
a

ia, and Leonard M. Sander; large part of the numeri
al work was

done by me, while the analyti
al work was shared between the 
ollaborators. It was

published in Phys. Rev. E 57, 6913 (1997).

We show that both analyti
 and numeri
al eviden
e points to the existen
e of

a 
riti
al angle of � � 60

o

� 70

o

in vis
ous �ngers and di�usion-limited aggregates

growing in a wedge. The signi�
an
e of this angle is that it is the typi
al angular

spread of a major �nger. For wedges with angle larger than 2�, two �ngers 
an


oexist. Thus a �nger with this angular spread is a kind of building blo
k for vis
ous

�ngering patterns and di�usion-limited aggregation 
lusters in radial geometry.

61
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The di�usion limited aggregation (DLA) [1, 2℄ model is a simple idealization of

a 
ommon natural pro
ess, the formation of natural obje
ts where the rate-limiting

step is di�usion. In the simplest examples (say, solidi�
ation from solution, or dif-

fusion limited ele
tro
hemi
al deposition) parti
les random walk and then sti
k to

a growing aggregate. Di�usion-limited growth of this type gives rise to remark-

able morphologies whi
h are rami�ed, disorderly, and, in the 
ase of in�nite di�usion

length, fra
tal. It is this 
omplexity whi
h is the major interest in the model. Despite

more than a de
ade of work in this �eld [2℄ very little theoreti
al understanding has

been a
hieved. In this 
hapter we attempt to 
ontribute to su
h understanding by

demonstrating the existen
e of a kind of building blo
k for the pattern: there seems

to be a 
hara
teristi
 angular spread for the �ngers whi
h make up the stru
ture.

5.1 Fingering instability

The fundamental origin of the 
omplexity of DLA patterns has been known from

the outset: it is in a �ngering instability: di�usion-limited growth is generi
ally

linearly unstable for 
at growing surfa
es, and forms �ngers. The proliferation of

the �ngers gives rise to the fra
tal pattern in a way whi
h we seek to 
larify here.

Another physi
al system that displays the �ngering instability is the displa
ement

of an invis
id 
uid by a vis
ous one, the vis
ous �ngering problem. It has been

suspe
ted sin
e the work of Paterson [3℄ that the large s
ale features of DLA patterns

are similar to those in radial vis
ous �ngering. They both obey the Lapla
ian growth

equations:

r

2

� = 0 (5.1)

n̂ � r� = n̂ � ~v (5.2)
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Here � denotes the di�using �eld, i.e. the probability density to ever �nd a random

walker at point r in the 
ase of DLA or the pressure at r in vis
ous �ngering. The

normal velo
ity of growth of the pattern is n̂ � ~v. The boundary value on the surfa
e

of the growing pattern, �

s

, is given by the Gibbs-Thomson relation �

s

= 
� for the


ase of vis
ous �ngering where 
 is the surfa
e tension. DLA di�ers by having the

boundary 
ondition set impli
itly by the �nite size of the a

reting parti
les and

by the fa
t that the patterns are a�e
ted by shot noise. Some authors have argued

[4℄ that neither of these fa
ts a�e
t the large-s
ale features of the pattern, and that

radial vis
ous �ngering patterns are identi
al to DLA 
lusters in a 
oarse-grained

sense. We adopt this point of view.

This idea is attra
tive be
ause the theory of vis
ous �ngering is quite well devel-

oped [5℄. In parti
ular, it is 
lear that vis
ous �ngers in a 
hannel geometry are not

fra
tal [6℄, and attain a steady state of a single �nger. The striking di�eren
e from

the radial 
ase, where there is no indi
ation that a steady state is ever a
hieved,

led Ben-Amar and 
ollaborators [7℄ to investigate the wedge geometry. The general

result is that in a wedge of any angle the sele
ted �nger grows in a self-similar way.

For �xed surfa
e tension they are stable for a �nite time, and they then be
ome

unstable against tip-splitting. This idea was used by Sarkar [8℄ to give an estimate

for the fra
tal dimension of DLA by 
ounting the tip-splittings.

However, we think that Sarkar's estimate left out a 
ru
ial e�e
t: that of �nger


ompetition. Our view is that this is the key to the whole problem: if �ngers split

in a wedge that is too narrow, they will 
ompete, and one will die. The result will

be a �nger with sidebran
hes. On the other hand, if the wedge is wide enough,

then the �ngers will not 
ompete, and there will be two bran
hes to the pattern.

The wedge angle, � at whi
h this begins to happen will be twi
e the typi
al angle
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between �ngers, whi
h we 
all �. As a pattern grows the �ngers will split until they

form 
hannels of angle � for their neighbors. There is some experimental support

for this idea [9℄ in the mode of tip-splitting seen for various angles. However, the

experimental eviden
e is ambiguous be
ause the dynami
 range of a real �ngering

experiment is limited. Here we will try to verify our ideas by giving an analyti


estimate for �, and then show that these are reasonable by 
onsidering simulations

of DLA 
lusters in a wedge.

5.2 Finger 
ompetition

To begin, 
onsider two steady-state vis
ous �ngers side by side in a wedge with

periodi
 boundary 
onditions at the sides. We will attempt to estimate how large

the angle must be so that there is no 
ompetition between them. For example, for

� = 2� the �ngers grow independently.

We now look at the stability of the two �nger solution in order to see if there is


ompetition. We prepare one �nger slightly longer than the other, and ask, in the

linear regime, if there is a di�erent growth rate for the two. We 
an see how the


al
ulation goes by using the mapping, due to Ben-Amar and Brener, [10℄, between

the wedge problem and the problem of di�usive (i.e. not Lapla
ian) growth in a


hannel. We �rst map the wedge to a strip using: ~z = [2=�℄ ln z: This transforms a

wedge of angle � 
entered around the x-axis in the z plane to a strip of width 2 in

the ~z plane. Sin
e the transformation is 
onformal, the �eld is Lapla
ian in the new

variables. Eq. (2) be
omes:

^

~n �

~

r� = exp(�~x)

^

~n �

~

~v: (5.3)

The Gibbs-Thomson 
ondition on the interfa
e is 
ompli
ated in the new 
oordinates
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ex
ept for small surfa
e tension, in whi
h 
ase it be
omes:

�

s

= 
~� exp(��~x=2) (5.4)

If we de�ne � � � exp(��~x) then � satis�es, up to terms of order �

2

, a quasi-

stati
 di�usion equation in the frame moving with Pe
let number �:

r

2

� + 2�

d�

dx

= �

2

� � 0 (5.5)

Eq. (5.3) now reads

^

~n �

~

r� =

^

~n �

~

~v: Thus we have two steady-state �ngers

growing in a 
hannel with �nite di�usion 
onstant and with boundary 
ondition

on the interfa
es �

s

= 
~� exp(�3�~x=2): This equation implies a spa
e-dependent

e�e
tive 
urvature. Thus our problem is not exa
tly the same as that of dendrites

in a 
hannel, but it is qualitatively the same

1

. For the question of 
ompetition, the

exa
t form of the surfa
e-tension is probably not important. From Eq. 5.5 it follows

that 1=� plays the role of a di�usion length: the �eld is s
reened over distan
es larger

than 1=� and two �ngers that are separated by larger distan
e 
annot 
ompete. This

is an indi
ation that a 
riti
al angle exists.

We have veri�ed this insight by a numeri
al stability analysis. We found that for

small � (weak s
reening) �ngers 
ompete, and for large wedge angle they do not.

The numeri
al value for the threshold that we 
ompute in this way (� � 0:5) is too

large to be trusted be
ause of the small � approximation.

1

We have made a further approximation here. In our stability analysis we use the steady state

solution to the dendrite problem. For the wedge and for the 
hannel there are two solutions for

ea
h surfa
e tension 
orresponding to di�erent �nger widths. In the wedge, the solution with the

smaller width is the stable one, and the opposite is true in the 
hannel. However, for the question of

�nger 
ompetition, we think it does not matter whi
h solution one looks at, sin
e the two solutions

di�er only in their lo
al tip stru
ture. Finger 
ompetition is a more global question.
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5.3 The two-needle model

In order to go further we do a di�erent estimate whi
h is more qualitative, but

not restri
ted to small angles. Consider, again, two vis
ous �ngers in a wedge of

opening angle �. We now repla
e the problem with a simpler one that we 
an

solve analyti
ally, that of two needles in the wedge. In 
omplex notation, the tips

of the needles are at z

1

= l

1

e

i�=4

; z

2

= l

1

e

3i�=4

: The Lapla
ian �eld � vanishes on

the needles, and we suppose that there is a 
uto� (�nite tip size) a and that the

growth rate of the needles is given by the 
ux of the Lapla
ian �eld, r� at the tips:

z = z

i

+ ae

i�

i

= z

i

+ Æz

i

; �

1;2

= �=4; 3�=4:

We solve by a series of 
onformal maps. First we map the z plane into the u plane

with u = z

�

; � = 2�=�. The two needles are now one needle along the imaginary

axis. Now 
enter the needle. De�ne L = [l

�

1

+ l

�

2

℄=2, and arrange things so that the

needle goes from �L to L by putting w = u� [l

�

1

� l

�

2

℄=2. Then we 
an map the line

segment onto the unit 
ir
le by putting w = [Li=2℄[~z + 1=~z℄: Now the two needles

have been mapped onto points on the exterior of the unit 
ir
le (~z

1

= 1; ~z

2

= �1).

It is now 
lear that the potential 
an be written � = Re ; = �

o

ln(~z), where

�

o

is proportional to the in
oming 
ux. This potential satis�es periodi
 boundary


onditions. To get the growth rate it is suÆ
ient to �nd d =dz be
ause jd =dzj

2

=

jr�j

2

. By a straightforward 
omputation we 
an write down the growth rate of tip

i:

d =dzj

i

= jd�=dzj /

l

��1

i

[Ll

��1

i

a℄

1=2

/

l

[��1℄=2

i

[l

�

1

+ l

�

2

℄

1=2

: (5.6)

Whenever one �nger is longer than the other, the longer one will get more 
ux,

and, it seems, grow faster. However, we know from the 
omputation above that there

is a point at whi
h �ngers 
ease 
ompeting. Physi
ally this is be
ause the di�eren
e
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between a needle and a �nger is that a �nger must grow in area if it is self-similar.

Thus, even if the integrated 
ux to two �ngers is the same the fatter one will grow

more slowly sin
e it will advan
e a

ording to dA

i

=dt / d(l

2

i

)=dt / l

i

dl

i

=dt / G

i

where G

i

is the 
ux that �nger i gets in 
ompetition with the other. We estimate

G

i

/ l

[��1℄=2

i

from the needle 
al
ulation. That is dl

i

=dt / jd�=dzj=l

i

: Thus:

dl

1

=dt

dl

2

=dt

= [l

i

=l

2

℄

[��3℄=2

: (5.7)

When � = 3, that is, when � = 120

o

, the two �ngers stop 
ompeting. Thus ea
h

�nger o

upies � = 60

o

. We should note that this is exa
tly the 
riterion of Derrida

and Hakim [11℄ who get it in a di�erent way, namely by demanding that, for some

�xed a, the ratio of the lengths of two spikes remain small (though the di�eren
e 
an

be large). That is, they make the following quantity de
rease, for l

1

> l

2

:

d

dt

(l

1

=l

2

) =

l

1

l

2

[(1=l

1

)d�

1

=dz � (1=l

2

)d�

2

=dz℄ (5.8)

whi
h is our estimate.

We 
an use this estimate in another way. Suppose that the �ngers are fra
tal, so

that we have A / l

D

where D is the fra
tal dimension. Now repeating the 
al
ulation

above, we must have (�� 1)=2 = D� 1, at the operating point. However, Turkevi
h

and S
her [12℄ have given another 
riterion: if the 
luster grows so that it has major

bran
hes, then the growth and the fra
tal dimension will be dominated by the tip

angle. The result of this 
onsideration, in our notation, amounts to saying that

D = 1+�=(�+�). Using � = �=� we �nd that � satis�es a quadrati
 equation, whose

solution is � = (

p

2� 1)� whi
h 
orresponds to � � 75

o

. Thus D = 1+1=

p

2 = 1:71

whi
h is exa
tly the observed fra
tal dimension. This estimate was given by Ball [13℄

some years ago using a di�erent argument.
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5.4 Numeri
al simulations

To verify these estimates we turn to numeri
al 
al
ulations for DLA in a wedge.

We grew a large number of o�-latti
e DLA 
lusters in wedges of di�erent opening

angles �. For greater eÆ
ien
y we used the method of hierar
hi
al maps [14℄ adapted

to the wedge geometry, so that our wedge was subdivided into se
tors whose radii

were in geometri
 ratios. The data whi
h we will report involve averages over 25

realizations for ea
h �, and the number of parti
les,M in the wedge was determined

so that M = 10

6

�=2�. That is, ea
h wedge a
ted like a sli
e from a million-parti
le


luster. We report results for � = 30

o

; 60

o

; 90

o

; 120

o

, and 144

o

.

We measured the fra
tal dimension of our 
lusters and �nd that it depends weakly,

if at all, on �. This allows us to understand the remarkable a

ura
y of the estimate

of fra
tal dimension above. The Turkevi
h-S
her 
al
ulation implies that the fra
tal

dimension of a �nger would depend only on the tip velo
ity, whi
h in turn depends

on the tip stru
ture. The invarian
e of the fra
tal dimension with � indi
ates that

the tip stru
ture is not a�e
ted by boundaries, and thus probably not by the presen
e

of other �ngers. However, in the radial 
ase, the large s
ale stru
ture (the number

of main surviving bran
hes) adjusts via �nger 
ompetition to be 
onsistent with the

lo
al growth rate. In our estimate we gave a representation of the tip whi
h is valid

only far away { we repla
ed the 
luster by a needle { but then used self-
onsisten
y

to �nd the fra
tal dimension.

In this work our main interest is not the fra
tal dimension but the overall shape.

To see this we 
omputed the angular density-density 
orrelation fun
tion,


(�) = [< �(� + �)�(�) > � < � >

2

℄j

�

: (5.9)

Here �(�) is the density of parti
les in the 
luster in a 1

o

se
tor around � and we
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Figure 5.1: (a) Angular 
orrelation fun
tion, 
(�)=
(0), for DLA 
lusters in a wedge

of angle � as a fun
tion of �=�. (b) Correlation fun
tions using the

measure M

1

.

Figure 5.2: DLA 
lusters grown in wedges for � = 30

o

; 144

o

.

average over the starting angle. All of the angles are taken as periodi
 with period �

so that the fun
tion is re
e
tion-symmetri
 around �=2. In Fig. 5.1(a) we show the


orrelation fun
tion averaged over 25 realizations, and in Fig. 5.2 a typi
al 
luster

for small and large angles.

There is a very 
lear di�eren
e between large and small � in the behavior of 
(�).

For small angles there is an anti
orrelation between the origin and other angles. This


orresponds to the matter being 
lustered in one bran
h. For � between 90

o

and 144

o
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the nature of the 
orrelations 
hanges. The appearan
e of a se
ond peak and the

positive 
orrelation fun
tion indi
ates that there are now two 
oexisting bran
hes

[15℄.

We have examined the individual realizations that make up the average. The

appearan
e of the se
ond peak 
orresponds to stru
tures whi
h sometimes have one,

and sometimes two (or more) large bran
hes. In the 
ase of 120

o

and 144

o

there is


onsiderable 
u
tuation in the 
orrelation fun
tions (and the visual appearan
e) of

ea
h individual realization. This is a further indi
ation that for some � in this range

there is a 
riti
al point.

We have seen no indi
ation that the 
orrelation fun
tions depend on the 
luster

size. For the 
ase of 30

o

we grew 
lusters ten times larger than those des
ribed above

to 
he
k this, with the result that the 
orrelations were the same. The 
orrelation

fun
tion depends on the angular spread of the wedge, not on the spa
e available to

spread out, whi
h indi
ates that the bran
hes are self-similar in shape. If we take the

point at whi
h the 
(�=2) 
rosses 0 as the 
riterion for determining � we �nd that

the typi
al distan
e between di�erent major bran
hes is � = �=2 � 60 � 70

o

. This

is in rough agreement with our analyti
 estimates, and we take this as a veri�
ation

of our basi
 idea.

We made another 
he
k by trying to quantify exa
tly what we mean by a 'major

bran
h'. We fo
us on the idea that for asymptoti
 behavior the most important

feature is that some bran
hes die, and some survive 
ompetition. To see this quan-

titatively we introdu
e a measure on DLA 
lusters whi
h we 
all the des
endent

measure, M

x

. For this quantity we weight ea
h point a

ording to the number of

des
endents it has in the last fra
tion x of the growth. Thus M

1

measures the total

number of points that grow from a given one, and, say, M

0:01

the number of des
en-
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Figure 5.3: DLA 
lusters plotted with gray level proportional toM

1

for � = 30

o

; 144

o

dent points in a tiny a
tive zone on the outside of the 
luster. The appearan
e of

major bran
hes derived this way is quite robust, and doesn't depend mu
h on x.

Clusters with M

1

weighting are shown in Fig. 5.3, and Fig. 5.1(b) illustrates that

the 
orrelation fun
tions near the 
riti
al angle are not mu
h di�erent with the M

x

weighting. The 
riti
al angle is robust, but for small angles the measure 
learly lo-


alizes the main bran
h mu
h more 
leanly than the measure that uniformly weights

the mass sin
e it prunes sidebran
hes. The M

x

weighting 
ould be interesting in

other 
ontexts sin
e it provides a de�nition of a ba
kbone for DLA.

Some aspe
ts of the idea that we have proposed here have appeared in other

forms previously. For example, Arneodo and 
ollaborators have observed some hints

of a 5-fold stru
ture in DLA [16℄. This is more or less what we �nd sin
e our angle �

is 
lose to 2�=5. Many workers have noted that DLA 
lusters seem to have 5 major

arms, but this qualitative impression was not supported by a quantitative estimate

of the type we have given here.

We think that we should follow up our idea by 
he
king it for radial vis
ous

�ngering in dire
t simulations. We hope that sophisti
ated methods su
h as the

vortex sheet te
hnique [17℄ 
ould allow us to do this, though this is a 
omputation

intensive approa
h. The e�e
t of the exa
t form of the surfa
e tension 
an also be
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he
ked, although in our opinion the role of the surfa
e tension is only to regularize

the equations; its exa
t form (e.g. the �nite size of the DLA parti
les a
ts as an

e�e
tive surfa
e tension) is unimportant. Ideally we should also try to put this idea

of a stru
ture made up of building blo
ks with some typi
al angle into a more general

theoreti
al 
ontext. However, we do not see any obvious relationship between what

we have done and the other theoreti
al approa
hes to Lapla
ian growth [18℄.
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CHAPTER 6

Di�usion-limited aggregation and iterated


onformal maps

The resear
h presented in this 
hapter was done with Benny Davidovit
h, H.G.E

Hents
hel, Zeev Olami, Itamar Pro
a

ia, and Leonard M. Sander; most of the nu-

meri
al work was done by me, while the analyti
al work was shared between the


ollaborators. It was published in Phys. Rev. E 59, 1368 (1999).

The 
reation of fra
tal 
lusters by di�usion limited aggregation (DLA) is studied

by using iterated sto
hasti
 
onformal maps following the method proposed re
ently

by Hastings and Levitov. The obje
t of interest is the fun
tion �

(n)

whi
h 
onformally

maps the exterior of the unit 
ir
le to the exterior of an n-parti
le DLA. The map

�

(n)

is obtained from n sto
hasti
 iterations of a fun
tion � that maps the unit


ir
le to the unit 
ir
le with a bump. The s
aling properties usually studied in

the literature on DLA appear in a new light using this language. The dimension

of the 
luster is determined by the linear 
oeÆ
ient in the Laurent expansion of

�

(n)

, whi
h asymptoti
ally be
omes a deterministi
 fun
tion of n. We �nd new

relationships between the generalized dimensions of the harmoni
 measure and the

s
aling behavior of the Laurent 
oeÆ
ients.

74
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6.1 Introdu
tion

The di�usion limited aggregation (DLA) model was introdu
ed in 1981 by T.

Witten and L. Sander [1℄. The model has been shown to underlie many pattern

forming pro
esses in
luding diele
tri
 breakdown [2℄, two-
uid 
ow [3℄, and ele
tro-


hemi
al deposition [4℄. The model begins with �xing one parti
le at the 
enter

of 
oordinates in d-dimensions, and follows the 
reation of a 
luster by releasing

random walkers from in�nity, allowing them to walk around until they hit any parti
le

belonging to the 
luster. Upon hitting they are atta
hed to the growing 
luster. The

model was studied on- and o�- latti
e in several dimensions d � 2; here we are only

interested in the o�-latti
e versions in two dimensions.

DLA has attra
ted enormous interest over the years sin
e it is a remarkable exam-

ple of the spontaneous 
reation of fra
tal obje
ts. It is believed that asymptoti
ally

(when the number of parti
les n !1) the dimension D of the 
luster is very 
lose

to 1.71 [5℄, although there exists to date no proof for this fa
t in spite of several

interesting attempts [6, 7℄. In addition, the model has attra
ted interest sin
e it was

among the �rst [8℄ to o�er a true multifra
tal measure: the harmoni
 measure (whi
h

determines the probability that a random walker from in�nity will hit a point at the

boundary) exhibits singularities that are usefully des
ribed using the multifra
tal

formalism [9℄. Nevertheless DLA still poses more unsolved problems than answers.

It is obvious that a new language is needed in order to allow fresh attempts to ex-

plain the growth patterns, the fra
tal dimension, and the multifra
tal properties of

the harmoni
 measure.

Su
h a new language was proposed re
ently by Hastings and Levitov [10, 11℄.

These authors showed that DLA in two dimensions 
an be grown by iterating sto
has-
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ti
 
onformal maps. We adopt their basi
 strategy and will see that it provides a

new formulation of the problem whi
h may lead to new insights and results.

The basi
 idea is to follow the evolution of the 
onformal mapping �

(n)

(w) whi
h

maps the exterior of the unit 
ir
le in the mathemati
alw{plane onto the 
omplement

of the 
luster of n parti
les in the physi
al z{plane. �

(n)

is unique by the Riemann

mapping theorem, provided that it satis�es the boundary 
ondition

�

(n)

(w) � F

(n)

1

w as w!1 : (6.1)

Here F

(n)

1

is a real positive 
oeÆ
ient, �xing the argument of [�

(n)

(w)℄

0

to be zero at

in�nity. �

(n)

(w) is related to the 
omplex ele
tri
 potential 	

(n)

(z) by

	

(n)

(z) = lnh

(n)

(z) ; (6.2)

where h

(n)

(z) = [�

(n)

℄

�1

(z) is the inverse mapping. Letting z !1 in Eq.(6.1) it is

easy to verify that Eq.(6.2) implies

	

(n)

(z) � ln z when z !1 (6.3)

as it should be at d = 2.

The equation of motion for �

(n)

(w) is determined re
ursively. The 
hoi
e of the

initial map �

(0)

(w) is rather 
exible, and in this 
hapter we sele
t (arbitrarily) an

initial 
ondition �

(0)

(w) = w. We expe
t the asymptoti
 
luster to be independent

of this 
hoi
e. Then suppose that �

(n�1)

(w) is given. The 
luster of n \parti
les"

is 
reated by adding a new \parti
le" of 
onstant shape and linear s
ale

p

�

0

to the


luster of (n � 1) \parti
les" at a position whi
h is 
hosen randomly a

ording to

the harmoni
 measure. We denote points on the boundary of the 
luster by Z(s)

where s is an ar
-length parametrization. The probability to add a parti
le on an

in�nitesimal ar
 ds 
entered at the point z(s) on the 
luster boundary is

P (s; ds) � jr	(s)jds : (6.4)
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n

 ω− z-plane plane

Φ

Φ

Φ
φ

n-1

n-1

Figure 6.1: Diagrammati
 representation of the mappings � and �.

The pre-image of z(s) and ds in the w-plane are e

i�

and d� respe
tively. Clearly,

ds = j[�

(n�1)

℄

0

(e

i�

)jd�. From Eq.(6.2) we 
on
lude that

P (s; ds) � jr	(s)jj�

0

jd� = d� ; (6.5)

so the harmoni
 measure on the real 
luster translates to a uniform measure on the

unit 
ir
le in the mathemati
al plane.

The image of the 
luster of n parti
les under h

(n)

(z) is, by de�nition, just the unit


ir
le. On the other hand, the image of the 
luster of n parti
les under h

(n�1)

(z) is

the unit 
ir
le with a small bump whose linear s
ale is

p

�

0

=j�

0

(n�1)

(e

i�

n

)j where e

i�

n

is the image (under h

(n�1)

) of the point z

n

on the real 
luster at whi
h the growth

o

urred.

Let us de�ne now a new fun
tion �

�

n

;�

n

(w). This fun
tion maps the unit 
ir
le to

the unit 
ir
le with a bump of linear s
ale

p

�

n

around the point e

i�

n

. For w !1,

�

�

n

;�

n

(w) � w (with positive real proportionality 
oeÆ
ient). Using �

�

n

;�

n

(w) the

re
ursion relation for �

(n)

(w) is given by (see Fig. 6.1):

�

(n)

(w) = �

(n�1)

(�

�

n

;�

n

(w)) : (6.6)
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A

ording to the above dis
ussion �

n

is given by

�

n

=

�

0

j�

(n�1)

0

(e

i�

n

)j

2

(6.7)

so the RHS of Eq.(6.6) is determined 
ompletely by �

(n�1)

(w); Eq.(6.6) indu
es the

re
ursive dynami
s of �

(n)

(w).

The re
ursive dynami
s 
an be represented as iterations of the map �

�

n

;�

n

(w),

�

(n)

(w) = �

�

1

;�

1

Æ �

�

2

;�

2

Æ : : : Æ �

�

n

;�

n

(!) : (6.8)

This 
omposition appears as a standard iteration of sto
hasti
 maps. This is not

so. The order of iterations is inverted { the last point of the traje
tory is the inner

argument in this iteration. As a result the transition from �

(n)

(w) to �

(n+1)

(w) is not

a
hieved by one additional iteration, but by 
omposing the n former maps Eq.(6.8)

starting from a di�erent seed whi
h is no longer ! but �

�

n+1

;�

n+1

(w).

We note that in the physi
al plane the \parti
les" are roughly of the same size.

To a
hieve this the linear s
ales

p

�

n

vary widely as a fun
tion of n and �. We will see

that the distribution of

p

�

n

and their 
orrelations for di�erent values of n determine

many of the s
aling properties of the resulting 
luster. In parti
ular their moments

are related to the generalized dimensions of the harmoni
 measure.

There are many fun
tions �

�;�

whi
h 
onformally map the unit 
ir
le to the unit


ir
le with a bump. A simple 
hoi
e is a fun
tion whi
h behaves linearly for large w

and has a simple pole inside the unit 
ir
le whi
h will indu
e a bump in the image.

The pole has to be at w

0

= 1�� in order to lo
alize the bump near w = 1 and make

it of linear size of the order

p

�. The residue has to be �

3=2

, in order for the bump's

height to be also of the order

p

�. Consider then

�(w) = (1 + �)w +

�

3=2

w � w

0

:
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Careful thinking leads to the 
on
lusion that this fun
tion and other similar fun
tions

are inappropriate: they have long \tails". In other words, the unit 
ir
le is slightly

distorted everywhere. This small global distortion may result in a loss of 
onformality

or in the growth of non- 
onstant size parti
les in the physi
al plane in numeri
al

appli
ations.

It was proposed in Ref. [10℄ that a 
hoi
e for �

�

n

;�

n

(w) that is free of global

distortion is given by

�

�;0

(w) = w

1�a

(

(1 + �)

2w

(1 + w)

�

2

4

1 + w + w

 

1 +

1

w

2

�

2

w

1� �

1 + �

!

1=2

3

5

� 1

9

=

;

a

(6.9)

�

�;�

(w) = e

i�

�

�;0

(e

�i�

w) ; (6.10)

The parameter a is 
on�ned in the range 0 < a < 1. As a de
reases the bump be
omes


atter, with the identity map obtained for a = 0. As a in
reases towards unity the

bump be
omes elongated normally to the unit 
ir
le, with a limit of be
oming a line

(\strike" in the language of [10℄) when a = 1. Naively one might think that the

shape of the individual parti
le is irrelevant for the large s
ale fra
tal statisti
s; we

will see that this is not the 
ase. The dependen
e on a is important and needs to be

taken into a

ount. Noti
e that this map has two bran
h points on the unit 
ir
le.

The advantage of this is that the bump is strongly lo
alized. On the other hand

repeated iterations of this map leads to rather 
omplex analyti
 stru
ture.

The aim of this 
hapter is therefore to investigate the s
aling and statisti
al

properties of su
h iterated sto
hasti
 
onformal maps with a view to dis
overing the

s
aling properties indu
ed by the dynami
s whi
h any analyti
 theory must ulti-

mately explain. In Se
tion II we present the numeri
al pro
edure used to generate

the fra
tal 
lusters, and in Se
tion III give the ne
essary mathemati
al ba
kground



80

to des
ribe su
h mappings. In parti
ular we dis
uss the Laurent expansion of the


onformal map from the unit 
ir
le to the n-parti
le 
luster; the 
oeÆ
ients of the

Laurent series have interesting s
aling behaviour with the size of the 
luster whi
h

is intimately related to the fra
tal dimension of the 
luster and to the generalized

dimensions of the harmoni
 measure. In Se
tion IV we present numeri
al results

regarding the s
aling properties of averages of the Laurent 
oeÆ
ients and of the size

parameter �

n

. The results are a

ompanied by a theoreti
al analysis and interpreta-

tion. In Se
tion V we 
on
lude with some remarks on the road ahead.

6.2 Numeri
al pro
edure

The algorithm simulating the growth of the 
luster is based on Ref. [10℄. The

n \parti
le" 
luster is en
oded by the series of pairs f(�

i

; �

i

)g

n

i=1

. Having the �rst

n� 1 pairs, the n

th

pair is found as follows: 
hoose �

n

from a uniform distribution in

[0; 2�℄, independent of previous history. Then 
ompute �

n

from Eq.(6.7), where the

derivative of the iterated fun
tion �

(n�1)

involves �

0

�

n�1

;�

n�1

, �

0

�

n�2

;�

n�2

, �

0

�

n�3

;�

n�3

et
,


omputed respe
tively at the points e

i�

n

; �

�

n�1

;�

n�1

(e

i�

n

); �

�

n�2

;�

n�2

(�

�

n�1

;�

n�1

(e

i�

n

)),

et
. Noti
e that the evaluation of both �

0

and � after the addition of one parti
le

involves O(n) operations sin
e the seed 
hanges at every n. This translates into

n

2

time 
omplexity for the growth of an n-parti
le 
luster. This is inferior to the

best algorithms to grow DLA (using hierar
hi
al maps [12℄, with 
lose to linear

eÆ
ien
y), but the present algorithm is not aimed at eÆ
ien
y. Rather, it is used

sin
e the Lapla
ian �eld and the growth probability whi
h is derived from it are

readily available at every point of the 
luster and away from it. The typi
al time to

grow a 10,000 parti
le 
luster is 8 minutes on a 300 MHz Pentium-II.

Naively one would expe
t that any 
hoi
e of 0 < a < 1 would yield DLA 
lusters,
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a=1/2 a=2/3 a=4/5

Figure 6.2: Typi
al 
lusters of 10,000 parti
les. The bla
k regions represent the

interiors of the images of the unit 
ir
le under the map �

(10;000)

for three

values of a. The large en
losed areas for the a = 1=2 
luster are the

unwanted \�ll-up" events dis
ussed in Se
tion II. However, the bla
k

area in the a = 4=5 
luster is only a numeri
al artifa
t: that region is

not resolved by double pre
ision arithmeti
.

sin
e a only determines the shape of the parti
les (the aspe
t ratio is

1

2

a=(1� a) for

small �), and the mi
ros
opi
 details of the parti
les (ex
ept their linear size) should

not a�e
t the global properties. Three typi
al 
lusters with parti
les of various aspe
t

ratios a are shown in Fig. 6.2.

We mark in bla
k the interior of the image of the unit 
ir
le under the 
onformal

map �

(n)

(w). The obje
ts look very mu
h like typi
al DLA 
lusters grown by stan-

dard o�-latti
e te
hniques, and in the next se
tion we demonstrate that they have

fra
tal dimensions in 
lose agreement with the latter. For a signi�
antly di�erent

from 2=3, disadvantages of the algorithm get ampli�ed. Sin
e the fun
tional form of

� is �xed (only the size and position of the \bump" 
hange), parti
les of 
onstant

shape and size are obtained only if the magni�
ation fa
tor j�

(n�1)

0

j (the inverse

of the �eld) is approximately 
onstant in the w{plane around the \bump" of �. If

the parti
les are elongated along the 
luster, then the variation of the �eld along

the 
luster a�e
ts the shape: large otherwise deeply invaginated regions, where �

0
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is large, are �lled up with a single parti
le, and the resulting 
luster tends to be

more 
ompa
t. This e�e
t, slightly noti
eable even at a = 2=3, is quite signi�
ant

at the otherwise natural 
hoi
e of a = 1=2, where the parti
les are half 
ir
les. In

Fig. 6.2 we show su
h a 
luster and point out to the area �lling dark regions whi
h

represent su
h unwanted events. The other extreme, when the parti
les sti
k out of

the 
luster, leads to sensitivity to variations in the �eld going away from the 
luster.

Espe
ially if a bump is grown on a tip of a bran
h, where the �eld de
reases rapidly

as one goes away from the tip (su
h that �

0

in
reases signi�
antly), then the map of

the bump gets magni�ed, resulting in parti
les of very unequal sizes.

It is ne
essary to stress that even for a = 2=3, when this pro
edure appears to

yield ni
e rami�ed stru
tures, the problem of �ll-ups does not go away: in a few rare


ases the parti
le { if it happens to land on a pla
e where j�

00

j is large { is signi�
antly

distorted. The net e�e
t is that large areas surrounded by the 
luster (where the

growth probability is small) are �lled up entirely by one distorted parti
le. For the

value of a = 1=2 it appeared that the errors may be unbounded. Our numeri
s

indi
ates that for a = 2=3 the errors were bounded for the 
luster sizes that we


onsidered. We do not have a mathemati
al proof of boundedness of the errors, and

our disregard of this danger is only based on the sensible appearan
e of our 
lusters

at this value of a.

6.3 Mathemati
al Ba
kground

In this se
tion we dis
uss the Laurent expansion of our 
onformal maps, and

introdu
e the statisti
al obje
ts that are studied numeri
ally in the next se
tion.
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6.3.1 Laurent Expansion

Sin
e the fun
tions �

(n)

(w) and �

�;�

(w) are required to be linear in w at in�nity,

they 
an be expanded in a Laurent series in whi
h the highest power is w:

�

(n)

(w) = F

(n)

1

w + F

(n)

0

+ F

(n)

�1

w

�1

+ F

(n)

�2

w

�2

+ : : : (6.11)

�

�;�

(w) = f

1

w + f

0

+ f

�1

w

�1

+ f

�2

w

�2

+ : : : (6.12)

where

f

1

= (1 + �)

a

f

0

=

2a� e

i�

(1 + �)

1�a

f

�1

=

2a� e

2i�

(1 + �)

2�a

�

1 +

2a� 1

2

�

�

f

�2

=

2a� e

3i�

(1 + �)

3�a

 

1 + 2(a� 1)�+

2a

2

� 3a+ 1

3

�

2

!

The re
ursion equations for the Laurent 
oeÆ
ients of �

(n)

(w) 
an be obtained by

substituting the series of � and � into the re
ursion formula (6.6). We �nd

F

(n)

1

= F

(n�1)

1

f

(n)

1

(6.13)

F

(n)

0

= F

(n�1)

1

f

(n)

0

+ F

(n�1)

0

F

(n)

�1

= F

(n�1)

1

f

(n)

�1

+ F

(n�1)

�1

=f

(n)

1

F

(n)

�2

= F

(n�1)

1

f

(n)

�2

� F

(n�1)

�1

f

(n)

0

(f

(n)

1

)

2

+ F

(n�1)

�2

1

(f

(n)

1

)

2

(6.14)

� � �

We note that the n-dependen
e of f

(n)

i

follows from the dependen
e on the randomly


hosen �

n

at the nth step, from whi
h follows the dependen
e of �

n

on n. The latter

is however a fun
tion of all the previous growth steps, making the iteration (6.13)

-(6.14) rather diÆ
ult to analyze.
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A general relation between the Laurent 
oeÆ
ients is furnished by the so-
alled

area theorem whi
h applies to univalent mappings. Sin
e our maps solve the Lapla
e

equations with boundary 
onditions only at in�nity and on the 
luster boundary

where the potential is zero, they map the w plane uniquely (and with a unique

inverse) to the z plane. In other words, the pressure lines and the stream lines are

non-degenerate. Su
h mappings have the property [13℄ that the area of the image of

the unit dis
 in the nth step is given by:

S

n

=

�

�

�F

(n)

1

�

�

�

2

�

1

X

k=1

k

�

�

�F

(n)

�k

�

�

�

2

(6.15)

A se
ond theorem that will be useful in our thinking is a 
onsequen
e of the so-
alled

one-fourth theorem, see Appendix A. There a statement is proven that the interior

of the 
urve fz : z = �

(n)

(e

i�

)g is 
ontained in the z-plane by a 
ir
le of radius 4F

(n)

1

.

Now as the area S

n

is obtained simply from the superposition of n bumps of roughly

the same area �

0

, it has to s
ale like S

n

� n�

0

, for large n. On the other hand any

typi
al radius of the 
luster should s
ale like n

1=D

p

�

0

where D is the dimension of

the 
luster. We 
an thus expe
t a s
aling of F

(n)

1

that goes like

F

(n)

1

� n

1=D

q

�

0

(6.16)

. We note in passing that this s
aling law o�ers us a very 
onvenient way to measure

the fra
tal dimension of the growing 
luster. Indeed, we measured the dimension D

for a range of a in this way by averaging F

(n)

1

over 100 
lusters. We found that for

a range of a spanning the interval [1/3,8/9℄ the dimension is 
onstant, around 1.7.

We 
an infer therefore that the sum in Eq. (6.15) whi
h subtra
ts positive 
on-

tributions from jF

(n)

1

j

2


ontains terms that 
an
el the behavior of n

2=D

(remember

that D < 2), leaving a power of unity for the s
aling of S

n

. Indeed, we will show
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below both numeri
al and theoreti
al eviden
e for the s
aling behavior of the jF

(n)

�k

j

2

for k > 6 whi
h is in agreement with n

2=D

.

We 
an give a dire
t physi
al interpretation for the 
oeÆ
ients F

(n)

k

by 
omparing

them to the 
oeÆ
ients of the series for 	

(n)

, 
f. Eq.(6.2):

	

(n)

(z) = ln(z)� ln(r

0

) +

1

X

1

 

k

z

k

(6.17)

The 
oeÆ
ient of ln(z) is unity so that the ele
tri
 
ux is unity. This 
orresponds

to the normalization of the probability. The 
onstant r

0

is the Lapla
e radius whi
h

is the radius of a 
harged disk whi
h would give the same �eld far away. The rest of

the �

k

's are 
onventional multipole moments.

The relations between the Laurent 
oeÆ
ients of 	

(n)

and �

(n)

are:

r

0

= F

1

 

1

= �F

0

 

2

= �F

�1

F

1

�

1

2

F

2

0

 

3

= �F

�2

F

2

1

� 2F

0

F

�1

F

1

�

1

3

F

3

0

 

4

= �F

�3

F

3

1

�

3

2

F

2

�1

F

2

1

� 3F

1

F

2

0

F

�1

�3F

�2

F

0

F

2

1

�

1

4

F

4

0

(6.18)

The �rst line shows that F

1

= r

0

, the Lapla
e radius, in a

ordan
e with the

one-fourth theorem.

The se
ond line shows that the dipole moment  

1

is �F

0

. We 
an interpret this


oeÆ
ient as a distan
e, the wandering of the 
enter of 
harge due to the random

addition of the parti
les. We will take the point of view that this quantity is less

\intrinsi
" than the others to the dynami
s of the DLA growth. In fa
t, if we set

F

0

=  

1

= 0, (we 
ould imagine shifting the 
luster as we grow it) we 
an rewrite
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the rest of the equations:

�F

�1

�  

2

=r

0

�F

�2

�  

3

=r

2

0

�F

�3

� ( 

4

+

3

2

 

2

2

)=r

3

0

; (6.19)

et
. This leads to the interpretation of F

�k

in terms of the multipole expansion of

the ele
tri
 �eld.

6.3.2 Statisti
al obje
ts and the relations to generalized dimensions

Our growth pro
ess is sto
hasti
. A

ordingly, it is natural to introdu
e averages

over the randomness. In our thinking there are two important averages, one over

histories of the whole random traje
tory f�

i

g

n

i=1

, and the other only over the random


hoi
e of �

n

at the nth step. To distinguish between the two we denote the �rst by

angular bra
kets and refer to it as \history-average", while the se
ond is denoted by

an overbar and referred to as a \
luster-average". There is a possibility that for very

large 
lusters (n ! 1) the two averages result in the same numbers. We will refer

to su
h a property as \self-averaging".

The 
luster average of moments of �

n

o�ers a relationship to the generalized

dimensions of the harmoni
 measure [14℄. The latter are de�ned by dividing the

plane into boxes of size �, and estimating the probability for a random walker to hit

the pie
e of the boundary of the 
luster whi
h is in
luded in the ith box by

p

i

(�) = jE

i

j� ; (6.20)

where jE

i

j is the modulus of the ele
tri
 �eld jr	

i

j at some point in the ith box.

The generalized dimensions are de�ned by the relation

N(�)

X

i=1

p

q

i

(�) �

�

�

R

�

(q�1)D

q

(6.21)



87

where N(�) is the number of boxes of size � that are needed to 
over the boundary,

and R is the linear size of the largest possible box, whi
h is of the order of the radius

of the 
luster. Substituting (6.20) we �nd

�

q�1

N(�)

X

i=1

jE

i

j

q

� �

�

�

R

�

(q�1)D

q

(6.22)

Taking � very small, of the order of

p

�

0

, and assuming that the �eld is smooth on

this s
ale we have:

Z

L

0

jE

i

j

q

ds � (

q

�

0

)

1�q

n

(1�q)D

q

=D

(6.23)

where L is the length of the boundary, ds is an ar
-length di�erential, and we have

used the s
aling law n � S

n

=�

2

� (R=�)

1=D

.

The 
onne
tion to our language is obtained by 
onsidering the 
luster average of

powers of �

n

. We grow a 
luster of n� 1 parti
les, perform repeated random 
hoi
es

of growth sites (without growing), and 
ompute �

n

for ea
h 
hoi
e. The 
luster

average 
an be represented as an integral over the unit 
ir
le, �

q

n

, and is given by

�

q

n

� (1=2�)

Z

2�

0

�

q

n

(�)d� : (6.24)

Re
alling Eq. (6.7) we observe that �

q

n

(�) = �

q

0

jE(�)j

2q

. The last relation, Eq.(6.5),

and Eq.(6.23) imply the s
aling relation

�

q

n

� n

�2qD

2q+1

=D

: (6.25)

6.4 Numeri
al results and their interpretation

In this se
tion we present results on three topi
s:

(i) The 
oeÆ
ients of the Laurent expansion. The s
aling behaviour of these quan-

tities is des
ribed and dis
ussed in the �rst subse
tion.

(ii) The mi
ros
opi
 
u
tuations in the 
onformal map. We show that the assump-

tion of self-averaging is valid for Eq.(6.25) and that the multi-fra
tal exponents are
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in a good agreement with the known ones.

(iii) Distribution fun
tions of the Laurent 
oeÆ
ients. We analyze numeri
ally the

width of those fun
tions and �nd that F

(n)

1

tends to a deterministi
 fun
tion of n.

We attribute this e�e
t to non-trivial temporal 
orrelations in the �eld, and give

some eviden
e of their existen
e.

6.4.1 Laurent CoeÆ
ients of �

(n)

All the 
oeÆ
ients of the Laurent series of �

(n)

(w) are 
omplex numbers ex
ept

F

1

whi
h is real by the 
hoi
e of zero phase at in�nity, see Eq.(6.1). Most of our

dis
ussion below pertains to the amplitudes of the 
oeÆ
ients F

k

. We need to stress,

however, that the phases are not irrelevant. If we attempted to use the 
orre
t

amplitudes with random phases, the resulting series will in general not be 
onformal.

One of the main results of this 
hapter is that in addition to the expe
ted s
aling

behavior of the linear 
oeÆ
ient F

(n)

1

(given in Eq. (6.16) the rest of the amplitudes

of the Laurent 
oeÆ
ients jF

(n)

�k

j exhibit also a s
aling behavior. We �nd numeri
ally

that in the mean the magnitudes of the Laurent 
oeÆ
ients s
ale as powers of n:

hjF

(n)

k

j

2

i = a

k

n

x

k

: (6.26)

The exponents x

k

are given in Fig. 6.3. We �rst dis
uss the 
onsequen
es of the

s
aling behavior of F

(n)

1

.

S
aling of F

1

The s
aling behavior (6.16) has immediate 
onsequen
es for the s
aling behavior

of the bump areas �

n

that are the subje
t of the next subse
tion. The 
onne
tion

appears from the re
ursion Eq.(6.13) of F

(n)

1

whi
h together with f

1

= (1+�)

a

reads

F

(n)

1

=

n

Y

k=1

[1 + �

k

℄

a

: (6.27)
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Figure 6.3: The s
aling exponents of the Laurent 
oeÆ
ients: hjF

�k

j

2

i � n

x

k

. The

values are obtained by averaging 400 independent realizations of 10,000

parti
le 
lusters.

Taking history averages we �nd

hF

(n)

1

i = h

n

Y

k=1

[1 + �

k

℄

a

i (6.28)

lnhF

(n)

1

i � a

n

X

k=1

h�

k

i (6.29)

d lnhF

(n)

1

i=dn � ah�

n

i: (6.30)

The last two equations are obtained by expanding the logarithm and keeping only

divergent sums. Both the mean of F

(n)

1

and the mean of the sum of �

k

in
rease as

a fun
tion of n. All other sums of powers of �

k


onverge as a fun
tion of n: 
f.

subse
tion B. Thus, if we assume that hF

(n)

1

i / n

1=D

, fra
tal s
aling of the radius

(see below), implies that [10℄

h�

n

i = 1=naD: (6.31)

In the next subse
tion we show that this is indeed supported by the simulations.

Note that h�

n

i is inversely proportional to n for any value of the fra
tal dimension

D. On the other hand, if we assume the property of self-averaging, Eq. (6.31) implies
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(n)

0

j

2

i (thi
k lines) and the sum of diagonal terms (thin

lines, see Eq.(51)) with size n. Clearly the two have di�erent s
aling

exponents. The solid lines are averages over 400 
lusters of size 10,000,

the dashed lines are averages over 30 
lusters of size 100,000.

a relationship between the generalized dimension D

3

and the fra
tal dimension D.

Comparing Eqs. (6.25) and (6.31) leads immediately to the relation

D

3

= D=2 : (6.32)

This s
aling relation was derived by Halsey [15℄ using mu
h more elaborate 
onsid-

erations. We see that in the present formalism this s
aling relation is obtained very

naturally. In fa
t the present formulation is more powerful sin
e Eq.(6.31) predi
ts

not only the exponent of the third moment of the ele
tri
 �eld, but also the prefa
tor.

It is also noteworthy that the s
aling relation (6.32) results simply from the existen
e

of a power law behavior for the radius F

(n)

1

.

S
aling of F

0

We found the exponent of hjF

0

j

2

i to be x

0

= 0:7� 0:1, see Fig. 6.4. To estimate
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the s
aling behaviour of F

0

theoreti
ally we note that

F

0

=

1

2�

Z

2�

0

�

(n)

(�)d� =

1

2�

Z

L

0

z(s)jE(s)jds : (6.33)

A

ordingly we 
an write

jF

0

j

2

= (1=4�

2

)

Z

L

0

ds

Z

L

0

ds

0

z(s)z(s

0

)

�

jE(s)jjE(s

0

)j

� �

0

R

2

Z

L

0

dshjE(s)j

2

i (6.34)

In writing the se
ond line we assumed that the main 
ontribution to the 
orrelation

fun
tion is short ranged,

hz(s)z(s

0

)

�

jE(s)jjE(s

0

)ji � �

0

R

2

jE(s)j

2

Æ(s� s

0

) : (6.35)

The justi�
ation for this is that the �eld is expe
ted to exhibit wild variations as

we tra
e the boundary z(s). In addition the main 
ontribution to the integral is

expe
ted to 
ome from the support of the harmoni
 measure where the radius is of

the order of R. From the estimate (6.34) and Eq.(6.23) we then �nd

x

0

=

2�D

2

D

� 0:64 (6.36)

in agreement with our measurement of x

0

. (We used here D

2

= 0:90 in 
orrespon-

den
e with the numeri
al �nding reported in Se
tion IV C. Any of the values of D

2

quoted in the literature would yield x

0

in the range 0:7� 0:1.)

S
aling of F

�k

The exponents x

k

for k < 0 are smaller than 2=D but approa
h it asymptoti
ally,

see Fig. 6.3. This behavior is expe
ted from the area theorem, and also from a dire
t

estimate of the integral representation of the 
oeÆ
ient for large k

jF

�k

j

2

=

1

4�

2

Z

L

0

ds

�

Z

L

0

ds

0

z(s)z(s

0

)

�

jE(s)jjE(s

0

)je

ik(�(s)��(s

0

)

: (6.37)
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In Appendix B we show that this integral 
an be estimated using the multifra
tal

formalism of the harmoni
 measure with the �nal result

jF

�k

j

2

� (R=4k)

2

Z

d�(2k=�)

f(�)=�

; (6.38)

where � and f(�) are the strength of singularities of the harmoni
 measure and the

dimension of the sets of points that exhibit these singularities respe
tively [9℄. For

our purposes the important 
onsequen
e of Eq.(6.38) is the s
aling relation (assuming

self-averaging)

hjF

�k

j

2

i = �

0

n

2=D

g(k) (6.39)

with g(k) � 1=k

2

R

d�k

f(�)=�

. One knows from the theory of multifra
tals that

f(�)=� � 1, and therefore we 
an bound g(k) from above and from below, Ak

�2

<

g(k) < Bk

�1

. This is in a

ord with our numeri
al simulations in the range 3 � k �

10, although the 
al
ulation in the appendix is only valid for large values o k. We

found agreement with Eq.(6.26) with x

k

! 2=D and a

k

� k

��

with 1 < � < 2 .

Note that this s
aling behaviour has important 
onsequen
es for both the area

theorem and for 
onformality. Absolute 
onvergen
e of the sum

P

1

k=1

kjF

(n)

�k

j

2

in

the area theorem requires � > 2 whi
h is not the 
ase. The situation is even more

serious for the existen
e of 
onformality. To insure the latter the sum

P

1

k=1

kjF

(n)

�k

j

must exist. This would require � > 4. The reason that the sums exist in the theory

is only due to the ultraviolet 
uto� at

p

�

0

. This 
uto� introdu
es a highest k in

the Laurent expansion whi
h we estimate as 2�k

max

� L=

p

�

0

� n where L is the

perimeter of the 
luster.

6.4.2 Multi-fra
tal exponents

Here we test Eq.(6.25). In Fig. 6.5 we display double-logarithmi
 plots of h�

q

n

i

vs. n for q = 0:5; 1; 1:5; 2; 2:5; 3 and 3:5. The values of the generalized dimensions
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Figure 6.5: S
aling of the moments h�

q

n

i with powers of n. The 
urves from top to

bottom 
orrespond to q = 0:5; 1; 1:5; 2; 2:5; 3 and 3:5. The exponents

�2qD

2q+1

=D are in agreement with theoreti
al predi
tions (see text) and

with numeri
al values for the generalized dimensions in the literature.

D

q

obtained from our simulations agree very well (within the un
ertainties) with the

generalized dimensions D

q

obtained in the past [5℄ for D

2

; � � � ; D

8

using standard

methods. In addition we reprodu
e numbers in agreement with the theoreti
al pre-

di
tion of D

0

= D � 1:71 and D

3

= D=2. This agreement is a strong indi
ation for

self averaging at least for the purpose of 
omputing moments of �

n

(i.e. h�

q

n

i �

�

�

q

n

).

6.4.3 Flu
tuations of the averages

We previously dis
ussed the s
aling behavior of jF

(n)

�k

j

2

and showed that their

history averages obey Eq. (6.26). However jF

(n)

�k

j are random variables with broad

s
aling distributions. Fig. 6.6 des
ribes the res
aled standard deviation �

(n)

k

of the

Laurent 
oeÆ
ients,

�

(n)

k

=

r

hjF

(n)

k

j

4

i � hjF

(n)

k

j

2

i

2

=hjF

(n)

k

j

2

i ; (6.40)



94

10
0

10
1

10
2

10
3

10
4

10
5

n

10
−2

10
−1

10
0

σ k(n
)

k=1

k=0,−1,−2

Figure 6.6: The res
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oeÆ
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map (see de�nition in text). For k 6= 1, �
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k


u
tuates around unity,
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as n ! 1, demonstrating the asymptoti
 sharpness of the distribution

of F

1

. The solid lines are averages over 400 
lusters of size 10,000, the

dashed lines are averages over 30 
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for k = 1; 0;�1;�2 as a fun
tion of the 
luster size n. As is seen 
learly from the

graphs the widths of the distributions for all k � 0 tend asymptoti
ally to a �nite

value. This is the normal behaviour for s
aling distributions. The ex
eptional 
ase

is k = 1. Even though it exhibits a s
aling law of the type (6.26) (see Se
tion III),

with

x

1

=

2

D

� 1:18 ;

the res
aled distribution width of jF

(n)

1

j

2

tends to zero as n goes to in�nity. This

means that the res
aled distribution fun
tion of F

(n)

1

tends asymptoti
ally to a delta

fun
tion. The importan
e of this result for the evaluation of the fra
tal dimension

of the 
luster warrants an immediate dis
ussion of this sharpening phenomenon.

The 
on
lusion of the numeri
s on F

1

is that there exists a universal 
onstant


(�

0

) su
h that

n

�1=D

F

(n)

1

! 
(�

0

) (6.41)

where 
(�

0

) is 
luster independent! Moreover, we found that 
(�

0

) = 


p

�

0

, whi
h is

in a

ordan
e with the role played by

p

�

0

as an ultraviolet inner lengths
ale, whi
h

is the only lengths
ale that appears in the mappings. Note that the 
onstant 
 in

Eq. (6.41) depends on the parameter a. We measured 
 values of 0.6, 0.87, 1.2 and

1.8 for a values of 1/3, 1/2, 2/3 and 4/5 respe
tively.

The observed sharpening is not obvious sin
e we know that F

(n)

1

is built from

a produ
t of random variables �

n

, whose moments 
hange with n in multi-fra
tal

manner a

ording to Eq. (6.25).

One 
ould attempt to 
onne
t the sharpening of F

(n)

1

to the existen
e of other

sharp fun
tions of n. Considering the full expansion of Eq.(6.27) we �nd

1

a

lnF

(n)

1

=

n

X

i=1

ln(1 + �

i

) (6.42)
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=

n

X

i=1

�

i

�

1

2

n

X

i=1

�

2

i

+

1

3

n

X

i=1

�

3

i

+ � � � : (6.43)

We 
ould understand Eq. (6.41) easily if all the sums of all the powers of �

i


onverged

to 
onstants,

n

X

i=1

�

i

�

2

D

lnn ! 


1

(6.44)

n

X

i=1

�

i

2

! 


2

(6.45)

� � � (6.46)

with 


i


luster independent. In fa
t, this is not the 
ase. The sums of powers are

not 
luster independent. A 
lear demonstration of this is a simulation whi
h begins

with initial 
onditions whi
h are very far from the 
ir
le. The individual sums in

Eq. (6.43) are very di�erent from the average values, but nevertheless

P

n

i=1

ln(1+�

i

)

seems to 
onverge to the right value. It is our 
on
lusion that ea
h of the sums in

(6.43) is not 
luster independent, and yet somehow the resummed form is 
luster

independent.

This remarkable sharpening 
alls for further dis
ussion; it appears that its in-

terpretation requires better understanding of the time 
orrelations of the �eld: an

independent 
hoi
e of random realization of a series of �

i

a

ording to their multi-

fra
tal distribution 
an only generate F

(n)

1

with the proper s
aling exponent but


annot trivially yield a highly peaked distribution of F

(n)

1

. Therefore we 
onsider

now some eviden
e for the existen
e of temporal 
orrelations.

The �rst outstanding eviden
e appears in the 
ontext of the s
aling behavior of

F

0

, whi
h was dis
ussed in the �rst subse
tion. We show that if we assume that

there exist no 
orrelations between di�erent growth stages, the exponent x

0

will be

very di�erent from the measured and 
al
ulated value. From the re
ursion relations
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of the Laurent 
oeÆ
ients (Eq. 6.14) we 
an estimate, in the limit of large n when

�

n

is very small on the average,

hjF

(n)

0

j

2

i �

n

X

m=1

n

X

m

0

=1

hF

(m)

1

F

(m

0

)

1

�

m

�

m

0

e

i(�

m

��

m

0

)

i (6.47)

�

n

X

m=1

n

X

m

0

=1

hF

(m)

1

F

(m

0

)

1

ih�

m

�

m

0

e

i(�

m

��

m

0

)

i (6.48)

The se
ond line is obtained be
ause F

(m)

1

is proportional to the radius of the whole


luster and should not be 
orrelated with �

m

. The 
ru
ial approximation 
omes next:

if �

m

and �

m

0


an be treated as independent for m 6= m

0

, then (sin
e �

m

and �

m

0

are

independent) Eq.(6.48) simpli�es to

h�

m

�

m

0

e

i(�

m

��

m

0

)

i � h�

2

m

iÆ

m;m

0

(6.49)

hjF

(n)

0

j

2

i �

n

X

m=1

h(F

(m))

2

1

ih�

2

m

i � n

1+2=D�4D

5

=D

� n

0:3

(6.50)

The numeri
al simulation resulted in an exponent of the order of 0.7, in serious

disagreement with Eq. (6.50). We think that the assumption of independen
e, Eq.

(6.49) is the 
ulprit.

Another fa
t whi
h illustrates the importan
e of the time-angle 
orrelation (see

Eq. (6.49)) is the di�eren
e between the exponents of F

0

and F

�1

(hjF

0

j

2

i � n

0:7

whereas hjF

�1

j

2

i � n

0:9

). Their equations of motion (6.14) di�er, for small �

n

, by

two terms only. The �rst one is the term �

n

F

(n�1)

�1

in the RHS of the equation for F

�1

whi
h is absent in the equation for F

0

. We 
he
ked numeri
ally that negle
ting this

term leads to a very small 
hange in the exponent. The se
ond di�eren
e between

is that the term �

n

�

n�k

e

i(�

n

��

n�k

)

in Eq. (6.48) is repla
ed by �

n

�

n�k

e

2i(�

n

��

n�k

)

.

The 
hange in the exponent 
an therefore be dire
tly attributed to the existen
e of

important time-angle 
orrelations.
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Figure 6.7: Time-angle 
orrelations of the �eld. In order to redu
e statisti
al noise,

the values plotted are averaged in bins [n; 1:1n℄.

We tried to analyze numeri
ally the time-angle 
orrelations h�

n

�

n�k

e

i(�

n

��

n�k

)

i.

The results for some k's are shown in Fig. 6.7. It appears that as we in
rease the

size of the ensemble, h�

n

�

n�k

e

i(�

n

��

n�k

)

i ! 0 with the usual N

�1=2

dependen
e on

the ensemble size. If we believe these numeri
al results (doubts may exist due to

the relative smallness of the ensemble analyzed), then the previous results must be

related to more subtle 
orrelation of higher order nature.

Lastly we would like to dis
uss the importan
e of early stages of the growth.

hF

(n)

1

i might be written in the following way

hF

(n)

1

i = h

n

Y

i=1

(1 + �

i

)

a

i : (6.51)

(see Eq. (6.13). Negle
ting the 
orrelations in time in the above produ
t one may

approximate

h

n

Y

i=1

(1 + �

i

)

a

i �

n

Y

i=1

h(1 + �

i

)

a

i : (6.52)

Numeri
al evaluation of the two obje
ts in Eq.(6.52) shows that they di�er by a
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Figure 6.8: The ratio of F

1

with time 
orrelations negle
ted and the full F

1

:

Q

n

i=1

h(1 + �

i

)

a

i=h

Q

n

i=1

(1 + �

i

)

a

i (thi
k line). The quantities h

Q

k

i=1

(1 +

�

i

)

a

i

Q

n

i=k+1

h(1 + �

i

)

a

i are also plotted for k = 10; 100 and 1000.

few per
ent (see Fig. 6.8). The numeri
s indi
ate the s
aling laws

h

n

Y

i=1

(1 + �

i

)

a

i = 
�

0

n

2=D

; (6.53)

n

Y

i=1

h(1 + �

i

)

a

i = 


1

�

0

n

2=D

; (6.54)

where 


1

=
 � 1:06.

To get further intuition we 
he
ked also the obje
t

h

k

Y

i=1

(1 + �

i

)

a

i

n

Y

i=k+1

h(1 + �

i

)

a

i

for various values of k. The results are shown in Fig. 6.8. As it seems from this

graph, time 
orrelations in the initial stages of the growth are mu
h more important

than lo
al 
orrelations in the late stages.

We 
he
ked also two-point time 
orrelations h�

n

�

n�k

i for some k's. The results

are plotted in Fig. 6.9. As it turns out from this graph, h�

n

�

n�k

i � h�

n

ih�

n�k

i up

to statisti
al 
u
tuations.
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Figure 6.9: Correlations of the �eld. In order to redu
e statisti
al noise, the values

plotted are averaged in bins [n; 1:01n℄.

6.5 Summary and dis
ussion

The language proposed by Hastings and Levitov appears to o�er many appealing

features. It generates DLA 
lusters in su
h a way that the 
onformal map �

(n)

from

the 
ir
le to the boundary of the 
luster is known at every instant. In this 
hapter we

examined 
arefully the numeri
al pro
edure used to generate the 
onformal maps,

and pointed out the advantages and the short
oming of the algorithm.

The new results of this 
hapter pertain to the s
aling behavior of the Laurent


oeÆ
ients jF

k

j of the 
onformal map �

(n)

and of the moments of �

n

whi
h are re-

lated to moments of the �eld. We presented a theoreti
al dis
ussion of the exponents


hara
terizing moments of jF

k

j and �

n

. We pointed out the relations to the multi-

fra
tal analysis of the harmoni
 measure, and derived s
aling relations. Of parti
ular

interest is the s
aling relation D

3

= D=2 that was derived �rst by Halsey and whi
h
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appears here as a very natural 
onsequen
e of the formalism.

One important results whi
h is not adequately interpreted in this 
hapter is the

sharpness of the distribution of F

1

. This 
oeÆ
ient is proportional to the radius of

the 
luster, and its sharpness is dire
tly related to the existen
e of a universal fra
tal

dimension independently of the details of the shape of the 
luster. Understanding the

sharpness appears to be 
onne
ted to understanding the existen
e of universal fra
tal

dimension, and we believe that it poses a very worthwhile and fo
ussed question for

the immediate future.
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CHAPTER 7

Con
lusion

In this thesis we investigated various problems in nonequilibrium statisti
al phys-

i
s. Common to these problems is that they are all related to pattern formation, and

s
aling 
on
epts are essential to their thorough understanding. Our methods were

mostly dis
rete: we modeled individual atoms, blo
ks of material, parti
les, and

studied dis
retized partial di�erential equations.

In general, we did not attempt to 
losely mimi
 experimental 
onditions. Rather,

we were interested in the basi
 prin
iples. The ex
eption is the 
ase of epitaxial

pro
esses, where our models were 
loser to experiments|here we were also su

essful

explaining the observations.

To summarize our results, we observed two di�erent s
aling regime, depending on

growth parameters, in multilayer heteroepitaxial systems. In heteroepitaxial systems

we studied how the elasti
 e�e
ts modify the growth pro
ess. To better understand

the formation of river networks, we proposed a 
oarse grained theory, whi
h 
ouples

the equation of the surfa
e erosion with the 
onservation law of surfa
e water 
ow.

In the area of Lapla
ian growth, using di�usion-limited aggregation 
lusters grown

in wedge geometry, we showed the existen
e of angular building blo
ks. And �nally,

using a 
onformal map approa
h to DLAs, we studied the relation between the

103
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Laurent 
oeÆ
ients of the map, the generalized dimensions of the harmoni
 measure

and other relevant physi
al quantities, and their s
aling.
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APPENDIX A

Fast o�-latti
e DLA algorithms

In this Appendix we explain the 
urrent best algorithms to simulate o�-latti
e

DLA 
lusters. The details given here are for the 2-dimensional 
ase, but 
an be

generalized to higher dimensions.

When simulating DLA, in ea
h step a parti
le is added to the 
luster: we have

to 
ompute the �rst 
onta
t position of the random walker (or Brownian path) with

the 
luster using the smallest amount of resour
es (CPU time, memory) possible.

A.1 EÆ
ient random walk

Ideally the walker is released at in�nity. However, before it gets in 
onta
t with

the 
luster, it has to 
ross a 
ir
le of arbitrary radius en
losing the 
luster, 
entered

around the origin. Suppose we sele
t the smallest 
ir
le en
losing the 
luster, denoted

by C. Be
ause of symmetry 
onsiderations, the �rst 
onta
t point of the walker with

this 
ir
le is uniformly distributed on the 
ir
le. Thus we 
an model the path of the

walker from in�nity to the point of �rst 
onta
t to the 
ir
le in one step: pla
e it on

the 
ir
le with uniform probability.

Now suppose that at some point P on its path the walker is at some distan
e from

the 
luster. One 
an sele
t a bounded region D, whi
h 
ontains the walker and does
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not interse
t with the 
luster. Before the walker 
onta
ts the 
luster, it has to 
ome

out of this region, spe
i�
ally there will be a point P

0

in the path were it �rst 
rosses

the boundary of the region. Given the position P of the walker and the region D,

this segment PP

0

of the path is independent of the 
luster, and 
an be in prin
iple


al
ulated in one step. The goal is to sele
t an appropriate region D su
h that the

distribution of P

0

is easily 
omputable. One su
h 
hoi
e is a 
ir
le 
entered around

P with radius r stri
tly smaller than the distan
e of P from the 
luster (but the

bigger the 
ir
le, the more eÆ
ient is the simulation). Then P

0

would be uniformly

distributed on the 
ir
le. Given the 
luster and P , an eÆ
ient sele
tion of the radius

r is not easy, but a good method will be given later in this Appendix.

An ex
eption from this diÆ
ulty is the 
ase when P is outside the smallest en
los-

ing 
ir
le C: then a qui
k 
hoi
e for r is the distan
e of P from the 
ir
le. However,

if the walker wanders too far away from the 
luster then this method be
omes inef-

�
ient. Early works used the kill the walker when it got too far away (say 5 times

the radius of C) and start over with a new walker. This solution is not exa
t (may

introdu
e arti�
ial 
orrelations) and in addition not the most eÆ
ient. Instead, we


an de�ne an outer 
ir
le C

0

, also 
entered around origin but larger than C. When

the walker gets outside C

0

, we solve the problem of �rst 
onta
t with C: pla
e it

ba
k to the smallest en
losing 
ir
le in one step.

This problem is no longer rotational symmetri
 as the �rst-
onta
t-from-in�nity


ase, but solvable[1℄. Suppose the radius of C is R

C

, and the walker is at position

(r; �) in polar 
oordinates, outside C

0

. The new position will be at radius R

C

(on


ir
le C) and at azimuthal angle

�

0

= � + 2 tan

�1

�

r � R

C

r +R

C

tan(�R)

�

; (A.1)
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where R is a uniform random number from [0; 1℄.

Sin
e this method is exa
t for any C

0

larger than C, we 
an optimize the radius

of C

0

for 
omputational eÆ
ien
y. In our simulations we used

R

C

0

= 1:1 �R

C

+ 3 �R

walker

; (A.2)

but the performan
e did not depend strongly on this sele
tion.

It has to be noted that for simpli
ity in the above dis
ussion we negle
ted the

radius of the walker. In pra
ti
e it has to be taken into a

ount, and the size of the

jumps need to be de
reased, and R

C

in
reased, by a parti
le diameter to prevent

overlap.

To summarize the pro
edure we do the following steps to add a parti
le. First the

walker is deposited on the smallest en
losing 
ir
le C with uniform probability. Then

it is allowed to take jumps in un
orrelated random dire
tions, where the size of the

steps is a lower estimate of the 
urrent distan
e of the walker from the 
luster. If at

any point it gets outside of the outer 
ir
le C

0

, then it is redeposited to C a

ording

to Eq. (A.1). However, we do not allow jumps smaller than the parti
le radius to

a
tually a
hieve 
onta
t: in 
ase the walker overlaps with the 
luster after su
h a

jump, it is pulled ba
k on the path of this last jump until just tou
hes the 
luster,

and be
omes part of it.

A.2 Hierar
hi
al maps

We are still fa
ing the problem of giving a lower estimate of the walker{
luster

distan
e in an eÆ
ient way. The naive approa
h of evaluating the minimum of the

n 
lusterparti
le{walker distan
es is prohibitively slow: for a 
luster of n parti
les,

ea
h jump of the walker would take O(n) time, making the overall time 
omplexity

at least O(n

2

).
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The te
hnique of hierar
hi
al maps[2℄ has a better solution: if the walker is \far

away" from the 
luster, then it provides with a qui
k lower estimate of the distan
e

without even a

essing the 
oordinates of 
luster parti
les; if the walker is \
lose"

then it provides a list of the nearby parti
les so that the exa
t distan
e 
an be 
al
u-

lated. The 
omputational time in both 
ases depends very weakly (logarithmi
ally)

on 
luster size.

The 
luster is put on an adaptively re�ned square mesh. Ea
h square { whi
h

we 
all map {, and possibly its sub-squares, are subdivided into 4 sub-maps (lower

level maps), if the 
luster is \suÆ
iently 
lose" to it. The rule is the following:

initially ea
h map adja
ent to the origin is subdivided up to a prede�ned maximum

depth. In addition, when a map on any level 
ontains 
luster parti
les (through its

sub-maps), the surrounding 8 maps on the same level must exist, i.e. their parent

maps must be subdivided (ex
ept when this would go o� the mapped area). This has

two 
onsequen
es. First, all parti
les of the 
luster will be in lowest level (smallest)

maps; the list of the 
ontained parti
les is atta
hed to these maps. Se
ond, if a


ertain (above lowest level) map is not subdivided, then its distan
e from the 
luster

is at least half of its side length.

To see this, suppose map M is above lowest level, and there are parti
les 
loser

to it than half its side. Then there should be an adja
ent (possibly subdivided) map

M

0


ontaining parti
les, one level lower than M . A

ording to the rule, M

0

has to

be surrounded by same level maps as itself, therefore M has to be subdivided.

As the aggregate grows, the maps are updated. Ea
h time a parti
le is added to

a previously empty lowest level map, it and its an
estors are 
he
ked whether they

satisfy the rule | if not, then the appropriate subdivisions take pla
e.

When a walker lands somewhere, we �nd the smallest map 
ontaining the point.
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If it is higher than lowest level, then we are 
onsidered to be \far away" from the


luster, and half of the side of the map is a lower estimate of the walker's distan
e

from the aggregate. If, on the other hand, the walker lands in a lowest level map,

then it is \
lose" to the 
luster: the parti
le lists of the map and of the neighboring

lowest level maps are 
he
ked to 
al
ulate the exa
t distan
e of the walker from the

aggregate.

The size of the smallest maps is an adjustable parameter, the optimum is around

8 parti
le diameters. The CPU time used for a single distan
e estimate is only

logarithmi
ally depends on the 
luster size: for larger 
luster more map levels have

to be used. Overall, the memory requirements are linear to the size of the 
luster,

and the 
omputational time is 
lose to linear (empiri
ally time � n

1:1

in a range

10

3

|10

7

parti
les); the stronger than logarithmi
 
orre
tion is probably due to the

fa
t that for larger 
luster the walkers take more jumps.
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