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Scaling and river networks: A Landau theory for erosion

E. Somfai* and L. M. Sander†
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~Received 18 November 1996!

We propose a coarse-grained theory for the formation of a river network in the form of a Langevin equation
for the erosion of the landscape coupled to a conservation law for the surface water flow. We claim that this is
the universal form for large-scale behavior. We show by simulations of a discrete model that represents the
same dynamics that the slope-area law, the basin size distribution law, and Horton’s laws agree with real rivers.
We discuss the relationship to optimal channel networks and to self-organized criticality.
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Natural river networks have attracted a good deal of
tention in the physics and geophysics communities, an
large number of models have appeared that attempt to
an explanation for the remarkable statistical properties
these systems@1–4#. The spirit of much of this work is to try
to abstract from the details of the geological processe
simple description that will account for the large-sca
coarse-grained properties of the network. In this paper
present a model of this type. Our model is similar to that
Inaoka and Takayasu@2# and of Sinclair and Ball@3# but also
has significant differences. Our theory is intended to serv
a unified model of erosion and is based on a continu
formulation that we believe to capture the important featu
that survive on coarse graining. If we are correct, much
the previous work will have the same large-scale proper
as what we present here.

The remarkable statistical properties of river basins h
been known for some time@5,6#. We will focus on a few of
the laws that we consider to be central, and that we h
verified for the model to be presented. The most importan
these is the slope-area law, which was derived from fi
observations@7#: the slope of the river beds scales with a
power of the basin areaQ:

s;Q2u, ~1!

where the value of the exponentu'0.5 has been carefully
measured@7#. The distribution of the drainage area al
obeys a power law:P;Q2b, whereP is the fraction of the
landscape for which the drainage area is larger than a g
valueQ. The value of the exponent isb'0.43 @4,8#.

The best known of the statistical properties are Horto
laws @9#, which are relations between the number and len
of different parts of the network. They say, in effect, that t
streams form a random branching fractal. Consider
Strahler scheme for ordering the streams~i.e., up ends of the
streams are order 1; when two or more streams of the s
order join, the order increases by one; when streams of
ferent order join, the higher stream order prevails.! Let Nv

denote the number of streams of orderv, andLv their aver-
aged length. Horton’s laws state that the branching ra
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RB5Nv /Nv11 and the length ratioRL5Lv11 /Lv are inde-
pendent ofv. The fractal dimension@10# of the network is
given bydcln(RB)/ln(RL), wheredc is the fractal dimension
of the individual streams@11#. For many networks the value
RB'4,RL'2 are found @9# along with dc'1.1 — 1.2
@11,12#. Our model will turn out to obey all these laws.

We start with the observation that landscapes seem
have scale invariance@13#: they are close to being self-affin
fractals. This means that if we consider a topographic m
and rescale the coordinatesr on the map so thatr°br , and
the height differences byDh°baDh, wherea,1 we get a
statistically identical landscape. Since erosion by rivers
among the processes that form landscapes, the scale inva
statistical properties of mature river networks should hav
close connection with the scale invariance of the landsca

Now let us focus on the erosion process, and make so
simplifying assumptions~which could be easily modified!:
we assume that the only source of water is from a unifo
rainfall and neglect underground flows. The land is geolo
cally uniform and initially structureless. We also assume t
the material washed away by the river is carried entirely
the sea, and is not redeposited. This is the limit of sl
erosion and fast flows.

To formulate the coarse-grained erosion law we use
argument that is standard in the theory of random rou
surfaces@14# and that, in turn, is based on the classic work
Landau and Ginzburg@15#. We note first that the absolut
height of the landscape should play no role in the local e
sion. Thus we write

]h/]t5F~¹h,¹2h,u¹hu2, . . . !1h~r ,t !, ~2!

whereh(r ,t) is a noise term that accounts for small sca
random processes.

Further, we argue that the functionalF is analytic in the
gradients: it is the result of averaging over local fluctuati
processes@16#. Now we are interested in large-scale statis
cal properties. When we rescale a self-affine surface the
dientsdecrease. Thus we should be able to expandF in a
power series:

F5A1B•¹h1Cu¹hu21D¹2h1••• ~3!

We can interpret these terms. The first is a unifo
change in height that might correspond to geological up
For our case we can setA50. The second term involves
R5 © 1997 The American Physical Society
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R6 56E. SOMFAI AND L. M. SANDER
vector B, which gives a preferred direction of flow. Sinc
local flows have no preferred direction~except down! we
must setB50. The third term corresponds to erosion pr
portional tos2, the squared slope. This sort of law has be
considered in the literature@17# along with others. It has a
special significance since it is the lowest-order term, and t
the dominant one when we rescale. The last one that we k
can be thought of as sedimentation and smoothing: it rou
hilltops and fills valleys@18#. The equation for the landform
is

]h/]t5Cu¹hu21D¹2h1•••1h~r ,t !. ~4!

This is the Kardar-Parisi-Zhang~KPZ! equation@19#, which
has been extensively studied. There has been a previou
plication of this equation to river networks@20#. In this form
it is clear that the equation can generate self-affine la
scapes. The higher-order terms represented by the dot
irrelevant in the sense that they disappear upon rescaling

The other ingredient in our theory is the water. We defi
q as the flux of water per unit width of landscape. Our a
sumptions~uniform rainfall and no ground water! imply that
q}Q, whereQ is the basin area. The vectorq satisfies the
following:

“•q5R, ~5!

whereR is the rainfall per unit area. Further, water ru
downhill. Thus,

q̂[q/q}2¹h. ~6!

Finally, we insist that there is no erosion in the absence
water. That means that the coefficientC of the erosion term
must be a function ofq, which vanishes asq→0. There is no
particular reason whyC should be analytic, so we propos
on the basis of simplicity an erosion rate linear in the flo
C52cq. Putting this all together we get

]h/]t52cqu“hu21D¹2h1h~r ,t !. ~7!

Equations~5!–~7! constitute our Landau theory.
Formulations similar to this one have been proposed

fore. A theory of this type was given by Smith and Brethe
ton @21# some time ago, and discussed by Tarbotonet al. @6#
in the context of stream initiation. Our equations differ fro
theirs in that they conserve sediment so that the right-h
side of Eq.~7! is of the form2“•@ q̂qmsn#. Our Eq. ~7!
corresponds~up to an irrelevant term! to m5n52. The re-
cent work of Sinclair and Ball@3# proposes a set of equation
like ours with a term of the formqasb of which our equation
is a special case.~As we will see, our solution to these equ
tions is quite different from that of Ref.@3#.!

Because the landform generated by Eq.~7! is coupled to
the water flow~which changes with the landscape! the solu-
tions to the coupled set are quite unlike those of the ordin
KPZ equation. With suitable boundary conditions, the lan
scape will approach a dynamic steady state where the r
network and the landform do not change. This steady sta
a feature of many of the models that have been propose
corresponds to the simple statement that large rivers are
lived @22#.

To understand the steady state we use the approac
Smith and Bretherton@21# who point out that an obvious
n
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kind of steady state is one in which the erosion is unifo
everywhere. If we neglect smoothing and noise~as we will
do from this point on!, we can write

]h/]t5const52cqu“hu2, ~8!

which amounts to havings}1/q1/2, that is, exactly the slope
area law of Eq.~1!. If this state is attained it will have the
observed slope-area law in a natural way, and is certa
stationary @23#. It remains to show that featureless lan
scapes tend towards this state, and that it is stable. To in
tigate this question we turn to numerical solutions of a d
crete model, which is an approximate realization of our se
equations.

Our discrete model is very similar to that of Refs.@2,3#
~though our boundary conditions are not!. We consider a
triangular lattice of mesh points that represents our la
scape. Every point has two variables: the heighth and the
flow q. The water flows on the bonds of the lattice, and ev
node has one outflowing bond, the one that is the steepes
every time step~doing parallel updates! the drainage area is
calculated from the landscape, and the height is decrea
according to the erosion ruleDh52u“hu2qDt. The gradient
is measured on the outflowing edge. If there are no lake
the initial height distribution~no nodes with all neighbors
higher than itself!, then using sufficiently smallDt, no lakes
are created. Thus we were able to ignore the special tr
ment of lakes, which are generally present only in the init
stages of the erosion process, and do not affect the statio
state.

Initially the landscape is a hillside with a little noise
h(x,y,t50)5s0„y1dyR(x,y)…, wherey is the north-south
coordinate,s0 is the initial slope of the hillside,R~ ! is uni-
form random number from@0,1#, anddy is the lattice con-
stant. These initial conditions ensure the absence of la
The boundary conditions are periodic in the east-west dir
tion, infinite wall on the north side~this is the upper end o
the hillside!, and outflowing on the south side. The slope
the outflowing edges on the outflowing side are taken to
fixed. With these boundary conditions the stationary stat
such that the whole landscape erodes with the same rate
erywhere. We can think of this as representing a plateau
has been upthrust and that starts to erode. This boun
condition is in contrast with fixedheight at the outflowing
edge used by other authors@2,3#: in that case the stationar
state occurs when nearly all of the material has been was
away and a different slope-area law holds@3#.

In our simulations we find that the initial stages of riv
formation corresponds to rivers valleys that start at the b
tom edge and elongate, compete, and eventually reach a
tionary state with one large river. Figure 1 depicts a typi
stationary river network. Taking the lattice constant to
unit length, the slopes at the outflowing edge also one,
measuring the discharge as the number of the nodes in
basin area, the rivers reach the stationary state at around
time. The corresponding landscape is shown on Fig. 2.

The following statistical results were obtained by avera
ing 20 independent simulations of size 2563256. As ex-
pected, the slope-area law~Fig. 3! holds with exponent
1/261026. The great accuracy is understandable if we
cept that the slope-area law is an attractive fixed point of
dynamics: if any node does not satisfy the law, it will ero
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56 R7SCALING AND RIVER NETWORKS: A LANDAU . . .
faster or slower than its neighbors towards a height that
isfies the law. The cumulative distribution of the basin are
depicted on Fig. 4. The value of the exponent
b50.4560.02. Horton’s laws are shown on Fig. 5, th
branching ratio is RB54.060.2, the length ratio is
RL52.360.1. The dimension of the individual streamsdc is
measured@12# from the scaling of the average river leng
with the system size:̂l i&;Ldc ~where l i is the distance of
site i from the root on the network!. UsingL564, 128, and
256, we obtaineddc51.05, giving network fractal dimensio
1.8560.15. This value of the fractal dimension is somewh
lower than the expected 2 for space filling networks. T
probable explanation is the low value ofdc : in our hillside
initial conditions the rivers are ‘‘stretched’’ in north-sou
direction, making them more linear (dc closer to 1!.

There is another approach@4,24# to the problem of river
networks that appears quite different from ours, namely,

FIG. 1. A typical stationary river network on a 2563256 trian-
gular lattice. For better visualization, the stream is drawn with li
width proportional to the square root of the discharge. Only stre
with dischargeq>10 are displayed.

FIG. 2. The landscape created by the river of Fig. 1. The g
scale is proportional to height, with white corresponding to high
t-
is

t
e

e

idea that rivers areoptimal channel networks~OCN’s!: con-
nected branching patterns that minimize a functional t
represents dissipation. It is well known that for systems
from equilibrium no functional exists in general that giv
the dynamics in the usual sense that]h/]t5dF/dh. If there
were such a functional we could understand OCN’s by n
ing that]h/]t50, the stationary state, would occur ifF is at
a minimum. However, our equations are not of this form.

The solution to this quandry was given by Sinclair a
Ball @3# who point out that a functional can exist that giv
the stationary state, but not the complete dynamics. It is e
to see that the height functionh and flowq that minimize

F@h,q#5E $h~“•q2R!1q1/2%d2x ~9!

obey both Eq.~5! and Eq.~1!. However this variational prin-
ciple does not produce the dynamics@Eq. ~7!#. There is no
free energy that would produce the dynamics of the ini
stages of the erosion.

-
s

y

FIG. 3. The slope-area law obtained by the simulation. T
exponent isu51/261026. The great accuracy is the consequen
of the attractive nature of the fixed point of the dynamics.

FIG. 4. The cumulative basin area distributionP(Q) ~the frac-
tion of the landscape for which the drainage area is larger tha
givenQ). The value of the exponent,b50.4560.02 agrees with
Ref. @4#.
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In the erosion process there are sudden large-scale e
that have some similarity with the avalanches of se
organized critical~SOC! systems@25#. In fact, there is a for-
mulation of SOC dynamics@26# that resembles ours in that
involves a Langevin-like equation whose parameters ar
dynamical variable~cf. C52cq). However, our theory doe
not represent SOC processes, though there are similar

FIG. 5. Horton’s laws for the branching ratio (s):
RB54.060.2, and the length ratio(•): RL52.360.1. With stream
dimension dc51.05, the fractal dimension of the network
D5dcln(RB)/ln(RL)51.8560.15, somewhat lower than the ex
pected space filling 2.
s-

or

G
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te
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The events in our system that are most like avalanches
river basin capture: when part of the basin area gets c
nected to another river. These change a macroscopic pa
the flow pattern and are fast and nonlocal like avalanch
and they are essential during the evolution of the river n
work. But they completely disappear from the stationa
state, and are not dominant for the formation of the lar
scale structures. In SOC the avalanches are the only mea
transmit information between the different parts of the s
tem, and dominate any large-scale structure. In our case
the river network itself, while eroding slowly, which trans
mits information.

In summary, our treatment of river networks differs fro
earlier work in that it emphasizes the properties of the
namics which should survive coarse graining. We mak
strong claim, that the dynamics given by Eqs.~5!–~7! is a
universal theory for the large-scale structure. We have sho
that, at least, there is a reasonably satisfactory agreem
with the empirical satistical laws that are gleaned from fie
observations of real rivers. We hope that generalizations
our work to allow ground water, storms, etc., could sh
some light on how these processes affect landscapes,
could even, in the best case, give useful information on,
example, the statistics of floods.

We would like to thank F. Mackintosh, P. Olmsted, a
D. Turcotte for useful discussions. This work was suppor
by DOE Grant DE-FG02-95ER45546.
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