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Diffusion-limited aggregation in channel geometry
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We performed extensive numerical simulation of diffusion-limited aggregation in two-dimensional channel
geometry. Contrary to earlier claims, the measured fractal dimensionD51.71260.002 and its leading correc-
tion to scaling are the same as in the radial case. The average cluster, defined as the average conformal map,
is similar but not identical to Saffman-Taylor fingers.
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Diffusion-limited aggregation~DLA ! has attracted consid
erable attention since its introduction by Witten and San
in 1981 @1#. In this model an aggregate or cluster grows
capturing diffusing particles which irreversibly attach to it o
first contact. This is the discrete model of a wide variety
physical systems in the Laplacian growth class. This cl
can be modeled with a field, satisfying the Laplace equa
outside of a growing cluster, where the cluster grows in p
portion to the gradient of the field at the boundary. A gen
alization of DLA, known as the dielectric breakdown mod
~DBM! @2#, allows growth proportional to the field gradien
to the exponenth. DLA is regained forh51. The majority
of our current knowledge about DLA is numerical~mostly in
two dimensions and radial geometry!, although progress ha
been made in the theoretical front as well~see, e.g., Refs
@3,4#!.

One of the controversies surrounding DLA in channel g
ometry has been that the fractal dimension might differ fr
that in the radial case. This claim has been based on s
size simulations@5–7# or small size calculations@8,9#. In this
paper, based on extensive numerical simulations of off-lat
DLA in channel, we show that the fractal dimension
asymptotically thesamein the two geometries.

One of the most important differences between the t
geometries is that for the channel the continuum version
the problem~Laplacian growth! has a stable solution withou
tip splitting instability and finger competition. These statio
ary translating solutions—called Saffman-Taylor finge
@10#—have been studied in viscous fingering experiments
Hele-Shaw cells@11#. In this paper we compare them wit
average profiles of DLA clusters.

Our first method for generating DBM in a channel is
use iterated conformal maps. The conformal mapp
method for the radial case is described in Refs.@12,13#. For
radial DLA, a map is created from the unit circle in thew
~‘‘mathematical’’! plane to the unit circle with a bump at
randomly chosen angle in the physical plane; the comp
tion of such maps is a map from the unit circle to the DL
cluster. To produce DBM clusters, instead of choosing
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angles at random, we use a Monte Carlo method to se
bump sites with the correct distribution@13#.

To adapt this method to a channel, we modify the map
Stepanov and Levitov@14# for both periodic and reflective
boundary conditions by requiring the map to be symme
about the real axis. The map is given by

f L,u~w!5 ln@g21$ f̃ L„g~w!…%#, ~1!

whereg(w)5(w21)/(w11) is a map from the unit circle
to the imaginary axis, and from the exterior of the unit circ
to the positive-real half plane. The function

f̃ L~w!5
w1gA~w2xi !21L21gA~w1xi !21L2

11gA~12xi !21L21gA~11xi !21L2
~2!

adds two bumps at symmetric pointsx8i and 2x8i . The
denominator in Eq.~2! forces f̃ L(w) to mapw51 to 1, so
that f L,u(w) maps̀ to `. The parameterL controls the size
of the bump andg controls the aspect ratio of the bum
Sinceg(w) maps21 to `, we chooseu at random between
0 andp; and foru.p/2, f L,u(w) becomes

f L,u~w!52g21@ f̃ L„g~2w̄!…#, ~3!

where the bar denotes complex conjugation.
The actual bump positions are not at6xi, but are off by

a small factor determined byx andL. The bump size is also
dependent onx andL. In order to get bumps at angleu, f̃ L

must place bumps atg(e6 iu)5sinu/(11cosu)i. We do this
by an approximation method. To keep all the particles in
cluster of the same size, the bump size on the unit circl
varied according to the first derivative of the composite co
formal map in the original version of the conformal ma
technique@12#. This assumes that the higher order deriv
tives are negligible, which is not true deep inside a fjo
Thus particles added in a fjord can end up being very la
and sometimes can partially fill the channel. To combat t
effect, we measure the bump area at each step, and iterat
correct the size parameterL if the area is outside of a prese
tolerance~10% for the results in this paper!; compare Ref.
@14#.
©2003 The American Physical Society01-1
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While conformal mapping allows one to grow DBM fo
anyh, and directly produces a conformal map for the clus
boundary, it is computationally intensive. A more efficie
numerical algorithm for generating off-lattice DLA~that is,
h51) is a simple adaptation of hierarchical maps@15# to
channel geometry. This method enables close to linear
pendence of computing resources on cluster size. We use
total 1.731011 particles for the dimension calculations an
~including probes! 431011 particles for the average profile

Both periodic and reflective boundary conditions ha
been implemented on the sides of the channel~the periodic
boundary condition is sometimes referred to as ‘‘cylind
cal’’ !. The reflective boundary conditions are achieved
above: the cluster is grown in a channel of double width a
periodic boundary conditions, and for each deposited part
we deposit also its mirror image. At the end one of the i
ages was discarded. By the conventions used in this p
the channel is given by the range2w/2,y,w/2 and the
clusters grow~macroscopically! in the positivex direction.

Fractal dimension of channel DLA.The fractal dimension
is measured through the density. The average density sc
with the widthw of the channel, with exponent given by th
codimension:

r~w!;wD22. ~4!

To avoid transients, we discarded the first and last 3w long
section of the clusters and measured the density~number of
particle centers per area! on the remaining middle section.

We generated clusters of 83106–323106 particles in
channels of widthw550,100,200,500,1000,2000,5000 pa
ticle diameters. For each width the number of clusters gro
ranged from a few hundred to a few thousand, with more
larger clusters necessary for large widths, to achieve com
rable statistical confidence in the average density.

Figure 1 shows the widthw dependence of the effectiv
fractal dimensionDeff521d ln r/d ln w. The fractal dimen-
sion tends toD51.71260.002, independent of the choice
boundary conditions. Off-lattice noise reduction@16# does
not change the dimension, but accelerates the convergen
its asymptotic value.

Average profile.Analytical solutions for unbranched La
placian growth in a channel with reflective boundary con
tions have been known for a long time. One can find so
tions which translate a fixed profile along the channel
time. In the absence of surface tension, these solutions f
a one-parameter family, called Saffman-Taylor~ST! fingers
@10#. They are parametrized by the asymptotic ratiol of the
widths of the finger (wfinger) and the channel (w), and have
the profile

x~y!5
w~12l!

2p
lnF1

2 S 11cos
2py

lw D G . ~5!

Of these solutions,l51/2 is the most important because
related experiments@10# this profile has been observed in th
limit of vanishing surface tension. Analytical calculation
@18–20# show that surface tension—a singul
perturbation—selects a discrete set of finger solutions~only
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one of which is linearly stable!, which all converge to the
l51/2 ST finger in the limit of zero surface tension.

It has been suggested@21# that thel51/2 ST-finger solu-
tion also models the average profile both of the unsta
~highly branched! Hele-Shaw fingering and of the DLA
growth in a channel with the corresponding reflective bou
ary conditions. The profile was defined as a level set of
ensemble averaged mass density, and for the experime
Hele-Shaw profiles half of the maximum level was used. F
DLA growth it was later shown@22# that the level set at 0.5
maximum matches the width ofl50.56, while the best
match to thel51/2 profile came from the level set at 0.
maximum. Outside that range the authors of Ref.@22# con-
cluded they could match level sets only to finger widths b
not to the full shape of any ST finger.

Here we use a different kind of finger averaging, whi
does not have any fitting parameter~e.g., height of level set!,
as follows. In the conformal map method, we directly av
age the map. That is, we choose a set of points on the
circle in the mathematical plane and repeatedly map to

FIG. 1. ~a! The ~effective! fractal dimension as a function o
channel widthw. Circles correspond to the original model wit
periodic or reflecting boundary conditions, the triangles are m
with off-lattice noise reduction@16#. For the three cases the en
semble size~and therefore the statistical uncertainty! was different.
The curves correspond to the fitted lines in the~b! panel.~b! The
finite size scaling plot of the same quantities, see Ref.@17#. Inset:
All data is consistent in thew→` extrapolation with the dimension
D51.71260.002. ~In the inset the data is shifted horizontally fo
clarity.!
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physical plane. The position of the image points avera
over the different maps, that is, over the different clust
that we have generated, is a reasonable alternative to
ensemble average of Refs.@21,22#.

In Fig. 2~a! we show the average conformal map gen
ated this way. We see that the average map for DLAh
51, does not correspond to the ST result forl51/2, but we
get a good match to it for the DBM growth ath51.2. This
is an interesting result, especially in the context of recen
proposed equivalences between DBM models with gene
ized local spatial cutoff. In that framework@3,4# a highly
ramified viscous finger with simple surface tension cut
corresponds to standard~fixed size cutoff! DBM with h
'1.2. Here we observe that thenonbranchingST-finger so-
lution is very similar to theconformal averageof DBM clus-
ters of the sameh.

To use DLA grown with random walking particles in
channel, we need only construct the conformal map from
complex unit circle to the perimeter of each cluster, and t
the average of these maps, as above. The conformal m
obtained numerically by the following method@17#. We send
M probe particles to the frozen cluster, record their imp
position, and discard them. These points correspond toM
uniformly distributed points on the unit circle. The landin

FIG. 2. ~a! The average conformal map, generated with itera
conformal maps forh51, 1.2, and 1.5. The profile forh51.2
comes closest to the ST-finger solution forl51/2. ~b! The average
map of DLA clusters grown with random walking particles in
1000 particle-diameter wide reflective channel. The profile does
follow any ST-finger solution.
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FIG. 3. Thew dependence of the average conformal map, r
caled onto a unit wide channel. The tip and the tail are magnified
the bottom panels.

FIG. 4. Finite size scaling of the finger filling ratiowfinger(j)/w,
measured at a few fixedj values. Only channels 50<w<2000 were
included in the fits. The finite size scaling gives the extrapolat
w→`. For the second extrapolation,j→2`, we can only state
that wfinger/w*0.62.
1-3
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positions of the probe particles are labeled topologically
one encounters them when tracking the perimeter of the c
ter. Finally themth point is assigned to the angle 2pm/M of
the unit circle. This angle has an error of the order ofM 21/2,
which vanishes for largeM.

We measured the average conformal map on chan
with reflective boundary conditions, widths ranging from
to 2000 particle diameters. For each width, we grew 15

short clusters~only about 10w long!, and probed each with
105 test particles. In addition, for a few selected widths
probed 104 clusters with 106 probes each.

The average map for a wide channel generated this wa
shown in Fig. 2~b!. The curvature of the tip is consistent wit
that of thel51/2 ST finger~the measured curvature of th
DLA profile for w51000 or 2000 corresponds tol50.51
60.03). The asymptotic width, however, is larger. The av
age map significantly differs also from the ST finger
matching asymptotic width.

The average conformal map, rescaled onto a unit w
channel, shows strong dependence on the channel w
This is shown in Fig. 3 as a function of reducedx position
relative to the tip,j5(x2xtip)/w. Details of the tip and tail
regions show that these are clearly not consistent wit
common asymptotic ST-finger shape.

We performed a finite size scaling on thew dependence o
the finger width. The filling ratio of the fingerwfinger/w
5@y1(x)2y2(x)#/w was measured at selectedj values:j
ev

ys

ids
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520.5, 21, and21.5, and is plotted in Fig. 4. The finite
size scaling exponent was found to ben50.33, same as for
other quantities@17,16#. The most interesting is the secon
extrapolation:j→2`. We only have three points for this, s
it is only reasonable to give a lower bound:wfinger/w
*0.62.

In summary, using large scale random walker based si
lations we have shown that the fractal dimension of DLA
a channel—with either periodic or reflective bounda
conditions—is the same as in radial geometry. This is a g
simplification compared to earlier claims of boundary con
tion ~geometry! dependent fractal dimension. Second, us
both iterated conformal maps and random walker ba
simulations, we measured the average profile of the clus
defined by the average conformal map, and compared t
to ST-finger solutions of the corresponding continuum pro
lem. The averaged DLA profile is reminiscent but distin
from the ST fingers, while the average profile of DBM clu
ters with h51.2 are rather similar to the ST finger withl
51/2.

We are indebted to Dave Kessler for the suggestion
measuring the average conformal map. This research
supported by the EC under Contract No. HPMF-CT-200
00800. The computing facilities were provided by the Cen
for Scientific Computing of the University of Warwick, with
support from the JREI.
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