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Diffusion-limited aggregation in channel geometry
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We performed extensive numerical simulation of diffusion-limited aggregation in two-dimensional channel
geometry. Contrary to earlier claims, the measured fractal dimefisiof.712+ 0.002 and its leading correc-
tion to scaling are the same as in the radial case. The average cluster, defined as the average conformal map,
is similar but not identical to Saffman-Taylor fingers.
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Diffusion-limited aggregatiofDLA) has attracted consid- angles at random, we use a Monte Carlo method to select
erable attention since its introduction by Witten and Sandebump sites with the correct distributiga3].
in 1981[1]. In this model an aggregate or cluster grows by To adapt this method to a channel, we modify the map of
capturing diffusing particles which irreversibly attach to it on Stepanov and Levitoy14] for both periodic and reflective
first contact. This is the discrete model of a wide variety ofPoundary conditions by requiring the map to be symmetric
physical systems in the Laplacian growth class. This clas@bout the real axis. The map is given by
can be modeled with a field, satisfying the Laplace equation -
outside of a growing cluster, where the cluster grows in pro- fo,o(Ww)=In[g~H{fx(@(W))}], (1)
portion to the gradient of the field at the boundary. A gener- . o
alization of DLA, known as the dielectric breakdown modelWhere_g(w)_=(w—1_)/(w+ 1) is a map frqm the unit (_:|rc_le
(DBM) [2], allows growth proportional to the field gradient to tﬂe imaginary a)l(lrsf lefm? fromTtrr:e ;axter.lor of the unit circle
to the exponenty. DLA is regained forp=1. The majority to the positive-real half plane. The function
of our current knowledge about DLA is numerigaiostly in ——p s
two dimensions and radial geometralthough progress has Taw)= W YW= xD)Z 4 AR y (W XD+ A
been made in the theoretical front as wedee, e.g., Refs. 1+ yJ(1=xi)2+ A%+ y/(1+xi)%+ A2
[3.4]).

One of the controversies surrounding DLA in channel ge-2dds two bumps at symmetric pointsi and —x'i. The
ometry has been that the fractal dimension might differ fromdenominator in Eq(2) forcesf,(w) to mapw=1 to 1, so
that in the radial case. This claim has been based on smahatf, ,(w) maps= to . The parameteA controls the size
size simulation$5—7] or small size calculations,9]. In this  of the bump andy controls the aspect ratio of the bump.
paper, based on extensive numerical simulations of off-lattic&inceg(w) maps—1 to, we choose) at random between
DLA in channel, we show that the fractal dimension is0 and; and for > /2, f, ,(w) becomes
asymptotically thesamein the two geometries. _

One of the most important differences between the two fao(W)= —g Y fA(g(—W))], 3)
geometries is that for the channel the continuum version of
the problem(Laplacian growthhas a stable solution without Where the bar denotes complex conjugation.
tip splitting instability and finger competition. These station- ~ The actual bump positions are not-aki, but are off by
ary translating solutions—called Saffman-Taylor fingersa small factor determined byandA. The bump size is also
[10]—have been studied in viscous fingering experiments irdependent ox and A. In order to get bumps at angte T,
Hele-Shaw cell§11]. In this paper we compare them with must place bumps aj(e*'?)=sin 6/(1+cosé)i. We do this
average profiles of DLA clusters. by an approximation method. To keep all the particles in the

Our first method for generating DBM in a channel is to cluster of the same size, the bump size on the unit circle is
use iterated conformal maps. The conformal mapping/aried according to the first derivative of the composite con-
method for the radial case is described in Rgf2,13. For ~ formal map in the original version of the conformal map
radial DLA, a map is created from the unit circle in the technique[12]. This assumes that the higher order deriva-
(“mathematical”) plane to the unit circle with a bump at a tives are negligible, which is not true deep inside a fjord.
randomly chosen angle in the physical plane; the composiThus particles added in a fjord can end up being very large
tion of such maps is a map from the unit circle to the DLA and sometimes can partially fill the channel. To combat this
cluster. To produce DBM clusters, instead of choosing theeffect, we measure the bump area at each step, and iteratively

correct the size parametdr if the area is outside of a preset
tolerance(10% for the results in this papercompare Ref.
*Electronic address: e.somfai@warwick.ac.uk [14].
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While conformal mapping allows one to grow DBM for 172 L N N I T
any », and directly produces a conformal map for the cluster - a) T
boundary, it is computationally intensive. A more efficient 171
numerical algorithm for generating off-lattice DL#&hat is,
n=1) is a simple adaptation of hierarchical mdf$] to 1.70
channel geometry. This method enables close to linear des i
pendence of computing resources on cluster size. We used i3 L.
total 1.7x 10" particles for the dimension calculations and
(including probes 4 x 10 particles for the average profile.

Both periodic and reflective boundary conditions have

1.68 —

periodic bc
reflecting be

[e]

been implemented on the sides of the charitied periodic 167 i A periodic b, noise red.: A=0.1 ||
boundary condition is sometimes referred to as “cylindri- 166 i i v i viiil i i
cal”). The reflective boundary conditions are achieved as 10 100 1000

above: the cluster is grown in a channel of double width and 17 w

periodic boundary conditions, and for each deposited particle
we deposit also its mirror image. At the end one of the im-
ages was discarded. By the conventions used in this pape
the channel is given by the rangew/2<y<w/2 and the
clusters gron(macroscopicallyin the positivex direction.

Fractal dimension of channel DLAhe fractal dimension
is measured through the density. The average density scaleq
with the widthw of the channel, with exponent given by the 1.68
codimension:

1.70

W)

1.69 —

€

p(w)~wP 2. @
1-68 L 1 L I 1 1 L I 1 L 1 I 1 L 1 I 1 1 1
To avoid transients, we discarded the first and lasti@ng 00 0.02 0.04 0.06 0.08 0.10
section of the clusters and measured the dergsifynber of GoBxLT2
particle centers per argan the remaining middle section.
We generated clusters of x@L0°P—32x 1¢P particles in FIG. 1. (a) The (effective fractal dimension as a function of

channels of widthw=50,100,200,500,1000,2000,5000 par- channel widthw. Circles correspond to the original model with
ticle diameters. For each width the number of clusters growsperiodic or reflecting boundary conditions, the triangles are made
ranged from a few hundred to a few thousand, with more andvith off-lattice noise reductiori16]. For the three cases the en-
larger clusters necessary for large widths, to achieve comp&emble sizéand therefore the statistical uncertainiyas different.
rable statistical confidence in the average density. The curves correspond to the fitted lines in the panel.(b) The
Figure 1 shows the widtiw dependence of the effective finite size scaling plot of the same quantities, see Ref]. Inset:
fractal dimensiorD =2+ d In p/dInw. The fractal dimen- All data is consistent in th_w—mo extrapolgtlon_wnh the_dlmensmn
sion tends td =1.712+0.002, independent of the choice of D:'l.712t 0.002. (In the inset the data is shifted horizontally for
boundary conditions. Off-lattice noise reductipb6] does clarity.)
not change the dimension, but accelerates the convergencedfe of which is linearly stabje which all converge to the
its asymptotic value. A=1/2 ST finger in the limit of zero surface tension.
Average profileAnalytical solutions for unbranched La- |t has been suggesté@1] that thex = 1/2 ST-finger solu-
placian growth in a channel with reflective boundary condi-tion also models the average profile both of the unstable
tions have been known for a long time. One can find solu{nighly branchedl Hele-Shaw fingering and of the DLA
tions which translate a fixed profile along the channel ingrowth in a channel with the corresponding reflective bound-
time. In the absence of surface tension, these solutions forigry conditions. The profile was defined as a level set of the
a one-parameter family, called Saffman-Tay(6) fingers  ensemble averaged mass density, and for the experimental
[10]. They are parametrized by the asymptotic ratiof the  Heje-Shaw profiles half of the maximum level was used. For
widths of the finger Wnge) and the channel), and have  p| A growth it was later showri22] that the level set at 0.5
the profile maximum matches the width of =0.56, while the best
match to thex=1/2 profile came from the level set at 0.6

w(l-An) |1 2my maximum. Outside that range the authors of R22] con-
=———In|z| 1+cos—||. ) X .
X(y) 2 In 2 1+co AW ) © cluded they could match level sets only to finger widths but

not to the full shape of any ST finger.
Of these solutionsh =1/2 is the most important because in  Here we use a different kind of finger averaging, which
related experimentdl0] this profile has been observed in the does not have any fitting parametetg., height of level sgt
limit of vanishing surface tension. Analytical calculations as follows. In the conformal map method, we directly aver-
[18-20 show that surface tension—a singular age the map. That is, we choose a set of points on the unit
perturbation—selects a discrete set of finger soluti@myy  circle in the mathematical plane and repeatedly map to the
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FIG. 2. (a) The average conformal map, generated with iterated ... g ;::1)/33
conformal maps forp=1, 1.2, and 1.5. The profile fop=1.2 Liv il sl % T [

comes closest to the ST-finger solution for 1/2. (b) The average 14 -12 -10 -08 -0.15 -0.05 0

map of DLA clusters grown with random walking particles in a (x-X, ) w (x-x, Yw

1000 particle-diameter wide reflective channel. The profile does not " P

follow any ST-finger solution. FIG. 3. Thew dependence of the average conformal map, res-

caled onto a unit wide channel. The tip and the tail are magnified on

. . . . gwe bottom panels.
physical plane. The position of the image points average
over the different maps, that is, over the different clusters
that we have generated, is a reasonable alternative to the
ensemble average of Ref21,22.

In Fig. 2(a) we show the average conformal map gener-
ated this way. We see that the average map for DEA,
=1, does not correspond to the ST resultXer 1/2, but we
get a good match to it for the DBM growth gt=1.2. This
is an interesting result, especially in the context of recently
proposed equivalences between DBM models with generali 0.62
ized local spatial cutoff. In that frameworl3,4] a highly
ramified viscous finger with simple surface tension cutoff *
corresponds to standardixed size cutoff DBM with 7 0.60
~1.2. Here we observe that tm®nbranchingST-finger so-
lution is very similar to theconformal averag@f DBM clus- 0.58 B
ters of the samey. ' | | | | |

To use DLA grown with random walking particles in a 000 002 004 006 008 _oI0  ol2
channel, we need only construct the conformal map from the
complex unit circle to the perimeter of each cluster, and take
the average of t_hese maps, as above. The conformal map is FIG. 4. Finite size scaling of the finger filling ratwnge( £)/w,
obtained numerically by the following meth#i7]. We send  easured at a few fixegivalues. Only channels 50w= 2000 were

M probe particles to the frozen cluster, record their impacinciuded in the fits. The finite size scaling gives the extrapolation
position, and discard them. These points corresponMto w—o. For the second extrapolatiof,——, we can only state

uniformly distributed points on the unit circle. The landing thatwjge/W=0.62.

0.66

0.64

finger

-0.33x 1.712
W
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positions of the probe particles are labeled topologically as=—0.5, —1, and—1.5, and is plotted in Fig. 4. The finite
one encounters them when tracking the perimeter of the clusize scaling exponent was found to be 0.33, same as for
ter. Finally themth point is assigned to the anglert/M of  other quantitieg§17,16. The most interesting is the second
the unit circle. This angle has an error of the ordeMof'?,  extrapolation— —. We only have three points for this, so
which vanishes for largé. it is only reasonable to give a lower boun@ge/w

We measured the average conformal map on channelsg go.
with reflective boundary conditions, widths ranging from 10 |, summary, using large scale random walker based simu-
to 2000 particle diameters. For each width, we grevé' 10 |ations we have shown that the fractal dimension of DLA in
short clustergonly about 1@ long), and probed each with 5 channel—with either periodic or reflective boundary
10° test particles. In addition, for a few selected widths We_onditions—is the same as in radial geometry. This is a great

pro_lk_)ﬁd 10 clusters W]ith 16 p(;obehs eaclh. ted thi simplification compared to earlier claims of boundary condi-
€ averageé map for a wide channel generated this way ig, | (geometry dependent fractal dimension. Second, using

shown in Fig. 2Zb). The.curvature of the tip is consistent with both iterated conformal maps and random walker based

that of thea=1/2 ST finger(the measured curvature of the simulations, we measured the average profile of the clusters,

DLA profile for w=1000 or 2000 corresponds t0=0.51 .

ST . defined by the average conformal map, and compared them
+0.03). Th_e asymptotic W'dth' however, is larger. 'I_'he averis ST-finger solutions of the corresponding continuum prob-
age map significantly differs also from the ST finger of

matching asymptotic width, lem. The averaged DLA profile is reminiscent but distinct

The average conformal map, rescaled onto a unit Widfrom the ST fingers, while the average profile of DBM clus-

channel, shows strong dependence on the channel widt L with =1.2 are rather similar to the ST finger with

This is shown in Fig. 3 as a function of reducegbosition =12

relative to the tip£= (X—Xp)/w. Details of the tip and talil We are indebted to Dave Kessler for the suggestion of

regions show that these are clearly not consistent with aneasuring the average conformal map. This research was
common asymptotic ST-finger shape. supported by the EC under Contract No. HPMF-CT-2000-

We performed a finite size scaling on twalependence of 00800. The computing facilities were provided by the Center
the finger width. The filling ratio of the fingew;nge/w  for Scientific Computing of the University of Warwick, with
=[y,;(x)—y_(x)]/w was measured at selectédvalues:¢  support from the JREI.
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