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Growth by random walker sampling and scaling of the dielectric breakdown model
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Random walkers absorbing on a boundary sample the harmonic measure linearly and independently: we
discuss how the recurrence times between impacts enable nonlinear moments of the measure to be estimated.
From this we derive a technique to simulate dielectric breakdown model growth, which is governed nonlinearly
by the harmonic measure. For diffusion-limited aggregation, recurrence times are shown to be accurate and
effective in probing the multifractal growth measure in its active region. For the dielectric breakdown model
our technique grows large clusters efficiently and we are led to significantly revise earlier exponent estimates.
Previous results by two conformal mapping techniques were less converged than expected, and in particular a
recent theoretical suggestion of superuniversality is firmly refuted.
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I. INTRODUCTION cally by the capillary energy associated with surface ramifi-

The steady-state distribution of random walking particlescatlons' Computationally these nonlinear models have been a

is qoverned by Laplace’s equation. As a result Witten anOchallenge, as random walkers only directly sample the har-
Sa%der’s modZI of%iﬁusion—?imited .a regatidDLA) [1] monic measure linearly, realizing only the=1 case.

) ; . \ggreg ) ’ First in this paper we show that random walkers can be
in which a cluster grows by irreversible accretion of dilute

diffusing material, has been of double interest: it is readil exploited to sample nonlinear moments of the harmonic
. 9 ' ; . ' Ymeasure. In this way we obtain results for the active portion
simulated out to huge cluster sizg43], while at the same

time the governance of its arowth by Laplace’s equation renpf the multifractal spectrum of DLA far beyond existing re-

ders it aglandmark mather%atical c)r/1allepn e 1o e?nal e Thsults. The key strength of these methods is that no explicit
. o g€ yze. olving of the Laplace equation is involved.

connection to a Laplacian field also underpins the breadth o

application of the DLA model to problems such as viscous We then exploit this to establish a method of growing
Applicatior ; P s DBM clusters by random walker accretion. This also entails
fingering in porous medig4] and electrodepositiofi5,6].

o adopting the noise reduction strategies lately introduced in
This interest _ha_s a_ll been abetied by controversy as t?zef [15] and enables us to explore the DBM class out to
whether the distribution of cluster shapes conforms to S|mpI<EIn .recedentedl large clusters. We show that in two dimen-
fractal scalingsee[7] and references thergiand interest in P y1arg '

the multifractal scaling of the growth measue-11 sions this largely resolves how the exponents of the DBM

Physical analogies and the mathematical connections haerOdEI depend ony: in particular superuniversality of the tip

led to interest in other models where the growth is overneciCaling exponeni is strongly refuted, in favor of a continu-
) . . €9 . 9 . ous variation of exponents which also confirms the hypoth-
nonlinearlyby a Laplacian field. In particular Niemeyer, Pi-

. . . . . esized upper critical valupl6—-19 7.=4.
Etrreo;k%rg\}vﬁnrgo\évé?gBa,\ﬂg)'thg]duﬁiﬂethe family of dielectric Ogr walker-DBM resglts are_supported by extensive com-
putations using established iterative conformal mapping
Un |0nd”, V2¢=0, Pinerace= 0, (1) methopls due Fo Hastings ano_l Levit(HL)_[ZO] and al_so by
] ) . __ direct integration of the Shraiman-Bensimon equatifizi§
and 7 is (for interesj a positive parameter. Interest in this is exploiting the mappings of Ball and Somfdi3,14. For ex-
further prompted by Ball and Somfai's propo$aB,14 that  ponents, all three agree within statistical errors. Below the
growth proportional to field with nontrivial spatial cutoff |eye| of the errors there is a systematic difference between
maps onto a simple DBM but witly# 1. An important case \yalker-DBM and HL, and separate results for the relative
in point is diffusion-controlled growth which is limited lo- penetration depth suggest that it is the walker-DBM clusters
which are more converged to asymptotic behavior. Unlike
HL and our Shraiman-Bensimon integrations, the walker-
*Present address: Universiteit Leiden, Instituut-Lorentz, P.O. BoXPBM technique is not limited to two dimensions and so the
9506, 2300 RA Leiden, The Netherlands. Electronic addressway forward appears open to a full exploration of the DBM
ellak@lorentz.leidenuniv.nl class in three dimensions.
"Electronic address: N.R.Goold@warwick.ac.uk
*Electronic address: r.c.ball@warwick.ac.uk
SElectronic address: jdevita@umich.edu We consider first the problem of sampling the harmonic
'Electronic address: Isander@umich.edu measure of an equipotential surface. The harmonic measure
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is given on the surface bgu/ds=d¢/on where outside the highly negativeq, for which random walkers give an ineffi-
surface the scalar field obeys a Poisson equatiorV&p  cient sample of the relevant parts of the measure.
=8(x) with S(x) the source density; typically, we will be
interested in cases where the source is concentrgted at p_oints, IIl. MOMENTS UNDER GROWTH
particularly . We can sample this measure by introducing
random walkers at the source points and tracing their Brown- The simple ideas above become rather useful when ex-
ian trajectories to the point of first encounter with the sur-tended to compute moments of the measure as a surface
face, whereupon any given walker is discarded. The points ofrows. The harmonic measure of diffusion-limited aggrega-
first encounter uniformly sample the measure tion provides a well-studiedout not entirely resolvedtest

By firing a large enough sample of random walkers andcase. For a cluster o added particles the conventional
collecting frequency counts of their hit distribution, one canmultifractal scaling would lead th~N‘T(“)’D, whereD is
build up an approximation to the entire harmonic measurethe fractal dimension relating radiu® to N through N

This procedure has been successfully used by Soetfal.  ~RP. Summing these moments ovar with weight N1
[7]. However, such methods are expensive and give differingives us a partition functioZ(q,t) which we can estimate
quality estimates across the support. (ignoring numerical prefactoysas

Here we focus on recurrence times defined as follows. We
first divide the support intomany) small partitionghereafter
termed “sitesy for each of which we aim to estimate the
corresponding hit probability.. We then fire(independent
walkers sequentially at the surface, and when each walkethere the sum is now over the particles used to grow the
hits, the number of walkers fired since the previous hit orcluster and the corresponding ages of the sites where they
that site we will call the “age®, and this provides a simple hit. Following the spirit of how Halsegt al.[22] generalized
estimate of the hit probability of that sije;=1/a. Thisis a  the identification of multifractal spectrum, we can now iden-
standard way to estimate frequency of uncorrelated event$fy that 7(q)/D separates the values< 7(qg)/D for which
by their recurrence time. The probability distribution of the Z(g,t,N) —« as N—« from the valuest>r(q)/D for
estimatoru,, given the true underlying value for that site, ~ which Z(q,t,N)—0.

N
Z(g,t,N) = > al™nt
n=1

is given by simple Poisson statistics as The above definition does not restrict the behavior of
o Z(q,t,N) on the locug=7(q)/D but the simple expectation
pa(alp) = pe 2, is of a logarithmic divergence wittN. Then a numerical
assuming thaju<1 so that we can approximate age as astrategy 's to choosesuch that
continuous variable. We can generate more reliable estimates N
by using the agey since thekth previous hit, which is dis- Z(q,t,N) - Z(q,t,eN) = >, al™n'?
tributed according to n=eN+1
_ - becomes independent bf asN becomes large with fixeé.
- 1y k-1 _
Pul(@l) = pe™ M uag (k= 1), 2) To obtain results aj=2 we have to use higher-order

ages. The first-order age is naturally thought of as the age of
the parent to a given new site and a corresponding estimate
of a, is given by the age of its grandparditie parent of its
gharenj and so on. It is of course a concern that the more such
generations one looks back for the age, the more the cluster
geometry will have evolved in the meantime: we will see
éhat overall cluster screening cuts in below a threshold value
of g in a well understood way. To alleviate the worry above
threshold we have studied noise-reduced clusters where each
particle deposited advances the local geometry by only a
qu:A(k,q)<(ak/k)1-q>’ small frgctionA of one notional particle size, so that we can
be confident that the local geometry does not evolve signifi-
where the average is now over all random walkers hitting theantly on looking back of order 2 generations.
surface, we uséth ages, andi(k,q) is a trivial numerical Figure 1 shows the moment spectrurtg) resulting from
front factor. imposing the conditionZ(q,t,N)-2(q,t,eN)=2Z(q,t, eN)
Random walkers being cheap, our main concern is wher Z(q,t, 2N) on asingleoff-lattice DLA cluster. As expected
this estimate converges. Using the distributi@ one can  from our discussion in Sec. Il, the results using ages of order
readily check that the integral fovl, converges tM, pro-  k break away afj=k+1. An important check is given by the
vided k>qg-1, and we use the appropriate prefactormeasured value(3)/D=1.01 compared to the prediction of
Ak,q)=[k'9(k-1)']/(k-g)'. Thus we can compute mo- unity from the electrostatic scaling laj23].
ments of finite degree simply by using high enough order For more definitive results we have studied a sample of 10
ages. In practice we will see that for problems of interest thelusters out toN=10" using A=0.1. Even allowing for the
most significant limitation comes not at highbut rather at  noise reduction, which means that of ordeA£/10 particles

in terms of which our estimate ig,=k/ay.

In applications considered below we will be interested in
calculating moments of the measutd,=>u9, where the
summation is over the sites into which we partitioned th
support. This can be interpreted &=(u%") where the
average is weighted by the measurétself which in turn is
sampled by where random walkers hit. At each impact w
can use the site age in our estimate for the facjofs,
leading to the estimate
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using first-order ages and clusters grown per Fig. 2 to different
sizes. In the vicinitya <D the curves systematically rise with the
FIG. 1. The moment spectrum(q) of the harmonic measure range ofN used, in support of our claim that the age method ulti-
obtained over the growth of a single DLA cluster by imposing themately probes all the way te=D. The curves are based on the
condition  Z(q,t,N)-2(q,t,N/4)=2(q,t,N/4)-Z(q,t,N/16) to  slope of InZ(g,0,N) vs InN across successive factors ¢f0 in N
yield t=7(q)/D. The respective curves used ages of oréler up toN=10" (topmost curvi
=1,2,4,8 and can beeen to break away arourgEk+1 as ex-
pected from our discussion in Sec. Il. Note also the close agreememthich is distinguished by carrying full error bafg4] and
with the electrostatic scaling laj23] that (3)/D=1. These results one more recent spectruf5] which claimed better conver-
come from a single off-lattice DLA cluster dii=1C° particles gence than all previous.
grown with noise reduction factdd5] A=0.1. The success of our data lies in the regige1 corre-
sponding toa<1, where it passes two important tests by
were deposited per local unit of advance in the growth, it ismeeting the (dashedl tangent lines corresponding to
unprecedented to probe the harmonic measure out to su®hakarov's theorem[26] at q=1 and (for the higherk as
large scales. Because of the volume of age data, it was curappropriatg Halsey’s electrostatic scaling laj23] at q=3,
bersome to seek stationarity &fq,t,N)-Z(q,t,eN) and in-  and in these respects it clearly improves on the earlier pub-
stead we extractetlq) from the simple scaling expectation lished data.

thatz(q,t’ ,N)-z(q,t',eN)ocNt’—t(q) where we simply chose A significant limitation of thef(a) spectrum obtained is

t' to assure reasonably uniform weighting of the data. Wehat it substantially undershoots at largebut this is quali-
then tookr (g)=Dt(q) usingD=1.71, where any error in this tatively consistent with expectations. It is obvious that we
value is not significant to the accuracytod). The resulting ~cannot expect to probe probabilities to hit a site which are
f(a) spectrum is shown in Fig. 2 for ages of orderl, 3, 9, smaller than 1N as these are unlikely to be sampled by the

27 and compared to one earlier report of fite) spectrum N walkers used to grow the cluster. Thus we certainly cannot
probe the spectrum fax>D.

- A more careful argument suggests that in principle we
. should(in the limit of large enoughN) be able to probe all
1 the way up toa=D, as follows. Consider a typical sité
k=1 ] “born” with hit probability R™*, a<<D. It is expected that the
k= ] probability for growth within distance of this point varies
as p(r)=(r/R)% and when this vicinity has received®
walkers the local structure up to length scalgill have been
completely regrown. This requires a number of walkers
added to the cluster given bB§N(r/R)*=r P leading to SN
p—— ~Rer P~¢, The argument is consistent far<D because it
o Baspick ket 1) shows that_ for length scales Iarger th.anthe regrowth
— _ threshold will not have been met, validating our retention of
. the hit probabilityp(r) = (r/R)%. From the point of view of
1 site X significant reorganization of the cluster happens first
Us 03 " —>5—————, on the smallest scales and requi@é~ R*, by which point
we can expect to have hit siitself with nonzero probabil-
FIG. 2. Multifractal spectrum ofthe harmonic measure yof ItY- FOr a>D the scenario is of screening being dominated
DLA obtained using ages of ordér=1,3,9,27. Alsoshown are by distant growth and hitting the site is unlikely. A more
earlier results from Ball and Spivad4] and Jensert al. [25]. ~ detailed discussion of the screening dynamics is given by
Note how much better the present data agree with the tangent lindgall and Blunt[9].

13

(o)

representing Halsey's electrostatic scaling lafer q=3) and Figure 3 shows how thé(e) spectrum from first-order
Makarov's theorenfor q=1). The inset shows how the older data ages develops as a function of size upNte10’. As expected
extend to higher, which our method cannot probe. the spectrum builds up on the right-hand s{gRHS) as we
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increaseN consistent with our expectation that ultimately we steps. At giverp=R"¢, the probability that a single sampling
can probe as far ag=D. Quantitatively the convergence is of the kth age is less thag, can be found from Eq.2) and

poor beyond about=1.5. varies as(R “ay)* for ua,<1. If we grow the cluster by a
significant fraction of its size, then the number of walkers
IV. DIELECTRIC BREAKDOWN MODEL Sampling this distribution is given b@/ (SQ)Rf(a)_a where
the first factor is the total number of walkers added and the
A. Random walker model second is the probability of one walker landing on a site with

Niemeyer, Pietronero, and Wiesmajt®] introduced the ~w«~R“. Therefore the number of times ages belaware
generalization of diffusion-controlled growth in which the expected to be sampled is given by
local advance velocity is set hy”. In this modeln=1 cor- f(@)-a/ o>-an \K
responds to DLA, while growth with higher values pfwas m;’;n{Q/éQR (R™ay, (3)
proposed to model the evolution of dielectric breakdown pat- ) o
terns. More recent'y it has been argued by two 0'[1&14 where we have taken the maX|ma”y Cont”buung valuevof
that nontrivial values ofy can also be induced when map- To find the smallest likely value od we then set this ex-
ping between different types of ultraviolet cutoff, even whenPression )EO unity. 'Y'T(Ell(fllgmzmg thex dependence gives
the underlying growth is strictly proportional to flux. The Max[R"*“ R a];R and it is convenient to similarly
computational challenge of the DBM is that random walkerssubstitute Q=R"**, leading to expected minimum age
sample the harmonic measure proportionalutoso for »  given by
#1 an explicit calculation of the measure appears to be re- . okt D)=1(247) gy 1k
quired. Relaxation methodi8,19 and more recentlyfor minfa ~ (R Q™. (43
two dimensiony conformal mapping techniqugd7] have  The above calculation is valid when it yields an increasing
been used, but the resulting computations are dramaticalliunction of R; otherwise, the scaling assumption in £8)

more expensive than for simple DLA simulation. does not hold, and we have
We propose that the following random walker growth .
model is equivalent to the DBM. We fire random walkers at minfa,} = 1. (4b)

the cluster, whose first encounter linearly sampleét each
encounter we use theh-order age of the site hit to give the
estimateu,,=k/a, and accordingly advance the growth lo-

i tém=Aa. "7, which is in- : ,
cally by an amount proportional =Ag ", which is in scatter plots of all the ages as a function of cluster growth in
terpreted as the mass added to the cluster. There are two cleg[ < fn~RD using ages of different orders and compar-

constraints: The first is that the local advance must convergﬁ‘Ig with the result above

. 1_ _l . . _ _
in the mean(a, ), = 7", requiring thak> »—1. The sec We can now exploit the expected minimum age to set an
ond is that we desire that ttkéh-order ages should look back optimal choice ofsQ in DBM growth: we substitute mify}

no further than a particle size, so individual advance stepg the restriction that the growth steps be suitably limited
should be bounded by k/Naively this requireA<1/k for sm<1, leading to g P y

7>1andA<N7”"1for <1, whereN is the total number of
walkers, but we will discuss below how we can greatly im- 85Q ~ RUr DLk )=r2+n)Ji(k+1=7) (5
prove on these constraints by adjustisglynamically.

We have tested the predicted minimum age by looking at
the extremal ages sampled during DLA cluster growth,
where we haveSQ=1, »=1, and#(3)=D. Figure 4 shows

Given that we are restricted to- 1> 7, the exponent oR in
the expression forsQ increases monotonically witk to-
wards the asymptotéy—1) apmi, ask— .

We now consider allowing the growth step prefactar® In practice we are inhibited from settirigtoo large be-
vary as the growth proceeds. It is convenient to interpret causek-dependent prefactors compete with optimizing the
=0Q as the charge borne by each walker adding to thgpower law for finiteR, but takingk=10 puts us quite close to
growth, and the growth is governed by the local normal adthe limit. Also, we cannot use Eg5) explicitly because the
vance rate(dr/dQ),=un" whereQ is the cumulative charge values ofr(k+1) and 7(2+7) are not knowna priori for a
added. It was noted by two of (i$4] that if we characterize generic#. Instead, armed with the knowledge that such an
the extremal tips of the growth as havipg,~R “tr, then  asymptotic power law exists, we use the empirical formula
the growth law at the tips trivially leads @~R7r as a  8Q=Ayk72N¥ for which the parameters are chosen such that
generalization of a standard relation for the fractal dimensionhe constraints are met. For the parameter values of Table I,
of DLA, and less trivially it is expected that ljy;, used in the simulations below, the conditibm<1 always
=7(2+n) which we will use below to render some expres- holds while the distance looked back by tkéh-order age
sions less cumbersome. Within all this framework we areonly exceeds one particle diameter a few times per million
now free to choose the charge increments per watkgto  walkers and never exceeds two particle diameters.

B. DBM with optimal growth steps

vary systematically with growth of a clustéput not biased Our algorithm is most competitive fof near 1, including
by where each particular walker hitsvith the corresponding the important region & <2 corresponding to surface ten-
mass increments given bym= (9Qa&”7. sion regularization[13,14, where it can generate cluster

We focus on the case>1 for which the concern lies masses inaccessible by other methods. For too small or large
with anomalously low ages which would give large growth # (particularly »=3) it becomes less advantageous.
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FIG. 4. Scatter plot of the ages of sites hit for DLA=1, 5Q=1. The data points are decimated for lafgéor clarity. The solid lines
correspond to the expected scaling of minimal ages obtained from(E&sand (4b); these theoretical estimates appear to be suitably
cautious.

In principle for k— oo the number of walkers required to In Fig. 8 we compare these results with measurements ob-

grow a cluster is given by tained with different methods: HL and by integrating the
Shraiman-Bensimon equation, the latter described in more
N = dQ ~ R *mint (p=min) detail in the next section. The data agree within the stated

50 ' uncertainties, showing a smooth monotonic transition be-

) o ) tween the extremeg=0 and »= 7., while below the level
The result is familiar in that for=1 it recovers the DLA  of significance point by point one can see some differences.
result (where N is also the cluster mapsThere has been One difference is that for HLe, shows very little variation
recent controversy about the precise value f—amin  at 1< y=2 (seemingly agreeing with an earlier prediction
through which our method is explicitly sensitive ip[10], [13,14), while the walker-DBM method does not show this
although certainly this difference is very small g&=1, feature. Another difference is that for high the walker-

where 0s ajjp = amin<0.03+£0.005; see Fig. 5. DBM method yields lower values for bothg, and D than
HL. Although for the walker-DBM method it was not prac-
C. Numerical results tical to obtain values for> 3, its extrapolation is more con-

. sistent withz.=4.
Figure 6 shows “snapshots” of DBM clusters grown at e

different » using the random walker method. V. SHRAIMAN-BENSIMON EQUATION

ATC' a test of the walker-DBM method, We_compared the Shraiman and Bensimon observgtl] that for DLA in
relative penetration dept{the growth zone width, normal- 4 dimensions the evolution of the complex potential re-
ized by the average deposition radiusth measurements on  ,,ces to a nonlocal problem in one space dimengisus
clusters grown by the more established HL method, #or time). This is based on the cluster boundaty) expressed
=2. The asymptotic behavior of the penetration depth can bgs a complex function of the imaginary parof the complex
considered a sensitive measurement, as for DLA it Causeﬁ‘otential, corresponding to cumulative harmonic measure or,
considerable controversy in the past. As seen in Fig. 7, bottore loosely, charge. In Refil3,14 we adapted this to the
methods converge to the same asymptotic value of the rel®BM class, arguing that changing from a fixed cutoff scale
tive penetration depth, and of the two, the walker-DBMin physical space to a fixed cutoff in charge space could be

method converges slightly faster. This can be understood ipffset by adjustment of the DBM parameter fromg to 7,
terms of the higher effective noise reduction levels. =ary Then, in terms of

To probe the scaling, we measured the tip scaling expo- K
nentay, and the fractal dimensiod for several values of;. (=02 96) T2 = y(pt) = 1 S n(He
=(6,t) = ’ ,

k=1

TABLE I. Numerical values of the parameters used to grow . .
walker-DBM clusters. The local growth Bm=(Ay/KINA(a/K)1 . th_e dynqmg:s for DBM growph along a channel of widthr 2
with periodic boundary conditions reduces to

7 k Ao B d Ko kKl _
. . o8 o = K i+ p 2 [(3+71)] = it
15 10 0.85 0.138 (6)
2 10 0.8 0.234

3 10 0.85 0.32 with ¢4p=1. The fixed bandwidth limitk<K corresponds

qualitatively to imposing a cutoff of fixed minimal charge on

051403-5



SOMFAI et al.

Py /Py, (log. scale)

(@)

tip

p2p,

(b)

15

1.4

1.3

1.2

10°

p /pﬁp (lin. scale),

‘max’

0.1 (noise reduction)
1

10' 10°

3

107

10*

M

5 6

107 10

7

10

o

A=0.1 (noise reduction)

A=l

0

10

10" 10°

3
107

10*

M

10°

10°

10’

(b)

PHYSICAL REVIEW E 70, 051403(2004

FIG. 5. Study of the highest probability growth sites and the tips
of DLA clusters. We launched probe walkers onto a fixed nongrow- ()
ing cluster and recorded the number of probes landed on each site.
This enables us to calculate the growth probability of each site, FIG. 6. DBM clusters grown by the new methad) »=0.5,(b)
including the tip(farthest site from the origin (a) The ratio of the ~ 7=1.5,(c) 7=2, and(d) »=3. In each casbl=10° random walkers
growth probabilities of the highest hit rate site and the tip: it is awere used.
slowly increasing function of the cluster mdgs The best fit curve
is a power law with a small exponenpmaxlptip~M(““P"“mi””D,
with ayjp = amin=0.03+0.005. However, one cannot entirely exclude
logarithmic correctiongsee inset in that casexp=ami,. (b) The
number of sites with higher hit rate than the tip. This scales as a 9-30 T
power of the radiufk with the fractal dimension of tips as expo- i i
nent:npzpﬂp~ Rfir~Mfi'®. The exponent is larger, clearly distinct L % H(}% I 4
from zero:;;=0.38+0.03. On all plots the two data sets are stan- o i
dard DLA (A=1) with 10*~1C clusters depending on size and 025
noise-reduced DLAA=0.1) with 4200—10 clusters. The number
of probes was set such that the tip of each cluster received 250& L
hits. The solid lines are best fit for the data points under them; -
dotted lines are extensions towards excluded data points. 0.20

(d)

o HL
o o i {+ o walker DBM
the growing tips and inevitably means that the most screene R

regions of the physical growth are not tracked. Scaling argu- b 4

ments lead to the expectation tHat ) o« m 11=1e) for 0.15—

1<m<K, but give no indication of how wide a range wf 10

is required to see the scaling behavior and hence determine

the tip scaling exponen, and we will see that this is @  FIG. 7. (Color onling Comparison of the relative penetration

major issue below. depth= =/(r2)—(r)?/(r) for the walker-DBM and HL methods. For
The trilinear form of the RHS is efficiently evaluated by each method the penetration depth was measured on 30 DBM clus-

Fourier methods costing of ordErin K per time step for the ters, =2, with 3000 probes on each cluster. Both methods con-

whole system, and in the results presented here we Ksed verge to the same asymptotic value, with the walker-DBM converg-

=1023 and a simple predictor-corrector time-steppinging slightly faster.

10* 10°

2

10 10°

M
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]2-_ % ] FIG. 9. (Color onling Direct integration of the Bensimon-
1 L } Shraiman equatio(6) as described in Sec. V leads to the prediction
10 s e that ucum(k):E,-<k|z,//_j|2_ should vary askn(t=1® o the displayed
) | ) | ) | , | ) | graphs should exhibit slopke—1/«. (Recall thatn;=an.) The up-
0 1 2 3 4 5 per panel(a shows plots from the same simulation gt=0.5 for
(b) n successively later-timegbottom to top. There is characteristic

slope at highk which persists over a limited range, but it is the

FIG. 8. (Color onling (a) The tip scaling exponent;, and(b)  |ower slope which emerges and eventually dominates the wider
the fractal dimensiorD as a function ofs. The four data sets range down to the smallest rangeko&nd which we take to reveal
plotted are the walker-DBM, our HL measurements, earlier HLthe true tip scaling exponent The lower pane(b) shows data at
measurements of Refl17], and our Shraiman-Bensimon results. |arge times forp;=0.3,0.6,0.9,1.2,1.5, 1@op to bottom at right
Because we have to convert the SB results back from measuremenjghile the highk slope is insensitive tay,, there is a clear variation
at fixed 7, to the corresponding values af =17/, these points  of the asymptotic slopes from which we takein Fig. 8a).
have error bars on both and 7. The “walker” data point fory
=1 is in fact a DLA measuremergtvith very small uncertaintigs
from Ref. [27] together with the relationy;,=D—-1. The dotted
lines correspond to the limiting behaviors: dense two-dimensionaP
growth (»=0) and nonbranching one-dimensional growi® 7).

highk slopes are insensitive tg, the (we claim asymptotic
lopes at lowek exhibit a systematic variation.

From the present data the conclusion has to be that the

slopes in the lower range d& give our best estimate of 1

scheme. We set the time step adaptively such that for everyl/a and it is these results which are compafadd agreg
i at each time stepither the predicted and corrected up- With the results by other methods in FigaB The relatively
dateséyy, agreed within 10%or else ¢ was being updated constant slopes at highare what dominated our earlier nu-
by less than 20%. As the predictor-corrector scheme is &erical conclusions 13,14 which had a factor of 10 less
second-order method, the resulting worst case error is of ofange ink and appeared to lend support to the claim that the
der 5%: even this sounds generous but as it was applied #ope, and hence, might be independent af. That earlier
the worst case of 1023 variables the typical precisiorsuggestion is clearly refuted, although we cannot rule out
achieved was very much higher, and we chose 20% on th@ore surprises from simulations at decades lakger
basis of obtaining results statistically indistinguishable under
refinement.

Figure 9a) shows the observed behavior(@f; -3
versusk with increasing time for a representative value of We have shown that recurrence times between random
71. On logarithmic scales the expectation is a straight linevalkers provide estimates of the local harmonic measure
with slopel-1/a and a difficulty is immediately apparent, which are highly effective for estimating moments and for
in that two-slope behavior is clearly observed. It is clear thasimulating nonlinear growth models.
it is the slope emerging from lowédrvalues which predomi- For the scaling of multifractal moments this technique is
nates at large times, although different slope is preservelimited to the regions of the growth which are sufficiently
over a limited upper range & Figure 9b) shows results at active that nearby hits dominate the screening of a given site,
long times for variousy; from which it is clear that while the but in that “active range” our results for DLA in two dimen-

VI. CONCLUSIONS
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sions clearly surpass the quality of previous data and offefrom our integration of the Shraiman-Bensimon equation.
more conclusive support to the theoretical exponent relationslowever, unraveling the confusing two-slope behavior
of Makarov and Halsey. Given that our method is also appliwhich this approach exhibits for the extraction of the expo-

cable in higher dimensions, we believe we have establishefent oy, would not have been prompted without the walker-
it as the technique of choice to determine harmonic measurggn results. Overall it is the agreement of both methods

N tge aCt'Yke rabnge.d imulati f the dielectric breakd with earlier results which establishes the definitive picture.
urwalker-based simuiations of the dielectric breakdown Finally we note that the most crucial role of walker-based

model have greatly consolidated knowledge of how DBMDBM’S will be in three dimensions, where the techniques

exponents vary with the nonlinearity parametein two di- nlgased on complex analysis have nothing to offer and rela-

mensions. In particular we can now be much more confide el little is k bout th t behavior. We look
of the continuous variation of fractal dimension with YVE!Y IItI€ IS known about the exponent behavior. Ve 100
forward to exploring this in a subsequent paper.

n—Ilooking at the trend in terms af;, sharpens the issue—
and we can be fairly confident that the DBM becomes trivial
for »> n,=4 as conjectured theoreticall{6-19.
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