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Random walkers absorbing on a boundary sample the harmonic measure linearly and independently: we
discuss how the recurrence times between impacts enable nonlinear moments of the measure to be estimated.
From this we derive a technique to simulate dielectric breakdown model growth, which is governed nonlinearly
by the harmonic measure. For diffusion-limited aggregation, recurrence times are shown to be accurate and
effective in probing the multifractal growth measure in its active region. For the dielectric breakdown model
our technique grows large clusters efficiently and we are led to significantly revise earlier exponent estimates.
Previous results by two conformal mapping techniques were less converged than expected, and in particular a
recent theoretical suggestion of superuniversality is firmly refuted.
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I. INTRODUCTION

The steady-state distribution of random walking particles
is governed by Laplace’s equation. As a result Witten and
Sander’s model of diffusion-limited aggregation(DLA ) [1],
in which a cluster grows by irreversible accretion of dilute
diffusing material, has been of double interest: it is readily
simulated out to huge cluster sizes[2,3], while at the same
time the governance of its growth by Laplace’s equation ren-
ders it a landmark mathematical challenge to analyze. The
connection to a Laplacian field also underpins the breadth of
application of the DLA model to problems such as viscous
fingering in porous media[4] and electrodeposition[5,6].
This interest has all been abetted by controversy as to
whether the distribution of cluster shapes conforms to simple
fractal scaling(see[7] and references therein) and interest in
the multifractal scaling of the growth measure[8–11].

Physical analogies and the mathematical connections have
led to interest in other models where the growth is governed
nonlinearlyby a Laplacian field. In particular Niemeyer, Pi-
etronero, and Wiesmann introduced the family of dielectric
breakdown models(DBM’s) [12] where

vn ~ u]nfuh, ¹2f = 0, finterface< 0, s1d

andh is (for interest) a positive parameter. Interest in this is
further prompted by Ball and Somfai’s proposal[13,14] that
growth proportional to field with nontrivial spatial cutoff
maps onto a simple DBM but withhÞ1. An important case
in point is diffusion-controlled growth which is limited lo-

cally by the capillary energy associated with surface ramifi-
cations. Computationally these nonlinear models have been a
challenge, as random walkers only directly sample the har-
monic measure linearly, realizing only theh=1 case.

First in this paper we show that random walkers can be
exploited to sample nonlinear moments of the harmonic
measure. In this way we obtain results for the active portion
of the multifractal spectrum of DLA far beyond existing re-
sults. The key strength of these methods is that no explicit
solving of the Laplace equation is involved.

We then exploit this to establish a method of growing
DBM clusters by random walker accretion. This also entails
adopting the noise reduction strategies lately introduced in
Ref. [15] and enables us to explore the DBM class out to
unprecedentedly large clusters. We show that in two dimen-
sions this largely resolves how the exponents of the DBM
model depend onh: in particular superuniversality of the tip
scaling exponenta is strongly refuted, in favor of a continu-
ous variation of exponents which also confirms the hypoth-
esized upper critical value[16–19] hc=4.

Our walker-DBM results are supported by extensive com-
putations using established iterative conformal mapping
methods due to Hastings and Levitov(HL) [20] and also by
direct integration of the Shraiman-Bensimon equations[21]
exploiting the mappings of Ball and Somfai[13,14]. For ex-
ponents, all three agree within statistical errors. Below the
level of the errors there is a systematic difference between
walker-DBM and HL, and separate results for the relative
penetration depth suggest that it is the walker-DBM clusters
which are more converged to asymptotic behavior. Unlike
HL and our Shraiman-Bensimon integrations, the walker-
DBM technique is not limited to two dimensions and so the
way forward appears open to a full exploration of the DBM
class in three dimensions.

II. RANDOM WALKER SAMPLING

We consider first the problem of sampling the harmonic
measure of an equipotential surface. The harmonic measure
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is given on the surface bydm /ds=]f /]n where outside the
surface the scalar fieldf obeys a Poisson equation −¹2f
=Ssxd with Ssxd the source density; typically, we will be
interested in cases where the source is concentrated at points,
particularly `. We can sample this measure by introducing
random walkers at the source points and tracing their Brown-
ian trajectories to the point of first encounter with the sur-
face, whereupon any given walker is discarded. The points of
first encounter uniformly sample the measurem.

By firing a large enough sample of random walkers and
collecting frequency counts of their hit distribution, one can
build up an approximation to the entire harmonic measure.
This procedure has been successfully used by Somfaiet al.
[7]. However, such methods are expensive and give differing
quality estimates across the support.

Here we focus on recurrence times defined as follows. We
first divide the support into(many) small partitions(hereafter
termed “sites”) for each of which we aim to estimate the
corresponding hit probabilitym. We then fire(independent)
walkers sequentially at the surface, and when each walker
hits, the number of walkers fired since the previous hit on
that site we will call the “age”a, and this provides a simple
estimate of the hit probability of that sitem1=1/a. This is a
standard way to estimate frequency of uncorrelated events,
by their recurrence time. The probability distribution of the
estimatorm1, given the true underlying valuem for that site,
is given by simple Poisson statistics as

p1saumd = me−ma,

assuming thatm!1 so that we can approximate age as a
continuous variable. We can generate more reliable estimates
by using the ageak since thekth previous hit, which is dis-
tributed according to

pksakumd = me−maksmakdk−1/sk − 1d!, s2d

in terms of which our estimate ismk=k/ak.
In applications considered below we will be interested in

calculating moments of the measure,Mq=omq, where the
summation is over the sites into which we partitioned the
support. This can be interpreted asMq=kmq−1l where the
average is weighted by the measurem itself which in turn is
sampled by where random walkers hit. At each impact we
can use the site age in our estimate for the factorsmq−1,
leading to the estimate

Mqk = Ask,qdksak/kd1−ql,

where the average is now over all random walkers hitting the
surface, we usekth ages, andAsk,qd is a trivial numerical
front factor.

Random walkers being cheap, our main concern is when
this estimate converges. Using the distribution(2) one can
readily check that the integral forMqk converges toMq pro-
vided k.q−1, and we use the appropriate prefactor
Ask,qd=fk1−qsk−1d!g / sk−qd!. Thus we can compute mo-
ments of finite degree simply by using high enough order
ages. In practice we will see that for problems of interest the
most significant limitation comes not at highq but rather at

highly negativeq, for which random walkers give an ineffi-
cient sample of the relevant parts of the measure.

III. MOMENTS UNDER GROWTH

The simple ideas above become rather useful when ex-
tended to compute moments of the measure as a surface
grows. The harmonic measure of diffusion-limited aggrega-
tion provides a well-studied(but not entirely resolved) test
case. For a cluster ofN added particles the conventional
multifractal scaling would lead toMq,N−tsqd/D, whereD is
the fractal dimension relating radiusR to N through N
,RD. Summing these moments overN with weight Nt−1

gives us a partition functionZsq,td which we can estimate
(ignoring numerical prefactors) as

Zsq,t,Nd = o
n=1

N

a1−qnt−1,

where the sum is now over the particles used to grow the
cluster and the corresponding ages of the sites where they
hit. Following the spirit of how Halseyet al. [22] generalized
the identification of multifractal spectrum, we can now iden-
tify that t sqd /D separates the valuest,t sqd /D for which
Zsq,t ,Nd→` as N→` from the valuest.t sqd /D for
which Zsq,t ,Nd→0.

The above definition does not restrict the behavior of
Zsq,t ,Nd on the locust=t sqd /D but the simple expectation
is of a logarithmic divergence withN. Then a numerical
strategy is to chooset such that

Zsq,t,Nd − Zsq,t,eNd = o
n=eN+1

N

a1−qnt−1

becomes independent ofN asN becomes large with fixede.
To obtain results atqù2 we have to use higher-order

ages. The first-order age is naturally thought of as the age of
the parent to a given new site and a corresponding estimate
of a2 is given by the age of its grandparent(the parent of its
parent) and so on. It is of course a concern that the more such
generations one looks back for the age, the more the cluster
geometry will have evolved in the meantime: we will see
that overall cluster screening cuts in below a threshold value
of q in a well understood way. To alleviate the worry above
threshold we have studied noise-reduced clusters where each
particle deposited advances the local geometry by only a
small fractionA of one notional particle size, so that we can
be confident that the local geometry does not evolve signifi-
cantly on looking back of order 1/A generations.

Figure 1 shows the moment spectrumt sqd resulting from
imposing the conditionZsq,t ,Nd−Zsq,t ,eNd=Zsq,t ,eNd
−Zsq,t ,e2Nd on asingleoff-lattice DLA cluster. As expected
from our discussion in Sec. II, the results using ages of order
k break away atq=k+1. An important check is given by the
measured valuets3d /D=1.01 compared to the prediction of
unity from the electrostatic scaling law[23].

For more definitive results we have studied a sample of 10
clusters out toN=107 using A=0.1. Even allowing for the
noise reduction, which means that of order 1/A=10 particles

SOMFAI et al. PHYSICAL REVIEW E 70, 051403(2004)

051403-2



were deposited per local unit of advance in the growth, it is
unprecedented to probe the harmonic measure out to such
large scales. Because of the volume of age data, it was cum-
bersome to seek stationarity ofZsq,t ,Nd−Zsq,t ,eNd and in-
stead we extractedtsqd from the simple scaling expectation

that Zsq,t8 ,Nd−Zsq,t8 ,eNd~Nt8−tsqd where we simply chose
t8 to assure reasonably uniform weighting of the data. We
then tookt sqd=Dtsqd usingD=1.71, where any error in this
value is not significant to the accuracy oftsqd. The resulting
fsad spectrum is shown in Fig. 2 for ages of orderk=1, 3, 9,
27 and compared to one earlier report of thefsad spectrum

which is distinguished by carrying full error bars[24] and
one more recent spectrum[25] which claimed better conver-
gence than all previous.

The success of our data lies in the regionqù1 corre-
sponding toaø1, where it passes two important tests by
meeting the (dashed) tangent lines corresponding to
Makarov’s theorem[26] at q=1 and (for the higherk as
appropriate) Halsey’s electrostatic scaling law[23] at q=3,
and in these respects it clearly improves on the earlier pub-
lished data.

A significant limitation of thefsad spectrum obtained is
that it substantially undershoots at largea, but this is quali-
tatively consistent with expectations. It is obvious that we
cannot expect to probe probabilities to hit a site which are
smaller than 1/N as these are unlikely to be sampled by the
N walkers used to grow the cluster. Thus we certainly cannot
probe the spectrum fora.D.

A more careful argument suggests that in principle we
should(in the limit of large enoughN) be able to probe all
the way up toa=D, as follows. Consider a typical siteX
“born” with hit probability R−a, a,D. It is expected that the
probability for growth within distancer of this point varies
as psrd<sr /Rda, and when this vicinity has receivedr D

walkers the local structure up to length scaler will have been
completely regrown. This requires a number of walkers
added to the cluster given bydNsr /Rda< r D leading todN
<Rar D−a. The argument is consistent fora,D because it
shows that for length scales larger thanr the regrowth
threshold will not have been met, validating our retention of
the hit probabilitypsrd<sr /Rda. From the point of view of
site X significant reorganization of the cluster happens first
on the smallest scales and requiresdN<Ra, by which point
we can expect to have hit siteX itself with nonzero probabil-
ity. For a.D the scenario is of screening being dominated
by distant growth and hitting the site is unlikely. A more
detailed discussion of the screening dynamics is given by
Ball and Blunt[9].

Figure 3 shows how thefsad spectrum from first-order
ages develops as a function of size up toN=107. As expected
the spectrum builds up on the right-hand side(RHS) as we

FIG. 1. The moment spectrumt sqd of the harmonic measure
obtained over the growth of a single DLA cluster by imposing the
condition Zsq,t ,Nd−Zsq,t ,N/4d=Zsq,t ,N/4d−Zsq,t ,N/16d to
yield t=t sqd /D. The respective curves used ages of orderk
=1,2,4,8 and can beseen to break away aroundq=k+1 as ex-
pected from our discussion in Sec. II. Note also the close agreement
with the electrostatic scaling law[23] thatts3d /D=1. These results
come from a single off-lattice DLA cluster ofN=106 particles
grown with noise reduction factor[15] A=0.1.

FIG. 2. Multifractal spectrum of(the harmonic measure of)
DLA obtained using ages of orderk=1,3,9,27. Alsoshown are
earlier results from Ball and Spivack[24] and Jensenet al. [25].
Note how much better the present data agree with the tangent lines
representing Halsey’s electrostatic scaling law(for q=3) and
Makarov’s theorem(for q=1). The inset shows how the older data
extend to highera, which our method cannot probe.

FIG. 3. Size dependence of thefsad spectrum of DLA, obtained
using first-order ages and clusters grown per Fig. 2 to different
sizes. In the vicinitya&D the curves systematically rise with the
range ofN used, in support of our claim that the age method ulti-
mately probes all the way toa=D. The curves are based on the
slope of lnZsq,0 ,Nd vs lnN across successive factors ofÎ10 in N
up to N=107 (topmost curve).
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increaseN consistent with our expectation that ultimately we
can probe as far asa=D. Quantitatively the convergence is
poor beyond abouta.1.5.

IV. DIELECTRIC BREAKDOWN MODEL

A. Random walker model

Niemeyer, Pietronero, and Wiesmann[12] introduced the
generalization of diffusion-controlled growth in which the
local advance velocity is set bymh. In this modelh=1 cor-
responds to DLA, while growth with higher values ofh was
proposed to model the evolution of dielectric breakdown pat-
terns. More recently it has been argued by two of us[13,14]
that nontrivial values ofh can also be induced when map-
ping between different types of ultraviolet cutoff, even when
the underlying growth is strictly proportional to flux. The
computational challenge of the DBM is that random walkers
sample the harmonic measure proportional tom, so for h
Þ1 an explicit calculation of the measure appears to be re-
quired. Relaxation methods[8,19] and more recently(for
two dimensions) conformal mapping techniques[17] have
been used, but the resulting computations are dramatically
more expensive than for simple DLA simulation.

We propose that the following random walker growth
model is equivalent to the DBM. We fire random walkers at
the cluster, whose first encounter linearly samplesm. At each
encounter we use thekth-order age of the site hit to give the
estimatemk=k/ak and accordingly advance the growth lo-
cally by an amount proportional todm=Aak

1−h, which is in-
terpreted as the mass added to the cluster. There are two clear
constraints: The first is that the local advance must converge
in the mean,kak

1−hlm~mh −1, requiring thatk.h−1. The sec-
ond is that we desire that thekth-order ages should look back
no further than a particle size, so individual advance steps
should be bounded by 1/k. Naively this requiresA,1/k for
h.1 andA,Nh −1 for h,1, whereN is the total number of
walkers, but we will discuss below how we can greatly im-
prove on these constraints by adjustingA dynamically.

B. DBM with optimal growth steps

We now consider allowing the growth step prefactorsA to
vary as the growth proceeds. It is convenient to interpretA
=dQ as the charge borne by each walker adding to the
growth, and the growth is governed by the local normal ad-
vance rates]r /]Qdn=mh whereQ is the cumulative charge
added. It was noted by two of us[14] that if we characterize
the extremal tips of the growth as havingmtip<R−atip, then
the growth law at the tips trivially leads toQ<R1+hatip as a
generalization of a standard relation for the fractal dimension
of DLA, and less trivially it is expected that 1+hatip
=t s2+hd which we will use below to render some expres-
sions less cumbersome. Within all this framework we are
now free to choose the charge increments per walkerdQ to
vary systematically with growth of a cluster(but not biased
by where each particular walker hits), with the corresponding
mass increments given bydm=dQak

1−h.
We focus on the caseh.1 for which the concern lies

with anomalously low ages which would give large growth

steps. At givenm=R−a, the probability that a single sampling
of the kth age is less thanak can be found from Eq.(2) and
varies assR−aakdk for mak!1. If we grow the cluster by a
significant fraction of its size, then the number of walkers
sampling this distribution is given bysQ/dQdRfsad−a where
the first factor is the total number of walkers added and the
second is the probability of one walker landing on a site with
m<R−a. Therefore the number of times ages belowak are
expected to be sampled is given by

max
a

fQ/dQRfsad−asR−aakdkg, s3d

where we have taken the maximally contributing value ofa.
To find the smallest likely value ofak we then set this ex-
pression to unity. Maximizing thea dependence gives
maxafRfsad−aR−kag<R−tsk+1d and it is convenient to similarly
substitute Q<Rts2+hd, leading to expected minimum age
given by

minhakj < sRtsk+1d−ts2+hddQd1/k. s4ad

The above calculation is valid when it yields an increasing
function of R; otherwise, the scaling assumption in Eq.(3)
does not hold, and we have

minhakj = 1. s4bd

We have tested the predicted minimum age by looking at
the extremal ages sampled during DLA cluster growth,
where we havedQ=1, h=1, andts3d=D. Figure 4 shows
scatter plots of all the ages as a function of cluster growth in
terms ofN<RD, using ages of different orders and compar-
ing with the result above.

We can now exploit the expected minimum age to set an
optimal choice ofdQ in DBM growth: we substitute minhakj
into the restriction that the growth steps be suitably limited
dm!1, leading to

dQ < Rsh−1dftsk+1d−ts2+hdg/sk+1−hd. s5d

Given that we are restricted tok+1.h, the exponent ofR in
the expression fordQ increases monotonically withk to-
wards the asymptotesh−1damin ask→`.

In practice we are inhibited from settingk too large be-
causek-dependent prefactors compete with optimizing the
power law for finiteR, but takingk=10 puts us quite close to
the limit. Also, we cannot use Eq.(5) explicitly because the
values oftsk+1d and ts2+hd are not knowna priori for a
generich. Instead, armed with the knowledge that such an
asymptotic power law exists, we use the empirical formula
dQ=A0k

h−2Nb for which the parameters are chosen such that
the constraints are met. For the parameter values of Table I,
used in the simulations below, the conditiondm,1 always
holds while the distance looked back by thekth-order age
only exceeds one particle diameter a few times per million
walkers and never exceeds two particle diameters.

Our algorithm is most competitive forh near 1, including
the important region 1,h,2 corresponding to surface ten-
sion regularization[13,14], where it can generate cluster
masses inaccessible by other methods. For too small or large
h (particularlyh*3) it becomes less advantageous.
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In principle for k→` the number of walkers required to
grow a cluster is given by

N =E dQ

dQ
< R1+amin+hsatip−amind.

The result is familiar in that forh=1 it recovers the DLA
result (where N is also the cluster mass). There has been
recent controversy about the precise value ofatip−amin
through which our method is explicitly sensitive toh [10],
although certainly this difference is very small ath=1,
where 0øatip−aminø0.03±0.005; see Fig. 5.

C. Numerical results

Figure 6 shows “snapshots” of DBM clusters grown at
different h using the random walker method.

As a test of the walker-DBM method, we compared the
relative penetration depth(the growth zone width, normal-
ized by the average deposition radius) with measurements on
clusters grown by the more established HL method, forh
=2. The asymptotic behavior of the penetration depth can be
considered a sensitive measurement, as for DLA it caused
considerable controversy in the past. As seen in Fig. 7, both
methods converge to the same asymptotic value of the rela-
tive penetration depth, and of the two, the walker-DBM
method converges slightly faster. This can be understood in
terms of the higher effective noise reduction levels.

To probe the scaling, we measured the tip scaling expo-
nentatip and the fractal dimensionD for several values ofh.

In Fig. 8 we compare these results with measurements ob-
tained with different methods: HL and by integrating the
Shraiman-Bensimon equation, the latter described in more
detail in the next section. The data agree within the stated
uncertainties, showing a smooth monotonic transition be-
tween the extremesh=0 andh*hc, while below the level
of significance point by point one can see some differences.
One difference is that for HL,atip shows very little variation
at 1øh&2 (seemingly agreeing with an earlier prediction
[13,14]), while the walker-DBM method does not show this
feature. Another difference is that for highh the walker-
DBM method yields lower values for bothatip and D than
HL. Although for the walker-DBM method it was not prac-
tical to obtain values forh.3, its extrapolation is more con-
sistent withhc=4.

V. SHRAIMAN-BENSIMON EQUATION

Shraiman and Bensimon observed[21] that for DLA in
two dimensions the evolution of the complex potential re-
duces to a nonlocal problem in one space dimension(plus
time). This is based on the cluster boundaryzsud expressed
as a complex function of the imaginary partu of the complex
potential, corresponding to cumulative harmonic measure or,
more loosely, charge. In Refs.[13,14] we adapted this to the
DBM class, arguing that changing from a fixed cutoff scale
in physical space to a fixed cutoff in charge space could be
offset by adjustment of the DBM parameter fromh0 to h1
=ah0 Then, in terms of

s− i]z/]ud−s1+h1d/2 = csu,td = 1 +o
k=1

K

ckstde−iku,

the dynamics for DBM growth along a channel of width 2p
with periodic boundary conditions reduces to

d

dt
ck = − kcko

m=0

K

cmcm + o
j=1

k

o
m=0

K−j

fs3 + h1d j − 2kgck−jc j+mcm,

s6d

with c0=1. The fixed bandwidth limitkøK corresponds
qualitatively to imposing a cutoff of fixed minimal charge on

FIG. 4. Scatter plot of the ages of sites hit for DLA:h=1, dQ=1. The data points are decimated for largeN for clarity. The solid lines
correspond to the expected scaling of minimal ages obtained from Eqs.(4a) and (4b); these theoretical estimates appear to be suitably
cautious.

TABLE I. Numerical values of the parameters used to grow
walker-DBM clusters. The local growth isdm=sA0/kdNbsak/kd1−h.

h k A0 b

0.5 1 0.8 −0.45

1.5 10 0.85 0.138

2 10 0.8 0.234

3 10 0.85 0.32
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the growing tips and inevitably means that the most screened
regions of the physical growth are not tracked. Scaling argu-
ments lead to the expectation thatkcmcml~m−1+h1s1−1/ad for
1!m!K, but give no indication of how wide a range ofm
is required to see the scaling behavior and hence determine
the tip scaling exponenta, and we will see that this is a
major issue below.

The trilinear form of the RHS is efficiently evaluated by
Fourier methods costing of orderK ln K per time step for the
whole system, and in the results presented here we usedK
=1023 and a simple predictor-corrector time-stepping

FIG. 6. DBM clusters grown by the new method:(a) h=0.5,(b)
h=1.5,(c) h=2, and(d) h=3. In each caseN=106 random walkers
were used.

FIG. 7. (Color online) Comparison of the relative penetration
depthJ=Îkr2l−krl2/ krl for the walker-DBM and HL methods. For
each method the penetration depth was measured on 30 DBM clus-
ters, h=2, with 3000 probes on each cluster. Both methods con-
verge to the same asymptotic value, with the walker-DBM converg-
ing slightly faster.

FIG. 5. Study of the highest probability growth sites and the tips
of DLA clusters. We launched probe walkers onto a fixed nongrow-
ing cluster and recorded the number of probes landed on each site.
This enables us to calculate the growth probability of each site,
including the tip(farthest site from the origin). (a) The ratio of the
growth probabilities of the highest hit rate site and the tip: it is a
slowly increasing function of the cluster massM. The best fit curve
is a power law with a small exponent:pmax/ptip,Msatip−amind/D,
with atip−amin=0.03±0.005. However, one cannot entirely exclude
logarithmic corrections(see inset); in that caseatip=amin. (b) The
number of sites with higher hit rate than the tip. This scales as a
power of the radiusR with the fractal dimension of tips as expo-
nent:npùptip

,Rf tip,Mf tip/D. The exponent is larger, clearly distinct
from zero: f tip=0.38±0.03. On all plots the two data sets are stan-
dard DLA sA=1d with 104–105 clusters depending on size and
noise-reduced DLAsA=0.1d with 4200–104 clusters. The number
of probes was set such that the tip of each cluster received 2500
hits. The solid lines are best fit for the data points under them;
dotted lines are extensions towards excluded data points.
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scheme. We set the time step adaptively such that for every
ck at each time stepeither the predicted and corrected up-
datesdck agreed within 10%or elseck was being updated
by less than 20%. As the predictor-corrector scheme is a
second-order method, the resulting worst case error is of or-
der 5%: even this sounds generous but as it was applied to
the worst case of 1023 variables the typical precision
achieved was very much higher, and we chose 20% on the
basis of obtaining results statistically indistinguishable under
refinement.

Figure 9(a) shows the observed behavior ofso j,kuc ju2d1/h1

versusk with increasing time for a representative value of
h1. On logarithmic scales the expectation is a straight line
with slope1−1/a and a difficulty is immediately apparent,
in that two-slope behavior is clearly observed. It is clear that
it is the slope emerging from lowerk values which predomi-
nates at large times, although different slope is preserved
over a limited upper range ofk. Figure 9(b) shows results at
long times for varioush1 from which it is clear that while the

high-k slopes are insensitive toh, the (we claim) asymptotic
slopes at lowerk exhibit a systematic variation.

From the present data the conclusion has to be that the
slopes in the lower range ofk give our best estimate of 1
−1/a and it is these results which are compared(and agree)
with the results by other methods in Fig. 8(a). The relatively
constant slopes at highk are what dominated our earlier nu-
merical conclusions in[13,14] which had a factor of 10 less
range ink and appeared to lend support to the claim that the
slope, and hencea, might be independent ofh. That earlier
suggestion is clearly refuted, although we cannot rule out
more surprises from simulations at decades largerK.

VI. CONCLUSIONS

We have shown that recurrence times between random
walkers provide estimates of the local harmonic measure
which are highly effective for estimating moments and for
simulating nonlinear growth models.

For the scaling of multifractal moments this technique is
limited to the regions of the growth which are sufficiently
active that nearby hits dominate the screening of a given site,
but in that “active range” our results for DLA in two dimen-

FIG. 8. (Color online) (a) The tip scaling exponentatip and (b)
the fractal dimensionD as a function ofh. The four data sets
plotted are the walker-DBM, our HL measurements, earlier HL
measurements of Ref.[17], and our Shraiman-Bensimon results.
Because we have to convert the SB results back from measurements
at fixed h1 to the corresponding values ofh0=h1/a, these points
have error bars on botha and h0. The “walker” data point forh
=1 is in fact a DLA measurement(with very small uncertainties)
from Ref. [27] together with the relationatip=D−1. The dotted
lines correspond to the limiting behaviors: dense two-dimensional
growth sh=0d and nonbranching one-dimensional growthshùhcd.

FIG. 9. (Color online) Direct integration of the Bensimon-
Shraiman equation(6) as described in Sec. V leads to the prediction
that vcumskd=o j,kuc ju2 should vary askh1s1−1/ad so the displayed
graphs should exhibit slope1−1/a. (Recall thath1=ah.) The up-
per panel(a) shows plots from the same simulation ath1=0.5 for
successively later-times(bottom to top). There is characteristic
slope at highk which persists over a limited range, but it is the
lower slope which emerges and eventually dominates the wider
range down to the smallest range ofk and which we take to reveal
the true tip scaling exponenta. The lower panel(b) shows data at
large times forh1=0.3,0.6,0.9,1.2,1.5,1.8(top to bottom at right).
While the high-k slope is insensitive toh1, there is a clear variation
of the asymptotic slopes from which we takea in Fig. 8(a).
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sions clearly surpass the quality of previous data and offer
more conclusive support to the theoretical exponent relations
of Makarov and Halsey. Given that our method is also appli-
cable in higher dimensions, we believe we have established
it as the technique of choice to determine harmonic measure
in the active range.

Our walker-based simulations of the dielectric breakdown
model have greatly consolidated knowledge of how DBM
exponents vary with the nonlinearity parameterh in two di-
mensions. In particular we can now be much more confident
of the continuous variation of fractal dimension with
h—looking at the trend in terms ofatip sharpens the issue—
and we can be fairly confident that the DBM becomes trivial
for h.hc=4 as conjectured theoretically[16–19].

We have concentrated on measuring exponents relating to
the active zone of the growth, which we can determine under
growth. Having grown the clusters there is of course no im-
pediment to calculating their full harmonic measure, includ-
ing screened regions, by more expensive methods applied to
a selection of cluster sizes.

The clearest results for the scaling of the DBM in two
dimensions over the full range ofh now come, ironically,

from our integration of the Shraiman-Bensimon equation.
However, unraveling the confusing two-slope behavior
which this approach exhibits for the extraction of the expo-
nentatip would not have been prompted without the walker-
DBM results. Overall it is the agreement of both methods
with earlier results which establishes the definitive picture.

Finally we note that the most crucial role of walker-based
DBM’s will be in three dimensions, where the techniques
based on complex analysis have nothing to offer and rela-
tively little is known about the exponent behavior. We look
forward to exploring this in a subsequent paper.
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