
20

PHYSICAL REVIEW E, VOLUME 63, 056103
Fluctuation effects in an epidemic model
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We study a discrete epidemic modelA1B→2A in one and two dimensions~1D and 2D!. In 1D for low
concentrationu, we find that a depletion zone exists ahead of the front and the average velocity of the front
approachesv5u/2. In the 1D high concentration limit, we find that the velocity approachesv512e2u/2. In
2D, for low concentration we also find a depletion zone, and the velocity scales asv;u0.6, which is different
from the scaling expected from the mean field approximation,v;u0.5. Analysis of the interface width scaling
properties demonstrated that the front dynamics of this reaction are not governed by the Kardar-Parisi-Zhang
equation.
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I. INTRODUCTION

In this paper we analyze a simple discrete model of
reaction A1B→2A in one and two dimensions. We ca
think of this as a model for an epidemic: theA particles are
sick, and they infectB’s on contact. We are particularly in
terested in the spatial dynamics of the model, i.e., the ve
ity of propagation of the infection and the characteristics
the region around the moving front.

To be specific, we allow the particles to diffuse, i.e., p
form a random walk on a lattice, and when a ‘‘sick’’ partic
encounters a ‘‘healthy’’ one~a B particle! then theB is in-
stantly infected. We assume that theA’s and theB’s affect
see each other only by infection. Otherwise they are indep
dent random walkers that do not interact. In one dimens
~1d!, if we start with oneA on the extreme left of the system
we are asking for the time dependence of the location of
front, the rightmostA. In 2D, we are asking for the time
dependence of the location of the rightmostA in each row,
averaged over rows. There is some resemblance betwee
model and what happens in a real epidemic caused by ag
that do not move long distances.A1B→2A may also be
thought of as an irreversible autocatalytic chemical react

Models of this type have evoked a good deal of inter
@1–5# because of several unexpected, fascinating feature
the process. As we will see, in the limit of smallu the front
propagation is dominated by fluctuation effects. What
tracted particular attention@1# was the realization that, as
result, continuum modeling breaks down completely for t
reaction.

To see this we note that we expect the mean concentra
of A particles to be described by the Fisher-Kolmogor
~FK!equation @6#.We start by writing a conventiona
reaction-diffusion equation:

] ta5DDa1kab5DDa1ka~u2a!. ~1!

Herek is a rate constant,D the diffusion constant, and in th
second line we have used the fact that on averagea1b5u.
In one dimension, the last equation becomes the FK equa
] tu5]xxu1u(12u) after changing variables. From th
standard theory@7#, the velocity of the front approachesvc
1063-651X/2001/63~5!/056103~7!/$20.00 63 0561
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52AkDu independent of initial conditions. The key eleme
in this sort of ‘‘pulled front’’ equation is that the velocity is
determined by the exponential growth ofa far ahead of the
front wherea is very small.

However, simulations@1# showed that in 1D the fron
velocity was linear in u for small u, and thus very much
smaller than expected. This is partially understandable fr
the work of Brunet and Derrida@3#, who pointed out that
discreteness has an anomalously large effect on sys
which obey the FK equation in the continuum limit. The F
equation is structurally unstable, sensitive to small pertur
tions. In Refs.@3,4# models were introduced that interpola
between the results of@1# and the FK equation via a ver
slow crossover. The models involve a very large density
particles with a small reaction rate. These authors found
the velocity depression was given byv;vc2K/ ln2(u) where
K is a constant. However, we find here that for our version
the model~large reaction rates, small density! fluctuations
are the dominant effect. In both cases, the essential poi
that the front dynamics are very easily perturbed by sm
effects since the velocity is determined in regions wherea is
tiny.

In this work we enquire about the mechanism for t
small velocity for u→0 in the original ~discrete! A1B
→2A process. In a trivial model of independent rando
walkers, it is startling that there is any interesting dynami
The total density at any point is clearly given by a Poiss
distribution. It turns out, however, that the front is not
typical point, and this is the key to the unexpected behav

We find that the small velocity is a giant fluctuation effe
that is qualitatively as follows. Suppose we assume that
velocity is a monotonically increasing function ofu, and re-
call that for smallu there are large fluctuations in the loc
density. The front will move quickly through high densit
regions, and get stuck in the low density ones. Thus,
average, the motion will be dominated by configuratio
where the front is behind a gap in the distribution ofB’s. The
front motion will be random, and not advance, as long as
rightmostA cannot convert aB. Our simulations and analysi
support this picture.

In Sec. II, we present the 1D model and specifically lo
at the limits of small and largeu. Our analysis for smallu is
©2001 The American Physical Society03-1
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more complete while our analysis for largeu consists of
seeing to what extent we can use a Poisson approximatio
Sec. III, we present a two-dimensional version of the mo
with a view to seeing how much of this anomalous fluctu
tion effect carries over. We also analyze the interface wi
and see whether a scaling hypothesis holds, i.e., whethe
front is self-affine.

II. THE 1D MODEL AND SIMULATION RESULTS

Consider a 1D lattice of lengthL @8# populated with ran-
dom walkers randomly distributed with concentrationu @9#.
The leftmost particle is of typeA, and all of the other par-
ticles are of typeB. The particles make random steps wi
parallel updating, i.e., all the particles move simultaneou
Any number of particles are allowed to occupy a site. If aB
particle encounters or passes anA particle, it becomes anA
particle. The rightmostA particle defines the propagatio
front, and we are interested in the velocity of this front.

The particles follow a simple random walk and thus a
Poisson distributed. However, taking into account parti
types and following the front, the particles near the front
not so distributed. Figure 1 shows the average density
particles from simulations for various sites around the fr
for u50.2. Ignoring the fit for the moment, the density~con-
ditioned on there being a front ati 50), is depleted to the
right of the front. At higher concentrations, Fig. 2 shows t
probability distribution of particles at various sites arou
the front in a simulation with average concentrationu52;
Fig. 3 is foru58.

Our simulations were performed in two different way
For concentrations belowu50.5, 200 walkers were launche
and L5200/u. Enough time steps were performed for ea
walker to walk on average halfway across the sampleT

FIG. 1. Mean number of particles for sites near the front from
simulation with an average of 0.2 particles/site~in the rest frame of
the front!.
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5L/u. To avoid initial transients calculations were also ma
with the first 40/u2 time steps censored. For concentratio
aboveu50.5, we used a 500-site lattice with 500u walkers
for 400 time steps, and the first 100 time steps were c
sored.

An earlier study@1# analyzed the velocity in an approx
mate fashion, using the Smoluchowski approach. In t
method, centered in the rest frame of the front,B particles
diffuse toward the front. The number densityn follows the

a FIG. 2. Probability density of sitei near the front from a simu-
lation with an average of two particles/site~in the rest frame of the
front!.

FIG. 3. Probability density of sitei near the front from a simu-
lation with an average of eight particles/site.
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FLUCTUATION EFFECTS IN AN EPIDEMIC MODEL PHYSICAL REVIEW E63 056103
one-dimensional diffusion equation in the frame movi
with velocity v,

]n

]t
2vn85n9, ~2!

where the diffusion constantD51. Assuming stationarity
the time derivative vanishes, and the boundary conditi
n(6`)5u, n8(6`)50, andn(01)50 lead to

n~x!5H u if x,0

~12exp2vx!u if x>0.
~3!

We will see later thatv}u so that, asx→01, n is of order
u2. As shown by Fig. 1, this distribution agrees well with th
simulation. However, this analysis does not determinev.

A. Master equation for small u

We are able to give an exact analysis in the low conc
tration limit, u!1 Consider a region containing the front pa
ticle and the ‘‘second’’ particle, i.e., that nearest the fro
~In the case of more than one particle ati 50 we arbitrarily
declare one to be the front and the other the second parti!
The size of the region will be;1/u. Define a coordinate
system in the rest frame of the front particle, whose posit
is defined to be ati 50. The number density of the secon
particle at sitei at time t is ni(t). Note that, since the fron
particle is treated separately and not included inni , the latter
approaches the probability distribution for the second p
ticle in the limit u→`.

The only nonzero contributions to the average veloc
occur when the second particle is one behind the front (i 5
21) or on the front (i 50). For all other positions, the fron
particle undergoes an unbiased random walk, and the f
does not move~on average!. When i 521, with proper re-
naming of particles, the front will move forward one ste
with probability 1/2, stay the same with probability 1/4, a
move back one step with probability 1/4. Thus, giveni 5
21, the average velocity is 1/221/451/4. Wheni 50, the
front will move forward one step with probability 3/4 an
move back one step with probability 1/4, and the avera
velocity is 1/2. Thus,

v~ t !5
1

4
n21~ t !1

1

2
n0~ t !. ~4!

Now consider the time development. Each particle p
forms a random walk so that~i! if the particle is ati 50 at
time t, n22(t11)51/2 andn0(t11)51/2; ~ii ! if the particle
is at i 521 at timet, n21(t11)53/4 andn23(t11)51/4;
~iii ! otherwise, if the particle is ati ,21 or i .0, ni 12(t
11)51/4, ni(t11)51/2, andni 22(t11)51/4. In these ex-
pressions the position of the second particle is defined w
respect to the front at timet11.

For a stationary distribution,ni(t)5ni(t11)[ni , so the
rules lead to relationships between the densities.

~a! For positions away from the front,i ,22 or i .2, we
have, from~iii ! above,
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ni~ t11!5ni~ t !/21ni 12~ t !/41ni 22~ t !/4. ~5!

Thus, if n is stationary,

ni5~ni 221ni 12!/2. ~6!

~b! In like manner, for positions around the front,

n225n24/21n0 , n215n231n1 ,

n05~n221n2!/2, n15n3/2, n25n4/2. ~7!

Equation ~6! implies thatni is linear in i far from the
front. In order to determine the slope we need to impo
boundary conditions, because we have made the approx
tion of only one nonfront particle, which is valid only in th
region 1/u around the front. We do this by matching to th
continuum solution of Eq.~3!. For Eq. ~3! to order u, the
density is simplyu behind the front and 0 in front of the
front. Thus, to first order in concentrationu, the solution to
the equations above is

ni5H u, i ,0

u/2, i 50

0, i .0.

~8!

Thus, from Eq.~4!, v5u/2. Our simulation results, shown i
Table I, confirm this prediction.

Note that, including the front particle, to first order, th
stable total number density distribution isNi5u for i ,0,
Ni511u/2 for i 50, andNi50 for i .0. That is, we have
average concentration to the left of the front and a deple
zone to the right, in agreement with simulations.

Note the bipartite nature of Eqs.~6! and~7!. We can con-
sider a simpler ‘‘even-lattice’’ model in which only the eve
sites are populated and still get the same average velo
This avoids the complicating factor of a site21 particle
passing the front particle and becoming the new front p
ticle. For the even sites,

ni5~ni 221ni 12!/2, i ,22 or i .2

n225n24/21n0 ,

n05~n221n2!/2,

n25n4/2. ~9!

TABLE I. Simulation results for the velocity of front propaga
tion and its standard deviation for low concentrations.

u v/u Std(v/u) Realizations
Censored steps

(40/u2)

0.0025 0.53558 0.01669 20 6400000
0.01 0.50292 0.00739 100 400000
0.05 0.50785 0.00184 1600 16000
0.1 0.50493 0.00184 1600 4000
0.2 0.49152 0.00182 1600 1000
3-3
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Maintaining the same overall densityu would mean doubling
the concentration at all the sites. Looking at the form of E
~4! and taking into account differing number densities,
get equal contributions to the velocity from site 0 and s
21, and thus the same low velocity limitv5u/2. However,
this simplified even-lattice model does not approach
same limit as that of the full-lattice model at high concent
tion.

B. Large u

In the full-lattice model, for any concentration the pro
ability of the front moving backward one site is

P25 (
n051

`

(
n2150

`
1

2n01n21
p~n0 ,n21!, ~10!

of moving forward one site is

P15 (
n051

` S 12
1

2n0
D p~n0!, ~11!

and of being stationary is

P05 (
n051

`

(
n2150

`
1

2n0
S 12

1

2n21
D p~n0 ,n21!, ~12!

wherep(ni) is the probability of sitei havingni particles.
With stationarity, p„n1(t), . . . ,nL(t)…[p(n1 , . . . ,nL),

we can use the dynamics of the model to obtain similar
lations between the site averages and other site momen
the rest frame of the front, if the front moves forward, siti
at timet is ‘‘fed’’ by sites i andi 12 at timet21. If the front
is stationary, sitei is fed by sitesi 21 andi 11. If the front
moves backward, sitei is fed by i and i 22. The average a
site i is

^ni&5P1^ f i1bi 12u1&1P0^ f i 211bi 11u0&

1P2^ f i1bi 22u2&, ~13!

where f k is the number of particles that move forward fro
sitek, bk is the number of particles that move backward fro
site k, nk5bk1 f k , ^•u1& means that the average is cond
tioned on the front moving forward,^•u0& means the averag
is conditioned on the front remaining stationary, and^•u2&
means the average is conditioned on the front moving ba
ward.

For example, for sitei 50,

^n0&5P1^ f 01b2u1&1P0^ f 211b1u0&1P2^ f 01b22u2&.
~14!

Note that around the front, specifically fori P$22,
21,0,1,2%, the movement of the front reveals informatio
about the number of particles at sitei.

Now consideru to be large. Assume for the moment th
the distribution at all sites, includingi 50, is Poissonian with
meanu i , as seen in the simulations. Although this must
true far from the front, it is not clear why it is true nearby.
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introduces a discrepancy of ordere2u because there is a
probability e2u that there will be no particles at sitei 50.
This cannot be true becausei 50 is defined as the site of th
rightmostA particle.

Neglecting this inconsistency for the moment, for largeu,
one may use Eq.~14! to derive a recursion relation:

u05~12e2u0/2!
u2

2
1

u0

2
1e2u0/2~12e2u21/2!

u1

2

1e2u0/2
u21

2
1e2(u01u21)/2S u01u22

2 D . ~15!

With the assumptionu i[u, this equation collapses to a rela
tion that approaches self-consistency to order1

2 ue2u/2.
A similar relation may be derived for the variance of th

number of particles at sitei,

^n0
2&2^n0&

25P1^~ f 01b2!2u1&1P0^~ f 211b1!2u0&

1P2^~ f 01b2!2u2&2^ f 01b2&
2. ~16!

With the Poisson assumption of mean and varianceu, this
relation simplifies to an expression that is self-consisten
leading order54 u2e2u/2.

Using the Poisson approximation, the velocity is

vP5P12P2512e2u/22e2u. ~17!

We can handlep(n050) in another way by guessing tha
we should use a conditioned or truncated Poisson distr
tion pT @10# because we have additional information abo
the probability distribution at the front, namely, we kno
that there is at least one particle near the front. Thus we
excluden050 from the Poisson approximation of the distr
bution.p(n050)5e2u is truncated from the distribution an
distributed to the other probabilities,

pT~n05k!5H 0, k50

~12e2u!21pP~k!, kÞ0,
~18!

wherepP(k) is the ordinary Poisson distribution. Then th
velocity is

vT512e2u/2. ~19!

The recursion relation discrepancy for the mean is ident
to that of the Poisson distribution since everything is sim
divided by 12e2u, and the leading order of the variance
again identical,5

4 u2e2u/2. Figure 4 shows that this agree
with the data better than Eq.~17!.

This simple truncated Poisson distribution may se
promising for low concentration. It leads to the same velo
ity v5u/2, but it does not satisfy the recursion relations~6!
and~7! to orderu. It lacks the depletion zone, so it should b
regarded as only a convenient interpolation for highu.
3-4
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III. THE LOW CONCENTRATION TWO-DIMENSIONAL
MODEL AND SIMULATION RESULTS

In this section, we consider a similar epidemic model
two dimensions and attempt to find out how many of t
anomalous results in low concentration hold in two dime
sions. For example, is the velocity smaller than the m
field result, or even linear? Is there a depletion zone in fr
of the front? Since we cannot generalize our on
dimensional analytic treatment, we turn to simulations.

Simulations in 2D are similar to those in 1D. Howeve
we changed some details of the model: We used a triang
lattice in the form of a stripL sites long andM sites high
with periodic boundary conditions at the top and botto
@11#. We take the nearest neighbor distances to be 2 so
jumps from a given site (x,y) are (x62,y) and (x61,y
6A3). As above, aB particle changes to anA particle if it
lands on the same site as anA particle or passes one. A
typical snapshot of the process after 2000 steps is show
Fig. 5. Note that in two dimensions aB may wander behind
the front of infection and still be uninfected, although
practice this is confined to a small region near the front.

Initially, particles are randomly placed on the lattic
Those on the left half of the lattice areA’s and those on the
right areB’s. The row frontf l is defined as thex coordinate
of the rightmostA particle in rowl, and the lattice frontf̄ is
the average of the row fronts in the lattice. The velocity
measured as the horizontal movement off̄ . The depletion
zone is measured with respect to the front of each row
not the entire lattice.

Actually, one must be careful in making inferences fro
such a simulation because, with the initial Poisson distri
tion of particles, it can be shown that these initial conditio
automatically give a depleted zone ahead of the front ide

FIG. 4. Mean front velocity in lattice units/time step as a fun
tion of particle concentration.
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cal to those in the 1d case. However, we do not expeca
priori , that the dynamics will maintain this initial condition
Figure 6 shows that the depletion zone is, in fact, well ma
tained after 2000 steps with concentrationu50.2. As a
check, a simulation was performed in which the bulk of t
particles were randomly scattered upon the lattice as be
but with two A lattice columns at the midpoint line filled
solid with A particles, oneA particle per site. After 2000
steps, a depletion zone again formed. In both cases there
slight depression in theA particle concentration behind th

FIG. 5. Snapshot of the physical process after 2000 step

FIG. 6. Depletion zone ahead of the front after 2000 steps in
Density ofA ~1! and ~d! around the front and the exponential fi
~solid line! over 200 runs.
3-5
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front as well, due to the penetration ofB particles beyond the
front.

A log-log plot of velocity versus concentration with a
L580 lattice is shown in Fig. 7.~We always work in the
regime where the lattice widthL@u21/2, where the scaling
of the interface width might be expected; see below.! We
fitted v;ug for low concentration. Using concentration
down to u50.02 gives an exponent ofg50.55960.008. If
we include concentrations down tou50.001, which implies
an interparticle distance of;30, the exponent increases
g50.62060.011. Both of these results are less than the
ear ~g51! 1D result but significantly higher than the mea
field exponent ofg51/2.

In two dimensions we can investigate the front wid
which is defined as the standard deviation of row fronts,

w~ t !5F 1

L (
l 51

L

@ f l~ t !2 f̄ ~ t !#2G1/2

. ~20!

When the lattice widthL is much larger than the typica
interparticle distanceu21/2, we might expectw to satisfy the
scaling hypothesis@12#

w~L,t !;La f S t

tx
D , ~21!

wheretx5Lz, z5a/b. In the limit t!tx we havew;tb, and
for t@tx w;La. This amounts to saying that the interface
self-affine@13#.

For scaling, we are interested in the limit of low conce
tration but with the width larger than the interparticle d
tance,L@u21/2. To satisfy this condition while maintaining

FIG. 7. Log-log plot of velocity front in lattice units/time ste
versus concentration in 2D. Simulation results~1! and a power law
fit v50.079u 0.55960.008.
05610
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a manageable lattice, we chose a concentration ofu50.2, or
an interparticle distanceu21/2'2.2.

In other chemical reaction front problems@14#, the dy-
namics of the front are governed by the well-known Kard
Parisi-Zhang~KPZ! equation. If the KPZ equation applies, i
111 dimensions the scaling exponents would bea51/2 and
b51/3 and thusz51.5 @12,13#.

In order to apply Eq.~21! we subtract off the width at
t50, w0. We plot w22w0

2 versust and look for scaling as

FIG. 8. Front saturation width as a function of lattice widthL.
Simulation results foru50.2 averaged over 50 runs. Power law
results in an exponent 2a, or a50.8460.03.

FIG. 9. The front width as a function of time. Simulation resu
for u50.2 averaged over 200 runs. Power law fit results in an
ponentb50.34460.004.
3-6
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described above. As shown in Figs. 8 and 9, we meas
a50.8460.03 andb50.34460.004, which impliesz52.4.
In an independent analysis, we tried to rescale the data
u50.2 and varying widths and collapse them onto one li
Crossover timestx5Lz were judged by eye, and they we
difficult to judge precisely. However, this independent ana
sis yieldedz52.6. Others have found that similar models
not satisfy the KPZ equation. In their analysis ofA1A↔A,
Riordan, Doering, and ben-Avraham@5# calculated the inter-
face width to satisfy the scaling hypothesis with expone
a50.272 andb51.00 @15#. In fact, Tripathy and van Sar
loos @16# have shown that, even if the FK equation we
obeyed by this model, we would not expect KPZ scaling

This analysis assumes that the front is self-affine. Ho
ever our value ofa'1 is consistent with a self-similar front
Further work will be necessary to resolve this question.

IV. SUMMARY AND DISCUSSION

We have shown that in low concentration the dynamics
A1B→2B are significantly different from what would b
expected from mean field theory, even in 2D. We have s
that in 1D the behavior ofv at low concentration can b
traced to the depletion zone to the right of the front. Near
front the distribution of particles is very different from th
Poisson distribution, and the motion of the front is dom
et
o

h-
a

ll.

ia
d
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nated by the depletion. In the low concentration limit,
order u, the velocity is simplyv5u/2. For largeu, the ve-
locity is approximated by 12e2u/2, and the distribution is
quite close to the truncated Poisson distribution.

In 2D, we also find a depletion zone, andv;u0.6, signifi-
cantly different from the mean field result. If we assume th
the front is self-affine, we measure scaling exponents
a50.8460.03 andb50.34460.004, significantly different
from the KPZ model.

These results have applications to the spatial distribu
of real epidemics and chemical reactions. How different
results are from the mean field continuum model depe
upon the dimensionality of the underlying structure or t
underlying spread. The smaller the dimension, the more
portant the fluctuation effects. Epidemics have often be
modeled to occur on a percolation cluster. In such a dis
dered 2D medium, we would expect the dynamics to be g
erned by bottleneck effects and thus more similar to the
result.
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