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Fluctuation effects in an epidemic model
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We study a discrete epidemic mod&i- B—2A in one and two dimensiondD and 2D. In 1D for low
concentratiord, we find that a depletion zone exists ahead of the front and the average velocity of the front
approaches = 6/2. In the 1D high concentration limit, we find that the velocity approached —e™ 2. In
2D, for low concentration we also find a depletion zone, and the velocity scales 6%°, which is different
from the scaling expected from the mean field approximatieng®®. Analysis of the interface width scaling
properties demonstrated that the front dynamics of this reaction are not governed by the Kardar-Parisi-Zhang

equation.
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I. INTRODUCTION =2ykD# independent of initial conditions. The key element

in this sort of “pulled front” equation is that the velocity is

In this paper we analyze a simple discrete model of thejetermined by the exponential growth affar ahead of the
reaction A+B—2A in one and two dimensions. We can front wherea is very small.
think of this as a model for an epidemic: theparticles are However, simulationg1] showed that in 1D the front
sick, and they infecB’s on contact. We are particularly in- velocity waslinear in 6 for small 4, and thus very much
terested in the spatial dynamics of the model, i.e., the velocsmaller than expected. This is partially understandable from
ity of propagation of the infection and the characteristics ofthe work of Brunet and Derridf3], who pointed out that
the region around the moving front. discreteness has an anomalously large effect on systems

To be specific, we allow the particles to diffuse, i.e., per-which obey the FK equation in the continuum limit. The FK
form a random walk on a lattice, and when a *sick” particle equation is structurally unstable, sensitive to small perturba-
encounters a “healthy” on¢a B particle) then theB is in-  tions. In Refs[3,4] models were introduced that interpolate
stantly infected. We assume that thés and theB’s affect  between the results dfl] and the FK equation via a very
see each other only by infection. Otherwise they are indeperslow crossover. The models involve a very large density of
dent random walkers that do not interact. In one dimensiomparticles with a small reaction rate. These authors found that
(1d), if we start with oneA on the extreme left of the system, the velocity depression was given by-v.— K/In?(6) where
we are asking for the time dependence of the location of th& is a constant. However, we find here that for our version of
front, the rightmostA. In 2D, we are asking for the time the model(large reaction rates, small densitffuctuations
dependence of the location of the rightmésin each row, are the dominant effect. In both cases, the essential point is
averaged over rows. There is some resemblance between thisat the front dynamics are very easily perturbed by small
model and what happens in a real epidemic caused by agerdffects since the velocity is determined in regions wreig
that do not move long distanceA+B—2A may also be tiny.
thought of as an irreversible autocatalytic chemical reaction. In this work we enquire about the mechanism for the

Models of this type have evoked a good deal of interesemall velocity for #—0 in the original (discret¢ A+B
[1-5] because of several unexpected, fascinating features of:2A process. In a trivial model of independent random
the process. As we will see, in the limit of smalthe front  walkers, it is startling that there is any interesting dynamics.
propagation is dominated by fluctuation effects. What at-The total density at any point is clearly given by a Poisson
tracted particular attentiofil] was the realization that, as a distribution. It turns out, however, that the front is not a
result, continuum modeling breaks down completely for thistypical point, and this is the key to the unexpected behavior.
reaction. We find that the small velocity is a giant fluctuation effect

To see this we note that we expect the mean concentratiahat is qualitatively as follows. Suppose we assume that the
of A particles to be described by the Fisher-Kolmogorovvelocity is a monotonically increasing function éf and re-
(FK)equation [6].We start by writing a conventional call that for smallé there are large fluctuations in the local

reaction-diffusion equation: density. The front will move quickly through high density
regions, and get stuck in the low density ones. Thus, on
da=DAa+kab=DAa+ka(6—a). (1)  average, the motion will be dominated by configurations

where the front is behind a gap in the distributiorBa$. The
Herek is a rate constanD the diffusion constant, and in the front motion will be random, and not advance, as long as the
second line we have used the fact that on aveeeg®=6.  rightmostA cannot convert 8. Our simulations and analysis
In one dimension, the last equation becomes the FK equatiosupport this picture.
du=dyu+u(l—u) after changing variables. From the In Sec. Il, we present the 1D model and specifically look
standard theory7], the velocity of the front approaches  at the limits of small and largé. Our analysis for smalb is
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FIG. 1. Mean number of particles for sites near the front froma k|G, 2. Probability density of sitenear the front from a simu-

simulation with an average of 0.2 particles/ditethe rest frame of  |ation with an average of two particles/siie the rest frame of the
the frond. front).

more complete while our analysis for largeconsists of  =| /g, To avoid initial transients calculations were also made
seeing to what extent we can use a Poisson approximation. Wjith the first 4052 time steps censored. For concentrations
Sec. I, we present a two-dimensional version of the modebpove 9=0.5, we used a 500-site lattice with SDWalkers

with a view to seeing how much of this anomalous fluctua-for 400 time steps, and the first 100 time steps were cen-
tion effect carries over. We also analyze the interface widthyg eq.

and see whether a scaling hypothesis holds, i.e., whether the an earlier study{1] analyzed the velocity in an approxi-

front is self-affine. mate fashion, using the Smoluchowski approach. In this
method, centered in the rest frame of the frddtparticles
II. THE 1D MODEL AND SIMULATION RESULTS diffuse toward the front. The number densityfollows the
Consider a 1D lattice of length [8] populated with ran- 0.16
dom walkers randomly distributed with concentratiéfo]. S rerererere et
The leftmost particle is of typd, and all of the other par- e =1
ticles are of typeB. The particles make random steps with 0.141= A--A §=0 7]
parallel updating, i.e., all the particles move simultaneously. i ;’_: Folisson(e—S) ]
Any number of particles are allowed to occupy a site. B a 0.12 - - —
particle encounters or passes Amparticle, it becomes aA
particle. The rightmostA particle defines the propagation 0.1

front, and we are interested in the velocity of this front.

The particles follow a simple random walk and thus are &
Poisson distributed. However, taking into account particle &
types and following the front, the particles near the front are
not so distributed. Figure 1 shows the average density of 906
particles from simulations for various sites around the front
for 6=0.2. Ignoring the fit for the moment, the densfton- 0.04
ditioned on there being a front a&0), is depleted to the
right of the front. At higher concentrations, Fig. 2 shows the g2
probability distribution of particles at various sites around
the front in a simulation with average concentratiés2; ,
Fig. 3 is for 6=8. 0 2 4 6 8 10 12 14 16 18 20

Our simulations were performed in two different ways.
For concentrations below=0.5, 200 walkers were launched
and L=200/. Enough time steps were performed for each FIG. 3. Probability density of sitenear the front from a simu-
walker to walk on average halfway across the sample, lation with an average of eight particles/site.
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one-dimensional diffusion equation in the frame moving TABLE I. Simulation results for the velocity of front propaga-

with velocity v, tion and its standard deviation for low concentrations.
Jn Censored steps
il n'=n", ) 0 vl6 Stdw/#) Realizations (40/6)
- _ _ _ 0.0025 0.53558  0.01669 20 6400000
wherg the d|_ffus_|on constartbzl. Assuming stauonant_y_, 0.01 0.50292  0.00739 100 400000
the+ t|m3 derlyaﬂve l/%msh((ajs, g?d_tgel bc()jundary conditionsy g5 0.50785  0.00184 1600 16000
n(*+*)=0, n’(+*)=0, andn(0")=0 lead to 0.1 0.50493  0.00184 1600 4000
0 if x<0 0.2 0.49152 0.00182 1600 1000
n(x) )

(1—exp "6 if x=0.
ni(t+ 1)=n|(t)/2+ ni+2(t)/4+ nifz(t)/4. (5)
We will see later thab = # so that, ax—0", nis of order
6. As shown by Fig. 1, this distribution agrees well with the Thus, if n is stationary,
simulation. However, this analysis does not determine
ni=(Nj—2+Nj42)/2. (6)
A. Master equation for small (b) In like manner, for positions around the front,
We are able to give an exact analysis in the low concen-

tration limit, /<1 Consider a region containing the front par- N_=N_42+Ng, N_3=Nn_3+ny,
ticle and the “second” particle, i.e., that nearest the front.
(In the case of more than one particlei at0 we arbitrarily No=(N_2+N3)/2, Ny=nN3/2, Ny=ny/2. (7)

declare one to be the front and the other the second particle. _ o o o
The size of the region will be-1/6. Define a coordinate _ Equation(6) implies thatn; is linear ini far from the
system in the rest frame of the front particle, whose positiorffont. In order to determine the slope we need to impose
is defined to be at=0. The number density of the second Poundary conditions, because we have made the approxima-
particle at sitei at timet is n;(t). Note that, since the front tion of only one nonfront particle, which is valid only in the
particle is treated separately and not included;inthe latter ~ "€gion 18 around the front. We do this by matching to the
approaches the probability distribution for the second par€ontinuum solution of Eq(3). For Eq.(3) to order 6, the
ticle in the limit . density is simply# behind the front and 0 in front of the
The only nonzero contributions to the average velocityfront- Thu_s, to first or_der in concentratiah) the solution to
occur when the second particle is one behind the front (N €quations above is
—1) or on the front (=0). For all other positions, the front

particle undergoes an unbiased random walk, and the front 0, '<_O
does not moveéon average Wheni=—1, with proper re- ni=4 6/2, i=0 (8)
naming of particles, the front will move forward one step 0 i>0.

with probability 1/2, stay the same with probability 1/4, and

move back one step with probability 1/4. Thus, givien  Thus, from Eq(4), v = 6/2. Our simulation results, shown in
—1, the average velocity is 1/21/4=1/4. Wheni=0, the  Table I, confirm this prediction.

front will move forward one step with probability 3/4 and  Note that, including the front particle, to first order, the
move back one step with probability 1/4, and the averaggtabletotal number density distribution i8l,= 6 for i<0,

velocity is 1/2. Thus, N;=1+ 6/2 fori=0, andN;=0 for i>0. That is, we have
1 1 average concentration to the left of the front and a depleted
v()=>n_4(t)+ =ne(t). (4 Zoneto the ri_ght, 'in agreement with simulations.
4 2 Note the bipartite nature of Eq&) and(7). We can con-

sider a simpler “even-lattice” model in which only the even

Now consider the time development. Each particle persites are populated and still get the same average velocity.
forms a random walk so thdt) if the particle is ai=0 at  This avoids the complicating factor of a sitel particle
timet, n_,(t+1)=1/2 andny(t+1)=1/2;(ii) if the particle  passing the front particle and becoming the new front par-
isati=—1 at timet, n_;(t+1)=3/4 andn_5(t+1)=1/4; ticle. For the even sites,
(iii) otherwise, if the particle is at<—1 or i>0, n;, ,(t
+1)=1/4,n;(t+1)=1/2, andn;_,(t+1)=1/4. In these ex- ni=(Nj_,+n;; )02, iI<=2 or i>2
pressions the position of the second particle is defined with
respect to the front at timet+ 1. Nn_,=n_,/2+ng,

For a stationary distributiom;(t)=n;(t+1)=n;, so the
rules lead to relationships between the densities. Ng=(N_5,+n,)/2,

(a) For positions away from the front<<—2 ori>2, we
have, from(iii) above, Ny, =nNy4/2. 9
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Maintaining the same overall densiywould mean doubling introduces a discrepancy of order ? because there is a
the concentration at all the sites. Looking at the form of Eq.probability e ¢ that there will be no particles at sife=0.
(4) and taking into account differing number densities, weThis cannot be true because 0 is defined as the site of the
get equal contributions to the velocity from site O and siterightmostA particle.

—1, and thus the same low velocity limit= /2. However, Neglecting this inconsistency for the moment, for lafye
this simplified even-lattice model does not approach theone may use Eq.14) to derive a recursion relation:

same limit as that of the full-lattice model at high concentra-

tion. 0, 0 0
00: (1_ e— 00/2) _2 + _O + e— 00/2(1_ e— 071/2) _1
2 2 2
B. Large 6
In the full-lattice model, for any concentration the prob- —69/2 -1 —(6g+6_1)/2 bot 62
o . o +e +e . (15)
ability of the front moving backward one site is 2

[’ [

1 With the assumptio®; = 6, this equation collapses to a rela-
P=> X P(no.n_1), (10 puor; = o, ™is eq D

Mo=1 n’7=0 2Mo*N-1 tion that approaches self-consistency to orflge™ 2.
A similar relation may be derived for the variance of the
of moving forward one site is number of particles at site
P.=2> (ki) p(no). (11) (o) ={10)* = P-{(fo-+b2) | +) + Po((f-1b1)710)
ng=1 2o

+P_((fotbp)?[—)—(fothy)2. (16)
and of being stationary is
With the Poisson assumption of mean and variafcthis
- 1 1 relation simplifies to an expression that is self-consistent to
Po= 2 2 _< 1- an) P(No,n-1), (120 |eading order o2~ 72
Using the Poisson approximation, the velocity is

ng=1n_;=0 2"

wherep(n;) is the probability of site havingn; particles.

With stationarity, p(ny(t), ... ,n.(t)=p(ny, ... .n.), vp=P,—P_=1-e 2—¢ " (17
we can use the dynamics of the model to obtain similar re-
lations between the site averages and other site moments. In \y/e can handle(n,=0) in another way by guessing that

the rest frame of the front, if the front moves forward, site \ye should use a conditioned or truncated Poisson distribu-
attimetis “fed” by sitesi andi+2 attimet—1. Ifthe front 54 b [10] because we have additional information about
is stationary, sité is fed by sited —1 andi+1. If the front  he robability distribution at the front, namely, we know
moves backward, siteis fed byi andi—2. The average at hat there is at least one particle near the front. Thus we can
sitel is excludeny=0 from the Poisson approximation of the distri-
bution.p(ny=0)=e"? is truncated from the distribution and
(ni)=P(fi+big )+ Po(fi1+bi4|0) distribu?édoto tge other probabilities,

+P_(fi+bi_o[ ), (13
: . 0, k=0
wheref, is the number of particles that move forward from pr(Ny=k)= P (18)
sitek, by is the number of particles that move backward from (1—e ") “pe(k), k#0,

site k, ny=b,+f, (-|+) means that the average is condi-

tioned on the front moving forward;|0) means the average wherepp(k) is the ordinary Poisson distribution. Then the
is conditioned on the front remaining stationary, and-)  velocity is

means the average is conditioned on the front moving back-

ward. N vr=1—-e 2 (19
For example, for sité=0,

(No)=P_(fo+by|+)+Po(f_1+by|0)+P_(fo+b_,|—). The recursion relation discrepancy for the mean is identical
(14)  to that of the Poisson distribution since everything is simply
divided by 1—e?, and the leading order of the variance is
Note that around the front, specifically fore{—2, again identical,?#’e~ %2 Figure 4 shows that this agrees
—1,0,1,2, the movement of the front reveals information with the data better than E¢L7).
about the number of particles at site This simple truncated Poisson distribution may seem
Now consideré to be large. Assume for the moment that promising for low concentration. It leads to the same veloc-
the distribution at all sites, including=0, is Poissonian with ity v = 6/2, but it does not satisfy the recursion relatigfs
meané;, as seen in the simulations. Although this must beand(7) to orderé. It lacks the depletion zone, so it should be
true far from the front, it is not clear why it is true nearby. It regarded as only a convenient interpolation for high
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FIG. 4. Mean front velocity in lattice units/time step as a func- FIG. 5. Snapshot of the physical process after 2000 steps.
tion of particle concentration.
cal to those in the 1d case. However, we do not expeect,
Ill. THE LOW CONCENTRATION TWO-DIMENSIONAL priori, that the dynamics will maintain this initial condition.
MODEL AND SIMULATION RESULTS Figure 6 shows that the depletion zone is, in fact, well main-

tained after 2000 steps with concentratios-0.2. As a

) i ; check, a simulation was performed in which the bulk of the
two dimensions an_d attempt to fmd. out hOW. many (.Df theparticles were randomly scattered upon the lattice as before
anomalous results in low concentration hold in two d'men'but with two A lattice columns at the midpoint line filled

sions. For example, is the velocity smaller than the mea%olid with A particles, oneA particle per site. After 2000

field result, or even linear? Is there a depletion zone in fron teps, a depletion zone again formed. In both cases there is a

? i i - . . . . .
Of the_ front: S'Uce we cannot generqhze our —one slight depression in thé particle concentration behind the
dimensional analytic treatment, we turn to simulations.

Simulations in 2D are similar to those in 1D. However,
we changed some details of the model: We used a triangula
lattice in the form of a strifl sites long andV sites high 1.1
with periodic boundary conditions at the top and bottom.
[11]. We take the nearest neighbor distances to be 2 so the
jumps from a given sitey) are x*=2y) and k=x1ly 0.9
+/3). As above, & particle changes to aA particle if it 08
lands on the same site as &nparticle or passes one. A
typical snapshot of the process after 2000 steps is shown it 07
Fig. 5. Note that in two dimensionsBxmay wander behind s ¢
the front of infection and still be uninfected, although in
practice this is confined to a small region near the front. 0.5

Initially, particles are randomly placed on the lattice. 0.4
Those on the left half of the lattice afés and those on the
right areB’s. The row frontf, is defined as th& coordinate

In this section, we consider a similar epidemic model in

1

0.3

|

of the rightmostA particle in rowl, and the lattice fronf is 0.2
the average of the row fronts in the lattice. The velocity is i
measured as the horizontal movementfofThe depletion 0 . | - 1

zone is measured with respect to the front of each row anc -100 -50
not the entire lattice.

Actually, one must be careful in making inferences from
such a simulation because, with the initial Poisson distribu- FIG. 6. Depletion zone ahead of the front after 2000 steps in 2D.
tion of particles, it can be shown that these initial conditionsDensity of A (+) and (@) around the front and the exponential fit
automatically give a depleted zone ahead of the front identi¢solid line) over 200 runs.

o

50 100

i
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Simulation results fow=0.2 averaged over 50 runs. Power law fit

FIG. 7. Log-log plot of velocity front in lattice units/time step results in an exponenta2 or a=0.84+0.03

versus concentration in 2D. Simulation resyks and a power law

fit v =0.079) 0590008
a manageable lattice, we chose a concentratiofi=di.2, or

an interparticle distancé 1?~2.2.

In other chemical reaction front probleni$4], the dy-
namics of the front are governed by the well-known Kardar-
Parisi-ZhangKPZ) equation. If the KPZ equation applies, in
1+1 dimensions the scaling exponents woulddsel/2 and

front as well, due to the penetration Bfparticles beyond the
front.

A log-log plot of velocity versus concentration with an
L =80 lattice is shown in Fig. 7(Wei/2always work in the
regime where the lattice width> 6~ ~<, where the scaling
of the interface width might be expected; see beJowe p=1/3 and thug=1.5[12,13. .
fitted v~ 6? for low concentration. Using concentrations In order to apply2 Eq.(221) we subtract off the W'_dth at
down to #=0.02 gives an exponent of=0.559+0.008. If  t=0, Wo. We plotw”—wg versust and look for scaling as
we include concentrations down #=0.001, which implies
an interparticle distance of 30, the exponent increases to L L T T TTTT
y=0.620+0.011. Both of these results are less than the lin-
ear (y=1) 1D result but significantly higher than the mean
field exponent ofy=1/2.

In two dimensions we can investigate the front width,

which is defined as the standard deviation of row fronts, 10~ -
1L 12 i ]
w<t>=[[ 2 [ =f(O]? 20 e F y
= N| - .
B

When the lattice widthL is much larger than the typical
interparticle distanc®™ 2, we might expectv to satisfy the
scaling hypothesifl2]

t
W(L,t)~L"‘f(t—), (21) 1

X

IT.AI. 1 1 1 IIIIIII 1 1 1 IIIIIII

wheret,=L? z=a/p. In the limitt<t, we havew~t#, and 1 10 100
for t>t, w~L*“. This amounts to saying that the interface is
self-affine[13].

For scaling, we are interested in the limit of low concen-  FIG. 9. The front width as a function of time. Simulation results
tration but with the width larger than the interparticle dis-for #=0.2 averaged over 200 runs. Power law fit results in an ex-
tance,L> 6~ 2 To satisfy this condition while maintaining ponents=0.344+0.004.

Steps
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described above. As shown in Figs. 8 and 9, we measuneated by the depletion. In the low concentration limit, to
a=0.84+0.03 andB=0.344+0.004, which impliesz=2.4.  order 6, the velocity is simplyv = 6/2. For large#, the ve-
In an independent analysis, we tried to rescale the data fdocity is approximated by + e~ 2, and the distribution is
0=0.2 and varying widths and collapse them onto one linequite close to the truncated Poisson distribution.
Crossover times,=L? were judged by eye, and they were In 2D, we also find a depletion zone, and 6°5, signifi-
difficult to judge precisely. However, this independent analy-cantly different from the mean field result. If we assume that
sis yieldedz=2.6. Others have found that similar models dothe front is self-affine, we measure scaling exponents of
not satisfy the KPZ equation. In their analysisfof A< A, a=0.84+0.03 andB=0.344+0.004, significantly different
Riordan, Doering, and ben-Avrahdrs] calculated the inter- from the KPZ model.
face width to satisfy the scaling hypothesis with exponents These results have applications to the spatial distribution
a=0.272 andB=1.00[15]. In fact, Tripathy and van Sar- of real epidemics and chemical reactions. How different the
loos [16] have shown that, even if the FK equation wereresults are from the mean field continuum model depends
obeyed by this model, we would not expect KPZ scaling. upon the dimensionality of the underlying structure or the
This analysis assumes that the front is self-affine. How-underlying spread. The smaller the dimension, the more im-
ever our value ofv=~1 is consistent with a self-similar front. portant the fluctuation effects. Epidemics have often been
Further work will be necessary to resolve this question.  modeled to occur on a percolation cluster. In such a disor-
dered 2D medium, we would expect the dynamics to be gov-
IV. SUMMARY AND DISCUSSION erned by bottleneck effects and thus more similar to the 1D

result.
We have shown that in low concentration the dynamics of

A+B—2B are significantly different from what would be

expected from mean field theory, even in 2D. We have seen ACKNOWLEDGMENTS
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