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Heterogeneous nucleation of/on nanoparticles: a
density functional study using the phase-field
crystal model†
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Tamás Pusztaia

Crystallization of supersaturated liquids usually starts by heterogeneous nucleation. Mounting evidence shows

that even homogeneous nucleation in simple liquids takes place in two steps; first a dense amorphous

precursor forms, and the crystalline phase appears via heterogeneous nucleation in/on the precursor cluster.

Herein, we review recent results by a simple dynamical density functional theory, the phase-field crystal

model, for (precursor-mediated) homogeneous and heterogeneous nucleation of nanocrystals. It will be

shown that the mismatch between the lattice constants of the nucleating crystal and the substrate plays a

decisive role in determining the contact angle and nucleation barrier, which were found to be non-monotonic

functions of the lattice mismatch. Time dependent studies are essential as investigations based on equilibrium

properties often cannot identify the preferred nucleation pathways. Modeling of these phenomena is essential

for designing materials on the basis of controlled nucleation and/or nano-patterning.

Key learning points
(1) Homogeneous crystal nucleation often takes place via metastable (amorphous or crystalline) precursors.
(2) The mismatch of the lattice constants of the nucleating crystal and the substrate is an essential parameter; the contact angle, thickness of adsorbed crystal
layer, and the nucleation barrier are non-monotonic functions of the lattice mismatch.
(3) The free growth limited model of particle induced crystallization by Greer and co-workers is successful for small anisotropies and supersaturations, whereas
it fails for faceted crystals or small nanoparticle agents.
(4) Large lattice mismatch may lead to the formation of an amorphous surface layer.
(5) Time dependent studies are essential for finding the nontrivial nucleation pathways.

1. Introduction

When a liquid is cooled below its melting point, it is no longer
stable and freezes eventually. The liquid exists in the metastable
undercooled state until a nucleation event occurs, during which
the new phase appears via crystal like fluctuations termed
‘‘heterophase’’ fluctuations. If the heterophase fluctuations
exceed a critical size (usually determined by the driving force
of crystallization, the solid–liquid interface free energy, its
anisotropy, and possible contact to heterogeneities), they grow
further with a high probability, whereas the smaller ones tend to
decay. Heterophase fluctuations of the critical size are termed

the critical fluctuations or nuclei, and the respective work of
formation is the thermodynamic barrier of nucleation, which the
system needs to pass via fluctuations to reach the bulk crystal-
line state. The nucleation process may be either homogeneous or
heterogeneous. Homogeneous nucleation takes place in an
idealized supersaturated liquid, where the internal fluctuations
of the liquid lead to the passing of the thermodynamic barrier
of formation of crystallites. In turn, heterogeneous nucleation
occurs in ‘‘impure’’ liquids, in which heterogeneities, such as
container walls or nucleating agents (termed here ‘‘substrate’’)
are introduced to the melt (either intentionally or not), which
facilitate nucleation via reducing the free energy barrier to the
formation of the crystal.1a This reduction happens when
the substrate induces ordering in the liquid that helps the
formation of the crystalline phase. Heterogeneous nucleation is
not only a phenomenon of classic importance in materials
science but attracts continuously growing interest due to the
emerging technological interest in micro- and nanopatterning
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techniques,2 and the control of related nanoscale processes,
such as crystallization on patterned substrates, including the
formation of quantum dots,3 the properties of glass ceramics
produced by controlled nucleation,1b phase selection in alloys,4

copper nucleation on graphene,5 and the undercoolability of
living organisms,1c to mention a few examples. Despite its
technological importance, heterogeneous nucleation is relatively
little understood owing to difficulties in describing the inter-
action between the foreign matter and the solidifying melt.

In classical theory of heterogeneous nucleation,1a the effect
of the heterogeneity in enhancing or suppressing the solid
phase is formulated in the language of wetting. Having the
interface free energies of the liquid–solid (gSL), wall–liquid (gWL),
and wall–solid (gWS) boundaries, one may calculate the contact angle

at a solid–liquid–wall triple junction (assuming isotropic interface
free energies) using the Young–Laplace equation,

cosðyÞ ¼ gWL � gWS

gSL
: (1)

In this framework, the surface is wet by the solid phase for
y = 0, i.e., there will be no barrier to crystal nucleation, whereas
for y = p the liquid phase is preferred at the interface. According
to the classical ‘‘spherical cap’’ model, the nucleation
barrier is simply reduced by the catalytic potency factor f (y):
Whetero = Whomof (y), where f (y) = [y � 1/2sin (2y)] and f (y) =
1/4[2 � 3cos (y) + cos (y)3] for 2D and 3D, respectively; i.e., only
that part of the (circular/spherical) homogeneous nucleus
needs to be formed by thermal fluctuations, which realizes
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the appropriate contact angle at the perimeter (see Fig. 1). The
contact angle is an input for a variety of field theoretic models
of the liquid–solid–wall trijunction.6

The efficiency of the heterogeneities in reducing the thermo-
dynamic barrier of nucleation is influenced by a range of
microscopic properties including the crystal structure, lattice
mismatch, surface roughness, surface precipitates, adsorption,
etc., all requiring atomistic description. Recent molecular dynamics
and Monte Carlo simulations have addressed the interaction
between a foreign wall and crystallizing fluid.7–9 The (111) face
of the hard-sphere crystal wets the unstructured wall nearly
ideally, and the results can only be interpreted if a line tension
is also considered,7 a finding reproduced by the lattice gas
model.8 Crystallization on substrates of triangular and square
lattices, or of zig-zag stripe and rhombic patterns have been
investigated.9 Of these, the first three patterns can be matched
by cutting the fcc crystal along the (111), (100), and (110)
planes, whereas the rhombic pattern corresponds to a sheared
fcc crystal. The simulations indicate that even for perfectly
matching lattice constants, complete wetting occurs for only
the (111) pattern, but not for (110) and (100). In these studies,
crystallization happens via a layer-by-layer mechanism, where
the first crystalline layer forms well below the bulk crystallization
transition. For the rhombic pattern either incomplete wetting
by only a few layers takes place, or there is no wetting at all.
In the case of the triangular pattern, crystallization of the first

layer is promoted if the lattice constant of the substrate is larger
than that of the coexisting bulk crystal.9 The presence of the
substrate/wall leads to structural ordering in the adjacent liquid
layers,10 a phenomenon that may influence the adsorption of
crystalline molecule layers at the surface of the substrate.

These findings are of primary importance from the viewpoint
of a recent highly successful free-growth limited model of particle-
induced crystallization proposed by Greer and co-workers;1,11 a
model in which cylindrical particles, whose circular faces (of
radius R) are ideally wet by the crystal, remain dormant during
cooling until the radius of the homogeneous nuclei becomes smaller
than R, and free growth sets in. [The critical undercooling is
DTc E 2gSL/(DsfR), where Dsf is the volumetric entropy of fusion.]
This mechanism has already been addressed in a coarse-grained
phase-field model (see Fig. 2),6 however, atomic scale modeling
would be important to understand the limitations of this essential
model of initiating crystallization.

Finally it is worth mentioning that mounting evidence
indicates that homogeneous nucleation is often a two-stage
process, in which the stable phase appears via a metastable
precursor (an intrinsic heterogeneity), a process that can be
regarded as a specific heterogeneous nucleation process from
the viewpoint of the stable phase. An early analysis of Alexander
and McTague suggested that crystallization to the bcc phase
is preferred in simple liquids.12 A recent reiteration of the
problem in terms of density functional theory concludes that
the bcc phase should rather be the phase that nucleates.13 This
prediction is consistent with molecular dynamics simulations
for the Lennard-Jones system (where the stable phase is fcc),
where the subcritical crystalline fluctuations have the meta-
stable bcc structure, while the critical fluctuation has an fcc
core surrounded by a bcc-like surface layer.14

Composite bcc–fcc nuclei have also been predicted by the
density functional theory15 and a Ginzburg–Landau free energy

Fig. 1 Classical ‘‘spherical cap’’ approach to heterogeneous nucleation on a flat
surface. The white dotted line shows the contour of the homogeneous nucleus,
the grey area is the heterogeneous nucleus (N). (White – liquid; black –
substrate; and grey – crystal; a – radius of contact surface; h – height of
nucleus; r – radius of homogeneous nucleus; and y – contact angle.)

Fig. 2 Conventional (coarse-grained) phase-field simulations illustrating
the free growth limited mode of particle induced crystallization of pure
Ni.6 Cylindrical particles (d = 20 nm) with contact angles of 451 and 1751 on
the horizontal and vertical surfaces were used. Upper row: DT = 26 K o
DTc. Central row: DT = 27 K 4 DTc. Time elapses from left to right. Bottom
row: DTc vs. particle diameter d. Original theory—solid line; phase-field
simulation—dashed line. The deviation in DTc between theory and simula-
tions is due to the thermal fluctuations considered in the latter. (Reprinted
with permission from L. Gránásy, T. Pusztai, D. Saylor and J. A. Warren,
Phys. Rev. Lett., 2007, 98, 035703 r 2007 American Physical Society.)Tamás Pusztai
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based phase-field theory.4 Experiments on globular proteins
have shown that a metastable critical point in the supersaturated
liquid may help the formation of crystal nuclei via liquid phase
separation, leading to composite nuclei of crystal surrounded by
dense liquid,16 a finding recovered by atomistic simulations17 and
density functional/phase-field computations.18 Brownian dynamics
simulations indicate the formation of medium range crystalline
order in the supersaturated liquid preceding crystallization.19

Recent experiments on colloidal systems (Fig. 3),20 and theoretical
studies and computer simulations for simple liquids (Lennard-
Jones21 or hard-sphere22) imply that the appearance of the
crystalline phase is preceded by an amorphous/dense liquid
precursor. These results indicate that precursor assisted crystal
nucleation is a fairly general phenomenon creating nanocrystals
in an essentially heterogeneous manner.

Systematic studies of homogeneous23 and heterogeneous24

crystal nucleation have recently been performed using a simple
dynamical density functional theory, termed the Phase-Field
Crystal (PFC) model,25,26 representing a system of Deryaguin–
Landau–Verwey–Overbeek-type (DLVO) interactions,23 in which
several crystalline phases (bcc, hcp, and fcc) compete with the
amorphous phase during crystallization.27 As opposed with
other atomistic approaches, the PFC model works on a diffusive
time scale and can be regarded as complementary to molecular
dynamics.27 Time dependent PFC simulations have shown that
in the case of homogeneous nucleation the density and structural
changes decouple beyond a critical undercooling/supersaturation,
leading to amorphous precursor mediated crystallization;23 the
effect of lattice mismatch on the heterogeneous process24 has also
been investigated.

In this tutorial review, we present recent advances PFC
modeling of heterogeneous nucleation of nanocrystals has made.
The PFC results partly support the results obtained by other
atomistic methods; partly they are complementary. The structure
of our review is as follows: in Section 2, we recall briefly the main
features of the PFC models, including the predicted phase
diagram and homogeneous nucleation (including the two-step
mechanism of homogeneous nucleation via an amorphous
precursor). Section 3 addresses heterogeneous nucleation and
crystal adsorption on flat walls and on crystalline particles of
various shapes (cube and pitted wall) and structures (simple
cubic and fcc), while varying the lattice mismatch between the

nucleating crystal and the substrate. In Section 4, we give a
summary of the results and offer a few concluding remarks.

2. PFC models for crystal nucleation

The phase-field crystal (PFC) models can be considered as
simple classical dynamic density functional theories (DDFT).
The local state of matter is characterized by a time averaged
number (or particle) density field that depends on time and
position. This time averaged number density is homogeneous
in the liquid, whereas density peaks appear in the crystal at the
atomic sites. Variants of the PFC model differ in the form of the
free energy functional and the equation of motion.26 The equili-
brium properties, such as the interface free energy and the phase
diagram can be evaluated using the Euler–Lagrange equation. In
this section we briefly recapitulate the essence of the PFC models
used in nucleation studies. Since a recent review26 covers most of
the important details of the PFC models; herein, we review only
the minimum information needed to understand the results
presented. For further details regarding PFC modeling, the
interested reader should see ref. 26.

2.1 Free energy functionals

(a) Single-mode PFC model. The earliest version of the PFC
model has been developed by Elder et al.25 It is also known as
the single-mode phase-field crystal model, and relies on the
following free energy functional

DF ¼
ð
dr

c
2
�eþ 1þr2

� �2h i
cþ c4

4

� �
; (2)

where DF is the dimensionless (Helmholtz) free energy differ-
ence counted relative to a homogeneous reference liquid,
which transforms into the dimensional free energy as follows:
DF = (3rref

L kTRdBS
2)�DF. Here F the dimensional free energy,

rref
L is the particle density of the reference liquid, k Boltzmann’s

constant, T the temperature, R the length scale [corresponding
to the position of the peak of the direct correlation function
C(q)], and Bs = K/(rref

L kT), whereas K is the bulk modulus of the
crystal. c is the reduced particle density, r the dimensionless
position vector, while e4 0 is the distance from the critical point
in the system (located at c = 0, e = 0). Parameter e is the reduced
temperature, which can be related to the compressibility of the
liquid, the bulk modulus of the solid, and the lattice constant.
This form of the free energy can be derived from the perturbative
density functional approach of Ramakrishnan–Yussouff,28 via
simplifications that include the Taylor-expansion of the two-
particle direct correlation function in Fourier space up to the 4th
order.29 The approximations lead to a well defined wavelength
for the particle density, which is preferred by the system (hence
the name ‘single-mode’ PFC). As a result, any periodic density
distribution that is consistent with this wavelength represents a
local minimum of the free energy. Accordingly, elasticity and
crystal anisotropies are automatically included into the model.
The phase diagrams the single-mode PFC model has in 2D and
3D are shown in Fig. 4(a) and (b). The PFC model has been used

Fig. 3 Amorphous precursor mediated crystal nucleation in a 2D poly-
meric system (polystyrene spheres of diameter 0.99 mm and polydispersity
o5%, in deionized water). (Reprinted with permission from T. H. Zhang and
X. Y. Liu, J. Am. Chem. Soc., 2007, 129, 13520–13526 r 2007 American
Chemical Society.)
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successfully to address a broad range of phenomena26 including
elasticity and grain boundary dynamics, the anisotropy of the
interfacial free energy and the growth rate, dendritic and eutectic
growth, glass formation, melting at dislocations and grain
boundaries, polymorphism, and colloidal crystal aggregation.

(b) Two-mode PFC model. An attempt has been made to
formulate a free energy functional that prefers the fcc structure
at small e,30 where a linear elastic behavior persists. To realize
this, two wavelengths were used (first and second neighbor
reciprocal lattice vectors), hence the name ‘‘two-mode PFC’’
model. The corresponding free energy functional reads as

DF ¼
ð
dr

c
2
�eþ 1þr2

� �2
R1 þ Q1

2 þr2
� �2n oh i

cþ c
4

4� �
:

(3)

There are two new model parameters: R1 controls the relative
stability of the fcc and bcc structures, whereas Q1 is the ratio of
the two wave numbers [for fcc, Q1 = 2/O3 using the reciprocal
lattice vectors (111) and (200)]. Note that the single-mode PFC
can be recovered in the limit R1 - N. The phase diagrams for
R1 = 0 and R1 = 0.05 are shown in Fig. 5(a) and (b).

The free energies of the single- and two-mode PFC models
can be given in a unified form, which interpolates between
the two limiting cases by varying parameter l = R1/(1 + R1) from
0 to 1:

DF ¼
ð
dr

c
2
�eþ 1þr2

� �2
l þ ð1� lÞ Q1

2 þr2
� �2n oh i

cþ c
4

4� �
:

(4)

Here, l = 0 recovers the two-mode PFC model (R1 = 0), whereas
the limit l = 1 yields the single-mode model.

In both models a spatial averaging emerges from the
approximation made for the direct correlation function that

makes mapping to actual systems not unproblematic. Attempts
to solve this problem have been presented in ref. 25, 30, and 31.

2.2 The equation of motion

Considering that the particle density is a conserved field, an
overdamped conservative dynamics is assumed in the PFC model,
realized by the dimensionless equation

@c
@t
¼ r2 dDF

dc
þ z: (5)

Here dDF/dc is the functional derivative of the dimensionless free
energy difference with respect to the reduced number density.
The thermal fluctuations are represented by a colored Gaussian
noise, z, of a correlator hz(r, t)z(r0, t0)i =�ar2g(|r� r0|, s)d(t� t0),
while a is the noise strength and g(|r � r0|, s) a high frequency
cutoff function23,26 for wavelengths shorter than the inter-
particle spacing, s. Eqn (5) follows from the equation of motion
of the DDFT after making a few simplifications.26,29 As a result of
the assumed diffusive dynamics, the PFC models with this type
of equation of motion are appropriate for crystal aggregation in
colloidal systems.

A few remarks are appropriate here regarding the noise
added to the equation of motion: in the classical DDFT-type
models, nucleation does not occur in a homogeneous liquid
unless Langevin noise, which represents the thermal fluctuations,
is added to the equation of motion. While this procedure leads
to nucleation, it is, however, not without conceptual difficulties,
as discussed in the literature.32–34 Considering the number
density as an ensemble averaged quantity, all fluctuations are
(in principle) incorporated into the free energy. Adding then
noise to the equation of motion part of the fluctuations would
be counted twice.32,33 In contrast, if the number density is con-
sidered as a time averaged quantity, there is phenomenological
motivation to incorporate noise into the equation of motion.34

The latter standpoint is rather appealing practically: fluctuation
(noise) driven crystal nucleation takes place indeed in the liquid,
and capillary waves appear at the crystal–liquid interface.
In recent PFC studies of crystal nucleation on the atomistic
scale, a conserved noise term is used in the equation of motion
[see eqn (5)]. For this purpose, colored noise obtained by filtering

Fig. 4 Phase diagrams of the single-mode PFC model used in addressing
heterogeneous nucleation of nanocrystals in (a) 2D, and (b) 3D. Note the
stability domains for the bcc, hcp, and fcc structures in the latter.

Fig. 5 Phase diagrams of the two-mode PFC model used in addressing
heterogeneous nucleation of nanocrystals: (a) single-mode approxima-
tions to the phase diagram of the two-mode PFC model in 3D for R1 = 0.
(b) The same for R1 = 0.05. Note the small bcc stability domain near the critical
point. (Reprinted with permission from K.-A. Wu, A. Adland and A. Karma, Phys.
Rev. E, 2010, 81, 061601 r 2010 American Physical Society.)
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out the unphysical short wavelengths (those that are smaller
than the inter-particle distance) is often used.

2.3 The Euler–Lagrange equation

The extrema/saddle points of the (grand) free energy functional
can be found by solving the respective Euler–Lagrange equation,
which reads as

dDO
dc
¼ dDF

dc
� dDF

dc

����
c0

¼ 0: (6)

Here DO is the relative grand free energy, c0 the reduced particle
density of the reference liquid, dDF/dc|c0

= m0 is the respective
chemical potential, while a periodic boundary condition is
applied at the borders of the simulation box. In the case of the
single-mode PFC model, the following form of the Euler–Lagrange
equation applies:

�eþ 1þr2
� �2h i

c� c0ð Þ ¼ � c3 � c0
3

� �
: (7)

Eqn (6) together with the boundary condition represents a 4th
order boundary value problem. The Euler–Lagrange equation
has been used to determine the equilibrium properties of the
single-mode PFC model, including the phase diagram, the solid–
liquid interface free energy in 2D, the density difference at the
solid–liquid interface in 2D, and the nucleation barrier for bcc
and fcc structures in 3D.

2.4 Numerical methods

Owing to the complex mathematics of the PFC models, solutions to
the equation of motion and Euler–Lagrange equation are usually
obtained numerically, relying on a pseudo-spectral successive
approximation scheme combined with the operator-splitting
method. A similar approach based on a spectral semi-implicit
scheme35 relying on parallel fast Fourier transform proved
numerically highly efficient in solving the equation of motion,
while assuming periodic boundary condition at the perimeter.
GPU (Graphics Processing Unit) cards turned out to be highly
efficient in solving the related problems.

2.5 Phase diagrams

As pointed out recently, the single- and two-mode PFC models
realize DLVO-type potentials. The phase diagrams corresponding to
the single-mode PFC model in 2D and 3D are shown in Fig. 4. In
2D, a single crystalline phase (the triangular phase) forms, which
coexists with the homogeneous fluid and striped phases; a phase
diagram similar to those predicted for weakly charged colloids.36

In contrast, in 3D, additional stability domains occur for the bcc,
hcp, and fcc structures, besides the 3D extensions (rods and the
lamellae) of the respective 2D periodic structures. Remarkably, rod
and lamellar structures, and a phase diagram akin to the phase
diagram of the single-mode PFC have been observed in MD
simulations performed using a DLVO-type potential.37

The two-mode PFC model by Wu et al.,30 that has been
designed to realize fcc crystallization, suppresses the bcc phase
[Fig. 5(a)]. Interpolating between the full fcc (R1 = 0) and the
single-mode limits in terms of the parameter R1 leads to the

appearance of a bcc stability domain in the neighborhood of
the critical point [Fig. 5(b)]. Whether the bcc stability domain
is accompanied with an hcp stability domain, as seen in the
single-mode limit, is yet unclear.

2.6 Homogeneous crystal nucleation

Before reviewing the results for heterogeneous crystal nuclea-
tion of nanocrystals, it is desirable to recall some essential
findings concerning homogeneous crystal nucleation revealed
by PFC investigations.

Having specified the free energy functional, nucleation
(homogeneous or heterogeneous) can be addressed in two ways:
(i) either via solving the Euler–Lagrange equation under the
appropriate boundary conditions one determines the properties
of the critical fluctuation (nucleus); or (ii) by solving the equation
of motion with noise representing thermal fluctuations one simu-
lates nucleation. Route (i) is fully consistent with the free energy
functional. However, owing to the noise applied in the case of
route (ii), the free energy of the phases change together with
the phase diagram and the interfacial properties. Decreasing the
noise amplitude, results from route (ii) should converge to route (i).
As will be shown below, the full richness of the nucleation pathways
can only be revealed by applying both routes.

(a) Finding the properties of nuclei (solving the Euler–
Lagrange equation). The Euler–Lagrange equation method
has recently been used to find the properties of heterophase
fluctuations. Tóth et al.38 have performed such study at a reduced
temperature that leads to a faceted Wulff shape. The particle
density of the liquid has been varied so that the size of the nuclei
changed substantially. The initial guess for the solution of the
Euler–Lagrange equation has been constructed so that a shape
(e.g., cube, sphere, octahedron, rhombo-dodecahedron) has been
chosen, which was then filled with the analytic solution obtained
using the single-mode analytic solution for the bulk crystal. This
has been then placed on the background of the homogeneous
liquid of particle density c0, and a tanh smoothing has been
performed at the perimeter. The Euler–Lagrange equation has been
solved numerically with this initial guess. The size of the crystallite
in the initial guess has been varied in small steps.

Contrary to the coarse-grained van der Waals/Cahn–Hilliard/
Landau type models, where the nucleus is the only solution,
here a very large number of cluster variants exist, that represent
local minima of the free energy, which are all solutions of the
Euler–Lagrange equation for c0 in the far field (Fig. 6). This
implies that the free energy surface is fairly rough. (A similar
behavior has been reported for 2D.)

The results obtained for the Euler–Lagrange method for
bcc and fcc clusters are summarized in Fig. 7(a) and (b),
respectively.38 If the initial cluster shape is not compact, higher
free energy minima are found than for the compact shapes.
In accordance with this, the spherical and the rhombic-
dodecahedral (bcc) and octahedral (fcc) shapes provide the
best guesses for the minima in the free energy surface. The
obtained free energy values indicate that the nucleation barrier
is comparable for the bcc and fcc structures. This together with
the similarity of the thermodynamic driving forces for fcc and
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bcc crystallization27 at this specific value of e indicates that
interface free energies for bcc and fcc structures are rather
similar; a finding in good agreement with direct computations
for the interface free energies for flat interfaces.39 On the other
hand, these results appear to be in direct contradiction with
those for metals from molecular dynamics simulations, which
predict a significantly smaller interface free energy for the bcc
phase.40 It is worth noting, however, that the molecular
dynamics results refer to low melting entropy materials, whose
solid–liquid interface is rough/diffuse on the atomistic scale, as
opposed to the high melting entropy corresponding to our
system of strongly faceted sharp interface. Faceted interfaces
are often associated with covalent type bonding, where a broken-
bond model is usually a reasonable approximation. This
approach yields comparable interface free energies for the bcc
and fcc structures.41 Apparently, the PFC results are consistent
with earlier findings for faceted interfaces from the broken-bond
model, while further work is warranted to clarify the disagree-
ment between the PFC and MD predictions. We note that in
obtaining these results it has been presumed that the crystalline
phase nucleates directly from the supersaturated liquid. Time
dependent simulations indicate, however, that this is often
not the case, as complex nucleation pathways via a metastable
precursors might turn out to be preferable.

(b) Dynamic investigations (solving the equation of
motion). The 2D simulations by Gránásy et al. for the single-
mode PFC (l = 1) model indicate that at small supersaturations
crystallization starts with direct nucleation of the triangular

phase from the melt, whereas at large supersaturations formation
of an amorphous precursor precedes crystal nucleation that takes
place in the amorphous precursor.42 The precursor has typical
amorphous structural properties.

A similar behavior has been reported for 3D by Tóth et al.23

Starting from a homogeneous fluid state, isothermal treat-
ments (e = const.) have been performed for 105 time steps.
During the mapping of phase selection in the single-mode PFC
model, several densities have been chosen within the bcc
stability domain, and a single value in the hcp and the fcc
domains. For each reduced density, a series of simulations has
been conducted at several reduced temperatures, of which the
lowest has been chosen so as to yield the amorphous phase,
while the highest the liquid. Similar investigations have been
performed for the two-mode PFC model in the fcc stability
domain. The results of these investigations are summarized in
Fig. 8. The only crystalline phase seen to nucleate in these
dynamic studies is the bcc one, inside the bcc stability domain.
There with decreasing reduced temperature the state after 105

time steps varies as follows: liquid, bcc, bcc + amorphous, and
amorphous. In other cases, coexistence of the amorphous and
liquid phases is seen: liquid, amorphous + liquid, and liquid,
corresponding to decreasing reduced temperatures.23

The kinetics of bcc nucleation have been further investi-
gated within the framework of the single-mode PFC at the
reduced particle density c0 = �0.25 and reduced temperature
e = 0.1667 (cf., the melting point of e E 0.1475). The results are
summarized in Fig. 9, where the left panels visualize the

Fig. 6 Equilibrium nanoclusters of (a) bcc and (b) fcc types found by
solving the Euler–Lagrange equation starting from rhombic-
dodecahedral/octahedral (top row), spherical (center), and cubic (bottom
row) initial crystal shapes in the single-mode PFC model.

Fig. 7 Dimensionless free energy of formation (made dimensionless as the
free energy) for equilibrium nanoclusters of (a) bcc and (b) fcc structure as a
function of size predicted by the Euler–Lagrange equation of the single-
mode PFC model.38 Note the similar height of the nucleation barrier for the
two structures. (Obtained at reduced temperature e = 0.3748.) (Reprinted
with permission from G. I. Tóth, G. Tegze, T. Pusztai, G. Tóth and L. Gránásy,
J. Phys.: Condens. Matter, 2010, 22, 364101 r 2010 Institute of Physics.)
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particle density field, while the right ones show the crystalline
fraction as a function of time together with a histogram
displaying the probability of neighborhoods characterized by
the bond-order parameter q6. The solid phase is composed
of pronounced density peaks, whereas only small-amplitude
fluctuations are present in the liquid. Only the peaks that
exceed a threshold are displayed, for which spheres of the
atomic radius have been drawn. The spheres have been colored
according to the local values of the q4 and q6 rotationally
invariant order parameters that monitor the local order around
a particle. [For definition of the bond order parameters see
Appendix A and ref. 43. In the case of perfect crystals q6 = 0.575
(fcc); 0.485 (hcp); 0.511 (bcc) and 0.354 (sc).] If q4 A [0.02, 0.07]
and q6 A [0.48, 0.52] (bcc-like) the sphere is painted red, while
the rest of the ‘‘atoms’’ are colored white. The histogram in the
right panels shows the population of neighborhoods character-
ized by q6. The fraction of particles of bcc-like neighborhood
(the red ones) is also displayed, representing the bcc fraction X
of the particles (see the red curve in the right panels).

In this study, first amorphous clusters form (nucleate) and
grow, on which the bcc structure nucleates subsequently
(bcc nucleation on an amorphous precipitate). The simulation
box fully solidifies into a polycrystalline state with amorphous
grain boundaries [Fig. 9(d)]. These findings strongly indicate
that crystal nucleation is enhanced by the presence of the
amorphous precursor, and that bcc crystal nucleation directly
from the liquid phase requires several orders of magnitude

longer time than via the precursor. This behavior appears
analogous to the non-crystalline precursor assisted crystal nuclea-
tion in colloidal systems20 and simple liquids.21,22 Remarkably, the
amorphous phase coexists with the liquid, and nucleates from the
liquid phase (separate amorphous ‘‘drops’’ form).23 These suggest
that the amorphous precursor is a metastable phase that forms
from the liquid by a first-order phase transition as indeed reported
previously by Berry et al.44 Further support for the amorphous
precursor mediated mechanism is given by the ‘‘average’’ bond
order parameter maps, %q4–%q6 and %q4–%q6. (These average bond order
parameters by Lechner and Dellago give a larger separation
between different structures.43) One observes initially the formation
of the amorphous structure accompanied with a subsequent
appearance of the bcc structure at intermediate times (see
Fig. 10). The specific coloring (red if %q6 A [0.28, 0.4], and green
if %q6 A [0.4, 0.55]) Kawasaki and Tanaka19 have used to visualize
medium range crystalline order indicates, as expected, that due
to the time averaging inherent in density functional type
approaches, medium range crystalline order cannot be observed
in the PFC model (Fig. 11). Red-colored particles appear only at
the interface between the well localized particles in the crystal

Fig. 8 Homogeneous nucleation maps for PFC models characterized by
DLVO-type pair potentials:23 (a) single-mode PFC and (b) two-mode PFC.
The state corresponding to 105 time steps is shown: open triangle – liquid;
square – amorphous + liquid; circle – amorphous + bcc; diamond – bcc;
filled triangle – amorphous. The gray line indicates the linear stability limit of
the liquid. The respective phase diagrams are also shown. (Reprinted with
permission from G. I. Tóth, T. Pusztai, G. Tegze, G. Tóth and L. Gránásy,
Phys. Rev. Lett., 2011, 107, 175702 r 2011 American Physical Society.)

Fig. 9 Two-step nucleation in the single-mode PFC model (characterized
by DLVO-type pair potential23) at e = 0.1667. Left: snapshots of the particle
density taken at dimensionless times are shown. Spheres of the diameter of
the interparticle distance centered on density peaks higher than a threshold
are shown that are colored red if q4 A [0.02, 0.07] and q6 A [0.48, 0.52] (bcc-
like) and white otherwise. Right: population distribution of q6 (histogram
painted similarly) and the time dependence of the fraction X of bcc-like
neighborhoods (dots and solid line). (Reprinted with permission from
G. I. Tóth, T. Pusztai, G. Tegze, G. Tóth and L. Gránásy, Phys. Rev. Lett.,
2011, 107, 175702 r 2011 American Physical Society.)

Tutorial Review Chem Soc Rev



This journal is©The Royal Society of Chemistry 2014 Chem. Soc. Rev., 2014, 43, 2159--2173 | 2167

(green) and in the amorphous phase %q6 o 0.28, which we paint
grey. The snapshots indicate furthermore that the bcc phase
appears on the surface of the amorphous phase, much like in
the case of heterogeneous nucleation.

Even in the case of the two-mode PFC model, which is
specifically designed to promote crystallization to the fcc phase,
no trace of fcc nucleation has been observed.23 A detailed analysis in
terms of the respective driving forces (grand potential density
difference with respect to the liquid) and the fcc–liquid and glass–
liquid interface free energies shows that structure evolution and
density change are decoupled, and in the temperature–density range
accessible for dynamic simulations, the nucleation of the density
change (amorphous freezing) is faster than the nucleation of the fcc
phase (structural change). This follows from the finding that the free
energy of the glass–liquid interface is about 2/3 of the fcc–liquid
interface. It is, nevertheless, clear from the thermodynamic data that
(analogously to the 2D case) at small undercoolings/supersatura-
tions, there is a regime, where direct crystal nucleation from the
liquid should take place; however, there the time for nucleation is
prohibitively long for dynamic simulations.

In a recent analysis the preference for bcc nucleation in these
PFC models has been attributed to a specific form of the effective
pair potential evaluated from the structural data for the amor-
phous phase: for both the single- and two-mode PFC models,
besides a minimum at r0, the pair potential has a maximum
at Br0O2, and weaker minima further outside.23 Such potentials
are known (i) to suppress fcc and hcp crystallization,45 and have
been identified as possible sources of the lack of hcp and fcc
nucleation in dynamic simulations performed using the equation
of motion,23 whereas (ii) the multiple minima are expected to lead
to coexisting disordered phases.46

Summarizing, the PFC models display metastable amorphous-
liquid coexistence and first-order liquid to amorphous transition.23

In the domains, where crystallization is accessible for dynamic
simulations, the nucleation of the amorphous phase is faster than
crystal nucleation. This leads to a separation of time scales for
density and structural changes, as seen in several other systems
(hard sphere and Lennard-Jones systems, and 2D and 3D colloids).
However, some details might differ: the amorphous–liquid coexis-
tence is unknown in the hard sphere system, while the fcc and hcp
structures are suppressed in the PFC models. It is also unclear
whether along the reaction coordinate specified in ref. 21, the free
energy landscape of the PFC models is indeed similar to that of the
Lennard-Jones system. Combining the results obtained for various
potentials, it appears that a repulsive core suffices for the appearance
of a disordered precursor, whereas the peak at Br0O2 correlates
with the observed suppression of fcc and hcp structures, while the
coexistence of the liquid and amorphous phases seen here can be
associated with multiple minima of the interaction potential.23

Remarkably, similar amorphous-precursor mediated bcc nucleation
has been reported for an extended PFC model with parameters fitted
to Fe (see also ESI†).38,42

3. Heterogeneous nucleation of
nanocrystals in the single-mode
PFC model

Several aspects of heterogeneous crystal nucleation require
atomistic studies. Herein, results of PFC modeling on the

Fig. 10 Bond order parameter maps and average bond order parameter
maps for an intermediate stage (t = 90) of the two-step nucleation shown
in Fig. 9. (a) and (b) q4–q6 and %q4– %q6; (c) and (d) q4–q8 and %q4– %q8; while (e)
and (f) q6–q8 and %q6– %q8. The circles stand for ideal structures: black – bcc;
green – hcp; red – fcc; and yellow – icosahedral. Comparison with
molecular dynamics simulations for the Lennard-Jones system43 indicates
that the amorphous precursor formed in the single-mode PFC has
structural properties similar to the simple liquids. Note that the structure
of the liquid cannot be analyzed in the PFC model as there the particle
density is essentially constant with a small amplitude noise.

Fig. 11 Modified Kawasaki–Tanaka type coloring of the particles in the PFC
simulation shown in Fig. 9: grey if %q6 o 0.28, red if %q6 A [0.28, 0.4], green if
%q6 4 0.4. It appears that (i) owing to the time averaging inherent in the PFC
model, this model cannot detect medium range crystalline order, and (ii) the bcc
phase forms on the surface of the amorphous regions, much like hetero-
geneous nucleation. Time elapses from left to right and from top to bottom.
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structural aspects of the substrate–crystal interaction will be
reviewed, such as the effects of lattice mismatch and the structure
of the substrate on the nucleation barrier, the contact angle, and
surface adsorption of the crystalline phase. In presenting the
findings, we follow the route used in the case of homogeneous
nucleation: first, the results obtained by the Euler–Lagrange equa-
tion are addressed, followed by results from dynamic studies based
on solving the equation of motion. As in the case of homogeneous
nucleation, the two methods prove complementary. In the works
summarized below, the crystalline substrate is represented by a
periodic potential term V(r)c, added to the free energy density [to
the integrand of eqn (2)].24 Here V(r) = [Vs,0� Vs,1S(as, r)]h(r), where
Vs,0 controls crystal adsorption, Vs,1 is the amplitude of the periodic
part, S(as, r) is a single-mode solution function that provides the
periodic structure of the substrate,26 as the lattice constant of the
substrate, whereas h(r) A [0, 1] is an envelope function defining
the size and shape of the substrate.24 Note, furthermore, that the
anisotropy of the crystal–liquid interface decreases towards the
critical point for both 2D and 3D.26

3.1 Results by the Euler–Lagrange equation

(a) Nucleation on flat surfaces. First, results for hetero-
geneous nuclei forming in 2D on a flat square-lattice wall of
varied lattice constant are presented. Here, the free energy
surface has many local minima allowing the Euler–Lagrange
equation to map out the nucleation barrier (see Fig. 12).38 Two
dominant relative orientations have been observed in dynamic
simulations: faces (01%1) or (11%2) parallel with the wall.

Determination of contact angle. The misfit dependence of the
contact angle has been first evaluated at a relatively weak
anisotropy.24 Here y is defined as the angle between the linear
and circular parts of the closed contour line corresponding
to (cL + cS)/2 in the coarse-grained (filtered) particle density
[see Fig. 13(a) and (b)]. (Subscripts S and L denote the solid
and liquid phases.) A non-monotonic relationship between the

contact angle and the reduced lattice constant as/s of the
substrate has been reported [Fig. 13(c)]. Here s is the inter-
particle distance in the 2D trigonal structure.

In the case of strong anisotropy yielding faceted interfaces
far from the critical point, the contact angle is apparently
determined by the crystal structure and orientation: the contact
angle y is 601 when the orientation (01%1) is parallel to the wall
[Fig. 13(d)], whereas it is 901 when the orientation (11%2) is
parallel to the wall [Fig. 13(e)], independently of the monolayer
occasionally seen to form on the wall.

Nucleation barrier. As for the homogeneous case,38 the work
of formation of the equilibrium clusters fits well to the classical

Fig. 12 Dimensionless nucleation barrier for heterogeneous nucleation
(made dimensionless as the free energy) vs. size relationship obtained by
solving the Euler–Lagrange equation for faceted nuclei in 2D. The super-
saturation decreases with increasing n. The lattice constant of the sub-
strate is equal to the interparticle distance in the triangular crystal. The lines
are to guide the eye. Here, ‘‘edge length’’ is the length of the free side of
the crystallite parallel with the substrate (see Fig. 13(e)). (Reprinted with
permission from G. I. Tóth, G. Tegze, T. Pusztai, G. Tóth and L. Gránásy,
J. Phys:. Condens. Matter, 2010, 22, 364101 r 2010 Institute of Physics.)

Fig. 13 Heterogeneous nucleation on a flat wall in 2D from solving the
Euler–Lagrange equation for a square lattice substrate.24 (a), (b) Typical
(nonfaceted) nuclei obtained for small anisotropy. Here as/s = 1.49 and
2.0, respectively, while the orientations are (11 %2) and (01%1) parallel with the
wall. The intersection of the circular and linear fits (white lines) to
the contour line (green) defines the contact angle. (c) Contact angle versus
as/s for small anisotropy. The full triangles stand for cases shown in panels
(a) and (b). (d), (e) Faceted nuclei obtained far from the critical point, at
as/s = O3 and 1.0. Respective orientations: (11 %2) and (01%1) parallel with the
wall. (f) Work of formation of faceted nuclei normalized by the value for
homogeneous nucleation (W* = Whom*) vs. as/s. The full triangles stand
for cases shown in panels (d) and (e). (Reprinted with permission from
G. I. Tóth, G. Tegze, T. Pusztai and L. Gránásy, Phys. Rev. Lett., 2012, 108,
025502 r 2012 American Physical Society.)
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W(l) = Al2 + Bl relationship, where l is the linear size of the
nucleus (Fig. 12).38 Accordingly, the nucleation barrier (W*) has
been defined as the maximum of the fitted formula. W* data
obtained so for the two orientations are shown for 1/2 o as/sr 2
in Fig. 13(f). Remarkably, the W* vs. as/s relationships are non-
monotonic, and have deep minima for the matching lattice
constants (as/s = 1 and O3 for the two orientations seen in
dynamic simulations performed using the equation of motion).
Except for extreme lattice mismatch, nuclei having the orienta-
tion (01%1) parallel with the wall dominate.

(b) Nucleation on nanoparticles. Next, we review the 2D
results predicted for the free-growth limited mechanism of par-
ticle induced crystallization on a square-shaped nanoparticle,
under relatively weak or fairly large anisotropies. To ensure
nearly perfect wetting (a precondition of the free-growth limited
model), as = s has been set. (This is not ideal wetting as the
crystal structures differ on the two sides of the wall–solid
interface.) Two linear sizes have been chosen for the study:
Ls = 4s and Ls = 32s.

The results for the larger nanosubstrate (Ls = 32s) obtained
assuming a relatively weak anisotropy indicate that even out-
side of the coexistence region adsorbed crystal layers form on
the surface of the substrate [Fig. 14(a)], which evolve into
circular ‘‘caps’’ inside the coexistence region [Fig. 14(b)]. When
the diameter of the homogeneous nucleus becomes smaller
than Ls, free growth commences [Fig. 14(c)].24 This observation
is in excellent agreement with the free-growth limited model.

For the smaller size, however, a faceted crystal shape is
observed, and the free-growth limit is reached at a monatomic
critical size that is much smaller than Ls [Fig. 14(d)–(f)]. At large
distance from the critical point, faceted crystals form
[Fig. 14(g)–(i)]. Here, free growth takes place, when the critical
size is much smaller than Ls = 32s. These findings indicate that
the free-growth limited mechanism is valid so far as the foreign
particles are sufficiently large, and the free energy of the solid–
liquid interface has only a weak anisotropy.

Next the effect of lattice mismatch on the adsorption of the crystal-
line phase is presented for 2D.24 The lattice constant of the substrate
has been varied between s/2 and 2s, so that it stays commensurable
with Ls = 32s. The results are summarized in Fig. 15. The amount of
crystalline phase adsorbed on the particle is a non-monotonic
function of as. At as = s nearly semi-circular crystal adsorbates
appear on the faces of the nanocrystal substrate [see Fig. 15(c)],
whereas for slightly different as much thinner crystal layers are
observed on both sides [Fig. 15(g)]. Further away from the nearly
perfect fit (as = s), the adsorbed layer thickens again; yet for a very
large mismatch (such as as E 2s), crystal adsorption is forbidden.

Testing of the free-growth limited model has been extended to
3D,24 using a cube shaped foreign particle of simple cubic (sc)
structure and of as that coincides with the interatomic distance of
the bcc structure. The investigations have been performed in the
stability domain of the bcc structure. The results are in qualitative
agreement with the free-growth limited model (Fig. 16).

It is remarkable, however, that the morphology of the
adsorbed crystalline layer preceding free growth depends

Fig. 14 Free-growth-limited mode of particle induced crystallization on
square shaped square-lattice substrates as predicted by the Euler–
Lagrange equation in 2D.24 The liquid density, the reduced temperature,
and the size have been changed as follows: (a)–(c) e = 0.25 and Ls = 32s.
(d)–(f) e = 0.25, and Ls = 4s. (g)–(i) e = 0.5 and Ls = 32s. In all cases as/s = 1.
The supersaturation increases from left to right. The insets show the
corresponding homogeneous nuclei. Note that (i) in all cases there is a
critical supersaturation beyond which free growth takes place, and that (ii)
small clusters are more faceted under the same conditions than the large
ones (cf. (a) & (b) and (d) & (e)). (Reprinted with permission from G. I. Tóth,
G. Tegze, T. Pusztai and L. Gránásy, Phys. Rev. Lett., 2012, 108, 025502 r

2012 American Physical Society.)

Fig. 15 Adsorption of the crystalline phase on square-shaped particles
versus mismatch at small anisotropy.24 (a)–(f) These are equilibrium states
obtained by solving the Euler–Lagrange equation for as/s increasing from
left to right and from top to bottom. (g) Number of adsorbed crystalline
particles normalized by their maximum vs. the reduced lattice constant. The
full triangles stand for results corresponding to panels (a)–(f). (Reprinted with
permission from G. I. Tóth, G. Tegze, T. Pusztai and L. Gránásy, Phys. Rev.
Lett., 2012, 108, 025502 r 2012 American Physical Society.)
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strongly on the size of the substrate. The shape for the case
where the interface thickness is negligible relative to the linear
size of the substrate has been obtained by Reavley and Greer
[Fig. 17(a)],11b whereas the PFC solutions at the critical super-
saturation obtained for Ls = 64s and Ls = 32s are shown in
Fig. 17(b) and (c). While the first is a continuously curving
surface, in the case of the Ls = 64s cubic cluster spherical caps
form on (100) faces, whereas in the case of the Ls = 32s cluster
pyramids form on the same faces.

3.2 Results from the equation of motion

(a) Nucleation on flat surfaces & corners. Gránásy et al.42

investigated 2D crystal nucleation on flat walls and in rectan-
gular corners of structured and unstructured substrates within
the single-mode PFC. In the case of a flat square-lattice sub-
strate a relatively small reduced undercooling implying a small
anisotropy and sufficient mismatch to prevent immediate
growth from the surface of the substrate (as/s = 1.39) have been
employed. A sequence of snapshots showing the formation of

clusters via 2D heterogeneous nucleation and the late stage
growth morphology are displayed in Fig. 18. Remarkable are
the large amplitude capillary waves and the continuous appear-
ance/disappearance of pre-nucleation clusters during the initial
stage of crystallization.

2D crystal nucleation in rectangular corners of structured and
unstructured substrates has also been investigated.42 In spite of
expectation based on the classical theory or conventional PF
simulations,6 in which the corners are preferred nucleation sites,
in the PFC model the rectangular corner does not appear to
assist crystal nucleation owing to the misfit of the triangular
crystal structure with a rectangular corner (Fig. 19). Crystals of
different orientation nucleate on the two substrate surfaces,
which leads to the formation of a grain boundary starting from
the corner. The free energy of forming the grain boundary makes
the rectangular corner a non-favorable place of nucleation. A 601
corner, in turn, favors the nucleation of the triangular phase.

(b) Nucleation on nano-patterned surface. A possible way to
influence crystallization is to use the crystal lattice of the substrate to
influence pattern formation on its surface, a problem addressed
recently.48,49 A binary extension of the PFC model, supplemented by
a periodic external field, has been used to map the effect of coupling
strength on pattern formation at the surface (Fig. 20).49

The effect of lattice mismatch has been investigated for
crystallization initiated by an fcc substrate with a rectangular
pit (see Fig. 21):24 for matching as values, fcc and bcc epitaxy has
been reported, however, with interference with edge-induced
frustration. At high lattice mismatch, amorphous-phase-
mediated bcc crystallization occurs, an analogue of the two-
step mode of homogeneous nucleation.

3.3 Future directions

The PFC studies could be further extended to explore the effect
of various nanoscale features of the substrate on nucleation,

Fig. 16 Free-growth-limited mode of particle induced crystallization in
3D on a cube shaped particle of simple cubic structure. Here e = 0.25 and
the supersaturation changes from left to right and from top to bottom, Ls =
16abcc, where abcc is the lattice constant of the stable bcc structure. (The
Euler–Lagrange equation has been solved on a 256 � 256 � 256 grid.)
Spheres centered on the number density peaks are shown, whose size
increases with the height of the peak. Color varies with the height of the
density peak, interpolating between red (minimum height) and white
(maximum height). (Reprinted with permission from G. I. Tóth, G. Tegze,
T. Pusztai and L. Gránásy, Phys. Rev. Lett., 2012, 108, 025502 r 2012
American Physical Society.)

Fig. 17 Stable shape preceding free growth in the free-growth-limited
mode of particle induced crystallization on square-shaped square-lattice
substrates. (a) Theoretical shape for infinite size,11b and PFC predictions for
(b) Ls = 64s and (c) Ls = 32s. Note that with decreasing size a faceted shape
develops as reported for homogeneous nucleation by Backofen and
Voigt.47 (Leftmost panel reprinted with permission from S. A. Reavley and
A. L. Greer, Philos. Mag., 2008, 88, 561–579. r 2008 Taylor & Francis.)

Fig. 18 Heterogeneous nucleation on a flat substrate of square-lattice
structure in the single-mode PFC model (obtained by solving the equation
of motion). Time elapses from left to right.

Fig. 19 Heterogeneous nucleation in 2D in rectangular inner corners as
predicted by the single-mode PFC model.43 (a) Nucleation on (01) surfaces of
a square lattice (ratio of lattice constant of substrate to interparticle distance
as/s E 1.39). (b) Nucleation on (11) surfaces of a square lattice. (c) Nucleation
on an unstructured substrate. Note the frustration at the corner and the
formation of a grain boundary starting from the corner at later stages.
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including surface roughness, surface curvature, chemical pat-
terning of the surface, etc. Interesting effects can be addressed
once the PFC method is combined with fluid flow. Steps have
been made recently in this direction. Recent advances in PFC
modeling offers ways to model real materials.25,26,30,31

Apparently, strategies established in colloid patterning might be
profitably employed for governing the crystallization process on the
nanoscale (via e.g., chemical patterning or via nanocapillary
forces).26 It might be then expected that the PFC methodology,
that has been worked out for modeling colloid patterning42 (see
Fig. 22), can also be employed on the nanoscale.

4. Summary and concluding remarks

In this Tutorial Review, we have given a brief overview of recent
developments in phase-field crystal modeling of heterogeneous
nucleation of/on nanocrystals. The results compiled here
extend previous knowledge in several directions:

(i) At large supersaturations, homogeneous nucleation of the
stable crystalline phase is expected to happen via an amorphous
precursor; a kinetically preferred pathway emerging from a time
scale separation of the density and structural changes.

(ii) The lattice mismatch between the substrate and the
crystal influences non-monotonically such properties as the
contact angle, the thickness of the crystalline layer adsorbed on
the substrate, and the height of the thermodynamic barrier for
heterogeneous nucleation.

(iii) The highly successful free-growth limited model of particle-
induced crystallization by Greer and co-workers11 is valid for
larger nanoparticles (Ls Z 32s) and small anisotropy of the
solid–liquid interface free energy, whereas for small nanoparticles
(Ls = 4s) or faceted crystals, the critical supersaturation, beyond
which free growth takes place, substantially deviates from the one
predicted by analytic theory.

(iv) A large mismatch between the crystal and the substrate may
lead to an amorphous surface layer, which assists the formation of
the crystalline phase; a heterogeneous analogue of the amorphous
precursor mediated homogeneous crystal nucleation mode.

Appendix: structural characterization:
bond orientational order

In order to characterize the local structure around a particle k,
Steinhardt et al.43a have introduced the rotationally invariant
bond order parameters

qkl ¼
4p

2l þ 1

Xl
m¼�l

qklm
�� ��2( )1=2

;

where

qklm ¼ 1=nkb
Xnkb
j¼1

Ylm rkj
� �

:

here Ylm(rkj) are the spherical harmonic functions of degree l,
and order m, and nk

b is the number of the bonds of particle k.
Recently, Lechner and Dellago43b have introduced a coarse-grained
version extended to the second neighbors:

�qkl ¼
4p

2l þ 1

Xl
m¼�l

�qklm
�� ��2( )1=2

;

Fig. 21 Crystallization on fcc substrate with a rectangular nanoscale pit
(equation of motion in 3D).24 Spheres drawn around density peaks larger
than a threshold are shown. Order parameters q4 and q6 have been used
for the structural analysis. Hues changing from dark to light stand for the
substrate, and the fcc, bcc, and amorphous structures, respectively (e =
0.16 and c0 = �0.25). From left to right as/afcc = 1.0, 1.098, and 1.42.
Cross-sectional views are displayed. (Reprinted with permission from
G. I. Tóth, G. Tegze, T. Pusztai and L. Gránásy, Phys. Rev. Lett., 2012, 108,
025502 r 2012 American Physical Society.)

Fig. 22 Colloid patterning in experiment50 (left) and dynamic PFC simulations
(right). Upper row: occupation of chemically patterned substrate (experimental
image reprinted with permission from I. Lee, H. Zheng, M. F. Rubner and P. T.
Hammond, Adv. Mater., 2002, 14, 572–577. r 2002 WILEY-VCH Verlag
GmbH, Weinheim, Fed. Rep. of Germany). Lower row: pattern formation due
to immersion capillary forces on a rippled substrate surface (experimental
image reprinted with permission from A. Mathur, A. Brown, and J. Erlebacher,
Langmuir, 2006, 22, 582–589. r 2006 American Chemical Society).

Fig. 20 Surface patterns predicted by a PFC model for Cu mono-layer on
Ru(0001) surface. The coupling between the layer and the substrate decreases
from left to right. Coloring: fcc domains are blue, hcp domains are red, and the
domain walls are green. (Reprinted with permission from K. R. Elder, G. Rossi,
P. Kanerva, F. Sanches, S. C. Ying, E. Granato, C. V. Achim and T. Ala-Nissila,
Phys. Rev. Lett., 2012, 108, 226102. r 2012 American Physical Society.)
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and

�qklm ¼ 1=Nk
b

XNk
b

j¼0
qjlm:

In the latter expression, the sum for j runs for all neighbors Nk
b

of particle k including the particle itself. Accordingly, in comput-
ing the average %qm

l for particle k, one uses the local orientational
order vectors averaged over particle k and its surroundings. Note
that qk

l relies on structural information from the first shell around
particle k, whereas in its averaged version %qk

l structural informa-
tion from the second shell is also taken into account. This spatial
averaging has a tremendous significance in detecting local order-
ing with high sensitivity: in Fig. 10, we compare the original and
the coarse-grained bond order parameter maps. Indeed, the
separation of the structures is far more pronounced in terms of
the average bond order parameters.
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L. Gránásy, J. Comput. Phys., 2009, 228, 1612–1623.

36 G. F. Kendrick, T. J. Sluckin and M. J. Grimson, Europhys.
Lett., 1988, 6, 567–572.

37 A. de Candia, E. Del Gado, A. Fierro, N. Sator, M. Tarzia and
A. Coniglio, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2006, 74, 010403R.
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