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Spiraling eutectic dendrites
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Eutectic dendrites forming in a model ternary system have been studied using the phase-field theory. The
eutectic and one-phase dendrites have similar forms, and the tip radius scales with the interface free energy
as for one-phase dendrites. The steady-state eutectic patterns, appearing on these two-phase dendrites, include
concentric rings and single- to multiarm spirals from which the fluctuations choose; a stochastic phenomenon
characterized by a peaked probability distribution. The number of spiral arms correlates with the tip radius and
the kinetic anisotropy.
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Dynamic evolution of spiraling patterns observed in a
range of physical, chemical, and biological systems, including
excitable media (such as cellular slime mold [1]), Belousov-
Zhabotinsky reactions [2], growth on atomically flat interfaces
[3], binary eutectic systems [4], and more recently, in ternary
eutectic systems [5], has been exciting the fantasy of re-
searchers for some time. Although the details differ, diffusion
and phase separation usually play a role. For example,
aggregation of starving cells is controlled by propagating spiral
waves of a chemoattractant, often yielding multiarmed spiral
patterns [1]. In binary eutectics, spiraling has been associated
with specific anisotropy of the solid-solid interface [4], screw
dislocations [6], or osmotic flow driven fingering [7]. In
turn, the newly discovered spiraling ternary eutectic dendrites
emerge from the interplay of two-phase solidification with
the Mullins-Sekerka-type diffusional instability caused by the
third component [5]. This spiraling or helical structure has been
identified to be of interest for creating chiral metamaterials
for optical applications via eutectic self-organization [8]. The
complex microstructure of some ternary alloys is suspected to
originate from eutectic dendrites [9]. Remarkably, multiarm
spiraling has been reported experimentally in excitable media
[1], in binary eutectics [4], in Liesegang reactions [10], and
theoretically, in the FitzHugh-Nagumo model in which the
multiarm spirals form due to the attraction of single spirals
[11]. It is yet unclear how general this behavior is, in particular,
whether multiarm spiraling is possible for ternary eutectic den-
drites, and what governs the number of spiraling eutectic arms.

In this paper, we show that a minimal phase-field model of
ternary freezing is able to describe the spiraling ternary eutectic
dendrites and to perform a detailed numerical study of this ex-
otic growth mode. We demonstrate that the multiarm eutectic
spiral patterns are robust, so they should be experimentally
accessible and that, analogously to the findings for Liesegang
reactions [10], the number of spirals results from an interplay
of stochastic effects and the competition of nonlinear modes.

The free energy of a minimal ternary generalization of the
binary phase-field model (see, e.g., Ref. [12]) reads as
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where φ ∈ [0,1], εφ, εc, and w are constants, for the g(φ) and
p(φ) functions, see Ref. [12], whereas, c = (c1,c2,c3) and the
bulk liquid and solid phases are regarded as ternary ideal and
regular solutions,
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The equations of motion (EOMs) have been derived variation-
ally, yielding
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for the phase field, and
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for the concentration fields where the
∑

i ci = 1 constraint is
automatically satisfied by our choice of the specific values of
1 and −0.5 for the diagonal and off-diagonal elements of the
3 × 3 mobility matrix Mc.

The dimensionless form of these EOMs has been solved
by finite differencing and explicit time stepping on a three-
dimensional grid, using a computer cluster of 928 CPU cores.
The simulations have been carried out in a directional solidifi-
cation configuration. A temperature gradient was implemented
by making the solid free energy temperature dependent as
fs,i,z̃ = f

(0)
s,i − z̃(∂fs,i/∂z̃), where z̃ is the coordinate along

the direction of ṽp sample pulling. Sample pulling has been
modeled by shifting the contents of the arrays φ and ci by
one voxel back in the z̃ direction in each [(dx̃/dt̃)/ṽp]th

time step with boundary conditions φ = 0 and c = c0 on the
high T and no flux boundary conditions on the low T side
of the sample. To enable large enough simulations in the
direction of pulling (z̃), only Eqs. (4) have been solved far
ahead of the solidification front where φ is sufficiently small
(<10−8). Since the anisotropy of the solid-liquid interface
free energy is weak for metals and is the transparent system
used in Ref. [5], we have considered only kinetic anisotropy
(of cubic symmetry, see Ref. [13]). Solidification has been
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started by including a slab of a solid of length L̃z(2/9), where
L̃z = Nzdx̃ is the length in direction z̃ [14] with a small hump
at the center, whereas, the initial composition of the solid has
been 〈c1〉 = 〈c2〉 = 0.455 and c3 = 0.09, realized by a random
transversal (x̃-ỹ plane) distribution of the two solid phases.
We have opted for this starting condition because simulations
that follow the formation of the two-phase dendrites from
the fluctuation-induced emergence of the Mullins-Sekerka
instability of a flat interface are prohibitively time consuming.
We have, however, demonstrated the formation of surface
undulations increasing with time and have found that the lower
and upper unstable wavelengths are ∼60 and ∼320 with the
fastest growing wavelength being around ∼120. The parallel
computations of this study would have taken more than 600
years on a single CPU core.

In our study, first, we have explored the parameter space
defined by composition, temperature gradient, pulling velocity,
interfacial free energy, and kinetic anisotropy and have
optimized the conditions for growing two-phase steady-state
dendritic structures. Typical conditions for such dendrites
are summarized in Ref. [14]. For low pulling velocities
(ṽp < 0.03), one finds a planar front with a lamellar pattern,
whereas, at high enough pulling velocities (ṽp > 0.3), solid-
ification takes place without apparent partitioning, although
the dendritic structure is yet preserved. At even higher pulling
velocities (ṽp > 0.8), partitionless growth with a flat interface
has been found. A typical two-phase dendrite [see Figs. 1(a)
and 1(b)] has a rounded squarelike transverse section in the x̃-ỹ
plane [Fig. 1(c)]; whereas, in the fin directions (e.g., x̃-z̃), the
longitudinal profile can be fitted with z̃ = z̃max − |x̃|ν , where
z̃max is the tip position, x̃ is the distance from the axis of
the dendrite, and ν is ∼1.49 ± 0.05 [Fig. 1(d)], somewhat
lower than the ν = 1.67 found experimentally for single-phase
xenon dendrites [15]. (The perimeter of the dendrite has been
determined by the contour line φ = 0.5.) This steady-state
shape has been achieved after a transient composed of decaying
oscillations of the tip radius, tip temperature, and the maximum
of c3 at the tip [Fig. 1(e)]. To further test how far the two-phase
dendrites resemble the single-phase dendrites, we have varied
the magnitude of the solid-liquid interface free energy (γ̃SL) via
changing the free energy of the single component solid-liquid
interface (γ̃SL,0) and have evaluated the tip radius in the fin
direction (R̃tip). The results indicate R̃tip ∝ γ̃ 0.50±0.01

SL,0 [see

Fig. 1(f)], which is in good agreement with R̃tip ∝ γ̃
1/2
SL derived

theoretically for single-phase dendrites [16] and may indicate,
e.g., a negligible chemical contribution to γ̃SL. Apparently, the
shape of the two-phase dendrite is independent of the eutectic
pattern forming the solid dendrite: target patterns, single-, and
multiple-spiraling motifs do coexist on the same R̃tip vs γ̃SL,0

curve [see Figs. 1(f) and 2].
The target pattern advances via alternating nucleation

of the two solid phases, a mode expected to disappear at
small undercoolings. It is more frequent for lower interface
free energies and becomes rare for γ̃SL,0 > 0.1. Besides
the target pattern, a number of steady-state spiraling modes
has been observed that display one to five arms [Fig. 2].
(On the surface of the dendrite, spirals are realized by
helical structures forming in the volume.) Owing to evident
geometrical constraints, the steepness of the spirals increases

FIG. 1. (Color online) Two-phase spiraling dendrite grown under
the conditions given in Ref. [14]: (a) spiraling motif on the surface,
(b) the helical structure formed by one of the solid phases, (c) contour
lines showing the transverse sections at 10 dx̃ distances, (d) dotted
curve: longitudinal section; dashed curve: the best fit parabola; and
solid line: the curve z̃ = z̃max − |x̃|ν fitted to it, (e) the maximum of
c3 at the tip vs time, and (f) tip radius vs solid-liquid interface energy.

with the number of the arms. The longitudinal sections
are fairly similar for all modes, although weak systematic
differences are observed. More characteristic are the front
views and the transverse sections: The individual modes
(number of spirals) can clearly be distinguished [Figs. 2(a)
and 2(c)]. We also find that, once in the appropriate parameter
domain, the spiraling two-phase dendrites are quite robust. We
note that, in the experiments, which were performed at low
undercoolings, only the single-spiral mode has been observed,
so far [5]. The large number of spiral arms seen here probably
follows from the large relative undercooling [14] used in our
simulations.

The larger the tip radius, the larger the number of spiraling
arms [Figs. 1(f) and 2]. A closer inspection of the tip region
reveals that no nucleation is needed for the single-spiral mode
where the two-phase spirals originate from a rotating “yin-
yang” like motif at the tip of the eutectic dendrite. The modes

032401-2



SPIRALING EUTECTIC DENDRITES PHYSICAL REVIEW E 87, 032401 (2013)

FIG. 2. (Color online) Eutectic patterns of two-phase dendrites.
(a) Front view, (b) longitudinal, and (c) transverse sections. From
top to bottom, γ̃SL,0 = 0.0295, 0.0147, 0.0354, 0.0516, 0.0589, and
0.0810, respectively. The disorder in the tip region increases with
increasing interfacial free energy.

with larger numbers of spirals become increasingly more
complex, displaying alternating phase appearance at the tips.
It is difficult to decide whether heterogeneous nucleation or
growth around the phase occupying the tip is the mechanism
by which the phases invade the tip. With the exception of the
target pattern where cones of one of the solid phases are not
connected with other cones of the same phase, in spiraling
modes, the individual one-phase regions are interconnected
with all volumes of that phase [Fig. 1(a)].

Although the number of spiraling arms (Narm) tends to
increase with the solid-liquid interfacial free energy (γ̃SL,0)
[Figs. 1(f) and 2], the steady-state pattern appearing after the
transient also depends on the initial random distribution of the
two solid phases: Different steady-state patterns are obtained
starting from different (random) initial patterns. For example,
at γ̃SL,0 = 0.0354, these patterns include the target pattern
and single-to-triple spirals (Fig. 3), showing a multiplicity of
steady-state solutions for the same conditions, from which

FIG. 3. (Color online) Probability distribution of the steady-state
dendritic patterns from 20 different random initial two-phase patterns.
(a) γ̃SL,0 = 0.0354; (b) γ̃SL,0 = 0.0589.

random initialization (representing here the cumulative effect
of preceding compositional fluctuations) chooses. In other
words, the thermal fluctuations decide which steady-state
solutions are accessible for the system under a given set of
operating parameters. Indeed, we have observed a similar
stochastic behavior when initiating growth with a chemically
homogeneous solid slab and adding noise representing fluc-
tuations to the EOMs (a study inspired by Ref. [10]). These
features closely resemble the helical Liesegang patterns where
the thermal fluctuations determine which of the competing
modes (helical, double helical, or nonhelical) is realized [10].
These similarities raise the possibility of a universal behavior
for a class of multiarm spiral systems. Whether such a
stochastic behavior prevails in other multiarm spiral systems
requires further investigation.

Next, we investigate how the kinetic anisotropy influences
the number of spirals. We find that, with decreasing anisotropy,
the tip radius increases followed by the number of the spirals,
which, however, shows some stochastic scattering (Fig. 4). We
note, furthermore, that the exponent ν, describing the shape
of the dendrite tip, changes from ∼1.49 ± 0.1 to ∼2.1 ± 0.1,
varying between roughly the experimental value for xenon
(1.67) and the rotational paraboloid (2.0) expected for the
isotropic case. This is combined with a change in the transverse
section from a square of rounded corners to a circle.

Finally, we explore how the two-phase pattern varies for
off-eutectic compositions. Eutectic dendrites have been seen
to form only close to the eutectic composition. With a slow
change in the liquid composition, one can yet move away
from the eutectic composition while retaining the spiraling
structure (Fig. 5). Beyond a critical deviation from the eutectic
composition, the majority phase forms a channel at the
centerline of the two-phase dendrite, a feature apparent in

FIG. 4. (Color online) Tip radius vs kinetic anisotropy at γ̃SL,0 =
0.0295. The number of spiral arms tends to increase with decreasing
anisotropy, although with some scattering.
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FIG. 5. (Color online) Spiraling dendrite formed at c1 = 0.355
while gradually changing c1/c2 at c3 = 0.09 in the incoming liquid.
(a) Front view, (b) longitudinal, and (c) transverse sections. Note the
majority phase channel at the center.

the experimental observations [5]. Remarkably, such patterns
exist in the steady state, raising the possibility that their appar-
ent lack of formation from the random eutectic pattern is only
due to a long relaxation time, inaccessible for our simulations.

Summarizing, we have shown that the ternary phase-field
model naturally incorporates the spiral eutectic dendrites

and that such two-phase growth forms emerge between the
domains of lamellar eutectic patterns and solute trapping.
The two-phase dendrites behave analogously to their single-
phase counterparts, whereas, the underlying eutectic pattern
has little influence on the shape. A number of eutectic
growth modes compete, including the target pattern and single-
to-multiple spirals of which thermal fluctuations choose.
The number of spiral arms tends to increase with the tip
radius or interface free energy and to decrease with the
kinetic anisotropy. These findings are expected to instigate
further experimental and theoretical studies on multiarm spiral
systems and their stochastic nature.
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