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Résumé, — Il est moniré, qu'au-dessus du seuil du taux de cisaillement, vn écoulement déstabilise la texture
planaire des cholestériques dont le pas est inférieur & ’épaisseur de 'échantillon. Les perturbations de la confi-
guration planaire s¢ propagent 4 une vitesse proportionnelle au taux de cisaillement, Dans cet articls, nous pré-
sentons une théorie simplifiée de ces phénomeénes qui est comparée aux résultats expérimentaux.

Abstract. — It is shown, that shear flow destabilizes the planar texture of cholesterics of pitch small compared
to sample thickness above a threshold shear rate. In addition, in the presence of the shear, perturbations of the
planar configuration propagate Wwith a velocity proportional to the shear rate. In this paper we present a sim-
plified theéory of these effects and compare our results with experimental data.

1. Introduction. — The theory of the distortion
of a planar cholesteric structure by a shear flow
(direction of flow perpendicular to the helical axis)
has been discussed by different authors. Leslie gave
the fundamental equations of the problem [1]; Prost
considered the linearized equations and derived the
flow induced flexoelectric polarization [2); Kini
calculated the effective viscosity as a function of the
shear rate {3]. In all these considerations Aomogeneous
distortions were investigated, i.e. it has been supposed
that the director remains constant in the planes per-
pendicular to the unperturbed helical axis ; it changes
only along this axis.

As is well known, in liquid crystals, external forces
often induce periodic structures in oriented samples.
E.g. in nematics periodic domains can be induced
by electric field, temperature gradient or by shear
flow [4]. In cholesterics the application of a magnetic
or an electric field parallel to the helical axis also
produces a periodic distortion {5, 6]. The question
arises whether a shear flow can induce a periodic
deformation in cholesterics. The discussion of this
problem is the main purpose of the present paper.

As it will be shown, the answer to our question is :
yes. We shall investigate small deformations of the
helical structure which are periodic along the direc-
tion perpendicular to the flow and to the helical axis.
It turns out, that at a critical shear rate the planar
texture becomes unstable with respect to such per-
“turbations. Furthermore, these perturbations pro-
pagate with a certain velocity along the direction of

the periodicity. The velocity of propagation is essen-
tially proportional to the shear rate and reverses its
direction when the flow direction is reversed.

In section 2 a somewhat simplified calculation of
these effects are presented. We have extended Huranlt’s
method, which he used for describing field induced
deformations [6]. Simple expressions are derived for
the critical shear rate and the propagation velocity
of the pericdic deformations.

In section 3 we compare our theoretical predictions
with some experimental data. It is demonstrated, that
the instability, discussed here may correspond to the
textural instability observed previously in cholesteryl
oleyl carbonate {7]. The observed instability however
was found to be discontinuous and no regular struc-
ture could be observed above the transition. Never-
theless, propagating domains can be observed by
superposing a shear flow on an electric field induced
periodic structure. We carried out such measurements
on MBBA, doped with a small amount of cholesteric.
The sign and order of magnitude of the measured
propagation velocity agrees with the calculated one.

2. Theory of the instability. — We investigate a
planar cholesteric structure of pitch P and thickness 7.,
sandwiched between two glass plates. The lower
plate moves with a velocity ¥ in the y direction. The
helical axis is along z, i.e. perpendicular to the plates.

In the undistorted helix the director is

Hy = COSYqo, n,=siny,, n =0
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with

Yo =1ty2, = 2x/P.

A small perturbation can be characterized by two.

variables, n, and ¢, such that

n, = cos (g + ) & cos Yy — @ Sin Yo
n, = sin (f, + @) = siny + @ cosyy .

First let us consider the viscous torque, which is
in general given as [8]

d
_I.:M =7 X ('}Jl{d—?4zx E} + Tzéﬂ)

with
. 1/ dv,. Oov;
rofv; Ai.=— R T ;
s ! 2(6xj axi)

Yo =03 + &y .

S

¥y =

Y1 = 03 — O35

The following two simplifications are made in the
calculation of I'™. :

1. Since generally |a, | > |r)c3 [, we assume that
oy =0, 1e y; = Y= As can be seen e.g.
from ref. [2], if @3 = 0, in our geometry the twisted
structure has no homogeneous deformation, However,
periodic deformations can siill occur.

Ne S

2. We take for the velocity

v, =v,=0; v,=sz with s= ViL .

As pointed out by Leslie [1] the real situation is
that there is a transverse flow (v, # 0) and the shear
rate do,/dz depends on z even for an undistorted
helix. In the present paper we disregard these effects
which would make. the calculations much more
complicated.

Using these assumptions the components of re
parallel and perpendicular to the helical axis for small
perturbations are respectively :

ry = az(snz cos Wy — %q-f«) ;

dn
rv = —%d_tz'

In the following, as in ref. {6], periodic tilts of the
cholesteric planes will be investigated, with perio-
dicity along x. In this case n, can be expressed as
n, = 8 cos Y, Using the 0 variable :

ry = rxz(s cos® iy 0 — %) , (1)
' = — o, cos i, %!i : (2)

The elastic torques were derived by Hurault [6]. In the case K, = K; they are

dx? ox

AP . 2 2 ) i ’ .
re = — K3(a L to 69) Kz(%-% + £y 008 24, g_@) + %(Ks — K,)sin 2y,
. . z x

I'® cos W, = 2 K; cos? ry 1, (ZD'IG + _(g
_ K 2%

4zsm 2tj/o———+K3

The’éqﬁation' of motion of the director is
E(v) + E(e) = (., - (5)
First of all we show that in the presence of a shear
flow, perturbations are propagating. For this purpose

let us consider a small perturbation which has the
form at t = 0,

— o) sinkx. ©)

* From the z component of the equation of motion,
I 4 i = ( we have

azig:—oczsﬂéoszgh'+lj‘°’. (N

The first term on the right hand side of eq. (7) is
proportional to sin kx, while the second one contains

: 2
(to 311121110—- — COS l,boa o
2z*

9
x oz’

()

2

- L(K2 — Kj)sin2 11;05‘?—3 —

oz
%0
4
vy, @«
08 labO axz) ()

terms like 80/0x, which are proportional to cos kx.
As a consequence ¢ must have in general the form

¢ = @(z) cos kx + ¢ z) sin kx . (®)

From the equation I'{Y + I'{? =0 we get using the
above relation

O COéj ‘l’o% =TI cos U/ =.
= a(2) sin kx + b(z) cos kx . (9)

Integrating éq. (9) by ¢ it follows that for ¢ > 0,
f will have the form

(5) = Bz, ©) sin kx + 6.(z, £) cos kx =
= By(z, O sin (kx + 8(1)) .
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This means that the spatial phase of perturbation
(6) will be shifted in time, i.e. the deformation pro-
pagates in the x direction.

In view of the above considerations we investigate
perturbations of the form

§ = @, sin (kx — wf) cos gy z
= (¢, cos (kx — of) + @, sin (kx — wi)) cos g, 2

(10)
with q, = n/L.

As the elastic torques always stabilize the planar

configuration, at small shear rates this perturbation
decays, i.e. 8y, @, @, relax to zero. At higher shear
rates the viscous torque may destabilize the planar
texture, and 0;, ¢, ¢, may increase in time. The
threshold of the instability can be calculated from
the assumption that 8,, @, ¢, have stationary values.
In the following (as in the theory of field induced
deformations) we restrict ourselves to the limit

go € k < 1y (11)

furthermore 8, and I', cosiy, will be replaced by

their averages over one period of the helix.

In this case the last term in I'®, which is proportional to kg, 8, can be neglected. The equation

'Y + rie =0 gives
@, = o + oV cos 24, ;

¢ = o + M cos2¢,

with ) _
1 1 —CDp
(P£°’=11+Bzﬂo, o0 =030
A+ B C+ D (12
() I BN M T TCO N el
Py AI+3290, ] '?1+D2 0
where - _
. ol ) _ kl4 t, ]
T+ K, g3K R 1+ K kA Ky 1y
= oy § L B = U @ N L %y & D_ Gy @
2Ktk T KK+ K¢ T 2K, fpk 42K, KK,
. Now let us consider the equation
rparp=o0. . (13)

Multfplymg (13) by cos Y, and taking the average over one period of the helix, the terms proportional to cos kx

and sin kx give respectwely

. p . |
B + t, kKs Q’w} “*‘ 2 K, oV =0; 14)

to k

sand w :

With the help of eq. (12) 0! and @gf’ can be eliminateﬁ from eq. (14). Thus we obtain a relation between

A+vB  tkK, C+D

L
3 KK Ky gd) + 1 kK

Assﬁming that ¢ is not extremely Jarge (see later)
we have D% < 1. Using inequa]ity (11) we get

A~ — B(l +3 t—(l + Bz)) (16) .

o

In the limit g, < & < ¢, the relatmn between @ and g
becomes linear :

o=ss=, (7

1+

B? 2 "1y pT

or for the propagation velocity

1 s
vy = ok =5 —.
o k=3 fo
Eliminating @@ and ¢ from eq. (15) and using
eq. {16), we get a condition for s, i.e. for the threshold
shear rate. In the same limit as above the resuli is

8 K, (K, t5qg5 3 12
=+ 2 — 1l = + - k? . 18
sk) =+ \/; o (K3 2 g (18)
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s(k) is minimum for

8K,

ki = 3_1(3“0%%'

This is the same result as that obtained for field
effects. Using this result, the threshold is

(19)

K, K —
Sip = i4\/ot22 3tc)\/irolqo-

The main results of this section are expressed by
egs. (17y and (19), which provide the propagation
velocity and the threshold of the instability respec-
tively,. _

The above theory is readily extended to the case
when a magnetic or electric field parallel to the helical
axis and the shear flow act simultaneously. As the
field exeris a torque proportional to 0 it is only
necessary to modify eq. (15) which now becomes
(for a magnetic field) :

Kaltd 00 — kto ) + 5 O Ky + K) K 0, —

Lk 1
— Kol — 30 H 0,=0. (20)

As eq. (15) has not been used to derive the connec-
tion between w and s, eq. (16) is unchanged. In place
of eq. (18) we obtain :

8K, (K,2qt 3
s, Hy = + 2 \g—ato( 2070 ) 2k -

a, A\K, kK 8
lquz 1/2
27K ) '

The minimum is again for

8K
ki: 3—KZ|f0|40-

The threshold as a function of the magnetic field is

salH) = su(0) (1 — HYHEDHY: 1)

where H,, is the threshold for the magnetic field
induced instability ;

1
Hj = X_\/6K2K39'0[t0 |
s,(0) is given by eq. (19).

A similar equation can be derived for an electric

field :
salU) = 50 (1 — UHUDY?  (2)

~where U, is the threshold voltage for the electric
field induced instability, given in ref. [6].
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From eq. (22) it follows, that the planar structure

- becomes unstable if

UZ SZ
a(U, s) Uz + i > 1
where U and s denote the applied voltage and the
shear rate respectively. The threshold is given by
a(U, 5) = 1.

We note that eq. (17) 18 — strictly speaking —
only valid for the threshold x = 1. On the other
hand, measurements of « can be carried out only
slightly above the threshold (0 < « — 1 < 1). To find
an exact relation between w and s above the threshold,
terms nonlinear in the deformation components must
be considered also. However for 2 continuous tran-
sition, where just above the threshold the deformation
remains small, the nonlinear terms can be neglected
when deriving the relation between e and s. Hence
eq. (17) will be a good approximation slightly above
the threshold too.

Now let us discuss briefly the influence of the
approximations we made when deriving these for-
mulae.

If %3 # 0, there will be a homogeneous distortion
also. This deformation has no threshold, its ampli-
tude is in the linear approximation [2]

n, = 0, sin ¥,
with
B oy P
1+ (g + ag)fo, 35(Ks + K))'

b,

At the threshold for periodic instability given by
eq. (19), 8, is of the order of wafu,../go/fs- In our
limit 6, becomes very small and the homogeneous
deformation is linearly superposed on the periodic
distortion.

The influence of the secondary flow may be more
serions. It is known in the case of hydrodynamic
instabilitics in nematics that transverse flow effects
modify the threshold considerably [9, 10]. The situa-
tion is similar in the present case. The precise treat-
ment of the velocity field should lead to additional
lingar terms in the viscous torques. However these
terms will be comparable or smaller than those one
which we considered. As a consequence the order of
magnitude of w and s, should not change.

Finally, it was assumed that

0y @ 2
_DZ: .._.__Z— 1
(4:3K2+k21(3> <

Using eqs. (17) and (19) it can be seen, that at the
threshold D2 is of the order of (k/t,)* < 1.

3. Comparison with experiments. — As reported
previously [7], in cholesteryl oleyl carbonate, with
pitch £ & 0.3 um, sample thickness 50 pm, an insta-
bility of the planar texture was observed at
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S =1.5% 10% 571 Taking for , /K, K;=5x 10~ dyn.,

% = — 1 poise (typical values for nematics), eq. (19)
vields
28x#* K, K
.S‘th=\/ VK a5 % 1085t
PJ/LIP|

The order of magnitude is the same for the calculated
and measured critical shear rates, however there is
a considerable difference between them. This diffe-
rence may be explained by several facts : the value of

material constants may be incorrect ; effect of secon-

dary flow, ete.

There is also another reason for the discrepancy.
The caleulated threshold refers to a continuous tran-
sition, where the amplitude of the distortion remains
small just above the threshold. The validity of this
assumption cannot be verified from the linearized
equations. If this assumption does not hold eq. (19)
gives only an upper limit for the threshold.

As a matter of fact in the reported experiment the
transitions was found to be discontinuous ; at s,, the
planar texture is strongly deformed immediately.
This fact may also contribute to the deviation of Sep

rand sy,.

As already mentioned, due to the discontinuous
character of the instability, no regular domains could
be observed above the threshold. However propagat-
ing domains were observed in another experiment by
superposing an electric field and shear flow. In this
case, with sufficiently low shear rates the distortion
increases continuously above the threshoid.

In the experiment the same set-up was used as
reported in [7]. The material (MBBA doped with 1 %
cholesteryl nonanoate) was sandwiched between two
disks, and the lower disk was rotated. At the boun-
daries the director was oriented tangentially. The
electric field induced a square pattern. However on
switching on the flow the domains became lnear
resembling the well known Williams domains. The
periodicity was along the radial direction. The pro-
pagation velocity of the domains was determined by
measuring the time in which a number of bright
lines intersected the middie point of the cross-hairs
in a microscope.

In figure 1 a typical experimental result is shown.

w (118)
\ 2 * R=6mm
*. A A=9mm
t 1 t T G{ll’s)
-5 5 10
T2 \A\
—_— . .A\

Fig. 1. —  as a function of the shear rate, measured at two diffe-
rent distances from the centre, by different angular velocities of
the lower disk. L = 50 pm, P = — 12 um,
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The precision of the measurements is somewhat lmited
by the fact that after a short time disinclinations form
in the sample, which make further observations
mmpossible. Usually the intersection of 3-4 lines counld
be registered before the structure became irregular.
The points shown on the figure are the average of
several measurements. From the points on figure 1,
we get

wfs = — 0.25,

As noted in the theoretical part of the paper, the
relation between s and o, given by eq. (17) does not
depend on how the periodic structure is induced ;
it is valid in the presence of an external field too.

The pitch of the material is 2 = — 12 pm (left
handed). At L. = 50 um the periodicity of the domains
was found to be 2xn/k = 39 um. With these data,
from eq. (17) the theoretical value is

wfs = L kjty = — 0.15 .

In this case we suggest that the deviation of the
theoretical and experimental values is first of all due
to secondary flow effects.

From the theory presented in section 2, it follows
that the threshold voltage should depend on the pre-
sence of the shear. From eq. (22) we get

w0} (1 — Sz/Stzh)l"z . (23)

Vinls) =

With the data of MBBA (\/K, K;=4.5% 107" dyn.,
% = — 0.8 poise) and P = — 12 pm, I, = 50 pm,
eq. (19) yields s, = 21 s !, However we were unable
to prove eq. (23) even approximately as the time from
switching on the flow till the formation of the discli-
nations was too short to make any reasonable measu-
rements of the decrease of the threshold voltage.

4. Conclusion. — In the paper we have shown
that shear flow, above a threshold, destabilizes the'
planar structure of cholesterics. The threshold is. of
the order of Kfa, 74 /ty:q,- This conclusion is sup-
ported by experiments. :

In the mechanism of the instability there is an
important difference compared with other instabilities.
In other cases the coupling between a perturbation
and the external force leads to a destabilizing torque,
which has the same spatial phase as the perturbation
itself. In the present case the destabilizing torque is
shifted with respect to the perturbation by a quarter-
period. As a consequence, perturbations propagate.
The velocity of propagation is of the order of s/t
This result is also verified experimentally. '

The mechanism described here is only possible for
optically active media. In other phases (nematic,
smectic A), the destabilizing torque or force has for
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symmetry-reasons the same phase as the perturbation. If a left handed cholesteric were replaced by its
This is also refiected by the fact, that the propagation right handed isomer the domains would propagate
velocity is proportional to the pitch (sign included). in the opposite direction.
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