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Abstract
The steady-state model of thermally induced optical bistability,

presented in a previous paper, is extended to describe transient phenomena.

A nonlinear integral equation is derived which can be readily solved for

arbitrary time dependence of the Input power. We apply the model to

switching processes in bistable ZnSe interference filters. The corresponding

experimental results are found to be In pood agreement with the theoretical

predictions.



1. Introduction

Recently thermally induced optical bistability has gained Increasing
interest. Devices based on thermal optical nonlinearities have from the
point of view of applications attractive features, such as room temperature
operation by cw laser beams and relative simplicity of fabrication. A
prototype of these devices is the ZnSe interference filter, described in
earlier papers [1,2,3,&]. It was demonstrated recently by us trhat the
interference filter can be used as the basic switching element in optical
circuits [5] which are necessary for all-optical cowputing.

In a previous paper ([4], from now on referred to as 1.) we discussed a
simple model of devices based on thermal optical bistability and compared it
with experimental observations in interference fllters. The model provided a
good qualitative and reasonable quantitative agreement with the experimental
results. In that paper only the steady state characteristics of the device
were considered. However, from the polnt of view of applications it {s also
very important to study transient phenomena which Is the aim of the present
paper. We extend the model to non-stationary cases and compare the
theoretical results with the experiments.

In section 2 we describe the model in detall. As in 1. we consider a
We derive

thin absorbing layer evaporated on a thick transparent substrate.

a nonlinear integral equation for the time dependence of the spot

temperature T_, i.e. the temperature at the centre of the laser beam. This

equation can be readily solved numerically for arbitrary time-dependence of
the {incident power P. 1In the present paper we discuss in more detail the

case of a stepwise increase or decrease of P from some P] to

P” = PL + AP. In section 3 we describe the corresponding experimental

results in ZnSe interference filters.




We focus our attention on switching processes, namely the transition
from one branch of the bistable curve to the other, caused by a change In the
input intensity. The switching process in our system can be divided into
three parts. 1In the first time interval the spot temperature rises (or
decreases) from the initial temperature, T;, to the critical temperature at
which the transition occurs. We refer to this time Interval as the critical

time, Toe In the next interval, the spot temperature passes through the

unstable region (negative slope branch). Finally in the third {nterval the

spot temperature is again in a stable region and approaches gradually {its
final stationary value Ty-

In section 3 we present experimental results on the switching process
for different Py values (for up-switching). In the experiments a long
delay time was observed during which the transmission increased only
slightly; this was followed by the actual switch, resulting in a rapid
increase of the transmission. We demonstrate that the experimentally
observed delay time is approximately twice that of the critical time, «<.-

We found that as Py approaches the switch-up threshold P, the delay
time diverges. From our model we derive a simple approximation for the delay
time, that accounts for the observed divergence (analogous to the critical
slowing down phenomenon in phase transitions). Furthermore it emerges that
the switching time is proportional to the square of the laser beam radius,
provided that PL/Pu and PH/Pu are kept constant. Qur experimental
results are in good agreement with the above prediction.

In section 4 we discuss the implications of our results on device

applications.




[I. Theoretical Considerations

We consider a thin absorbing layer, evaporated on a thick transparent

substrate. The time dependent heat flow equation Is

oT
c,p, — = Qr,t) + « 72T (L)
ivt — i
ot
where the index i = 1,2 refers to the layer and the substrate respectively.

Q(r,t) is the quantity of heat absorbed/unit volume/unit time at the position
r at the time t. Q(r,t) is zero for the substrate, while for the layer

0(r,t) = I(r,t) a (T(r,t)) (2)
where T 1s the irradiance and a is the absorption coefficlent. As we deal
with pure thermal effects we assume that « Is a function of the local
temperature only.

As in I., we consider the case when the material parameters (c,p,x) 1In
eqn. (1) are equal for the two media. We neglect heat transfer to the air
and consider the substrate to be semi-infinite. The boundary conditions are
the same as in the steady state case: the normal component of the heat
current is zero at the layer-air interface (z = 0 plane) and at large
distances from the absorbing spot the temperature approaches the ambient

temperature Tp. Using the Green function technique, eqn. (1) can be

converted Into an integral form:

D ; [ Q(r',t") (r-t')? ,
T(r,t) - T, = — exp (- —) d° r'dt’
Tk G-t in(e-t')

(3)




where D = x/cp is the thermal diffusivity. The spatial part of the
integration is over the irradlated spot and Includes the "mirror sources”
too, which are obtained by reflecting the real heat sources on the z = 0
plane.

Using the same considerations as In I., in the limit of very thin layers
eqn. (3) becomes

t Iin(p'.t') A (T(p",c")) (r—r’)2

T(p,t) - TFf— ] —373 exp (- ;'_) dp'de”
K . (4nD(t—-t ")) 4D(E-t")

where p is a position vector in the z = 0 plane and Iin(E',t') is the
irradlance of the incident beam at E" For a Gaussian beam with 1/92 radius
Po

2
P(t") —p' /p,?
e (5)

ﬂpoz
A{T) is the absorptance of the layer, i.e. the fraction of the Input
intensity which is absorbed in the layer at a fixed temperature T. We note
that although in the absence of absorptien {(a = 0) the absorptance is
necessarily zero, in general A(T) is not determined unambiguously by a. The
reason for this is that the amount of absorption within the layer i{s strongly
influenced by cavity effects which In turn depend critically on the
refractive index n. A detatled discussion of this probhlem was given in I.
Eqn. (4) represents a complicated integral equation for the temperature
distribution. A First approximation of the solution can be ohtalned by

neglecting the spatial variation of the temperature within the spot.




Replacing A(T(p',t"')) by A(Ts(t')), where 'I‘q is the temperature at the

centre of the beam, we obtain for a Gaussian beam

1/2 t ' ;
T, ? PEET) A (Ts(t »)

T (t) =T, = ——— — J de’ (6)
2
s F ZpUKnllz T (t—t')lf (c—t'+10)
with 15 = 902/4D.
For a constant incident power, P, eqn. (6) reduces to
A(TS)
T - T, =P ——ro (7}
5 F
2V Kk Po

Eqn. (7) was obtained already in Ref. 1., and it was applied to

calculate the steady state characteristics of the device. For bistability

there are two critical points In the P = P(TS) curve at which aP/bTS = 0.

We refer to the critical temperatures as T and TD; the corresponding

powers are the switch-up power, P, and the switch—-off power. In the
temperature interval T, < Tg < Ty there is no stable stationary

solution.

As mentioned in the introduction we are interested in the case when P is

changed discontinuously from Py to Py, i.e.

P(e) = (8)

Inserting this form of P(t) into eqn. {(6) we obtain for t > O



2 t
Ts(t) - TF = (TL*TF) (1 - ; arc tan v ;—) +
0
(9)
< 1/2 ’ t A(Ts(t'))
0
TR —— de!
ZpOKnllz 7 H 0 (t:—t')u2 (tut'+10)

Eqn. (9), which i{s the central result of this sectlion, Is an
Abel-Volterra type of equation with a weakly divergent kernel. There are
well established methods for the numerical solution of such equations [6].
To apply it to a specific system, the thermal data of the substrate and the
temperature dependence of the absorptance of the active layer, A(T), must be
known. Note that the input parameter 1s the initial spot temperature, T,
rather than the initial power PL‘ Outside the bistable power reglon there
is a one-to-one correspondence between T and Prs however 1f PL is
within the bistable range it has to be specified which state (on or off) is
the system initially in. The solution of the problem 1s of course entirely
different for the two initial conditlons.

To discuss the spot size dependence of translent phenomena we introduce

the dimensionless variable s = t/IO. Egqn. (9) can be written as

2
Ts(t) - TF = (TO—TF) (1 -~ — arc tanys) +
n
(10)
P, 2 ? A(T(t"))
b o——— — ds’
ZQOKnl/z T g (s—s')l/2(5w5'+1)

From eqn. {10) it follows that providing PL/p0 and PH/p0 are kept

constants 'I‘q is a Function of s only. This implies that the tlme required



to achieve a certaln temperature rise (or fall) is proportlional to Too which
i{s in turn proportlonal to the square of the spot size, 002 (see eqn. (6)).

The above consideration can be extended to general forms of P(t).
Inserting into eqn. (6) P(t) = p(t/7,)/py, it can be seen that the

temperature rise is a function of s = t/ro and the form of the function P(s)

only. This implies that by reducing the spatial scale (i.e. the spot size)
by a given factor, reducing the power by the same factor and reducing the

time scale by the square of this factor we obtain the same transient

behaviour on these reduced scales.

I11. Application of the Model to ZnSe Interference Filters

In this section we apply the theoretical model to a ZnSe interference

filter evaporated on a glass substrate. The structure of the filter and some

basic experimental observations of the nonlinear optical behaviour was given
in [2]. Further experimental results were reported in I.

The basic experimental set—up used in the present experiments was
similar to the previous ones, except for an acousto—optical modulator which
was inserted into the beam path. The acousto-optical modulator (Coherent,
Model 304) was controlled from a microcomputer. The incident laser power
could be incremented between two levels in a time less than 5 ps. Both the
incident and transmitted powers were monitored on a Tektronix 7633 storage
scope, allowing the entire switching waveform to be ohserved. The ZnSe

interference fllter was the same used in the previous steady state

experiments (I.); the light source was the 514.5 nm line of a Coherent Ar

lager (Innova 10).




In Fig. 1 we show a set of experlmental curves for the switch-up

process. The ilnitial power P, was the same for all curves and the filter
was held in the off state. The power was stepwise Increased to Py > P,

As shown In the flgure, there are simultaneous stepwise increases In the

transmitted powers which correspond to no change in the transmission

coefficients. There is a long period during which the transmission increases

only slightly and this is followed by a rapid "switch”. A very slight

overshooting was observed in the transmissfon and the new equilibrium was

established gradually.

In Fig. 2{(a) we show the dependence of the switching time on Py We
define the switching time as the time interval from the increment of the
power until the moment when the transmission curve has an inflexion point.
As can be seen from the figure, the switching time steeply increases as
PH/Pu gets close to unity (critical slowing down).

In order to carry out a corresponding theoretical analysis we need to
know the temperature dependence of the absorptance and the thermal data (see
eqn. (9)). The form of the function A(T) for the ZnSe filter was discussed

in I. We demonstrated that near the resonance it can be approximated as

A
A(T) = (11)
1 + C(G—GO)

where 6 is the angle of incidence of the laser beam. In the temperature
range of interest for the present problem Ab, G and 90 can be regarded as

linear functions of the temperature. For the filter on which we carried out

our measurements we found (T.).

A, = A

0 LA, (TTR) 6= Gy (T-T)

0, = 0, + 0, (T-T})




e

with T. = 20°C and

F
Ay = .45 A, = - 0.01/°C
G, = -18 G, = - 0.0003/°C
6, = 30.5 8, = .055/°¢

The transmission coefficient obeys a similar relation

T
(T) = 0 (12)
1 + c(e—eo)2

with T, = .2 T, = -0.0007/°C
In Fig. 3 we show the calculated spot temperature as a function of the

time for a fixed PL (PL = .6 Pu) and for different values of Py The

curves show clearly the three different time intervals, observed in the
In the figure we indicate the critical

experimental results also.

temperatures T, and Tp. As can be seen, there is first a long time

interval during which the temperature rises almost linearly. The duration of

this interval is roughly twice of the time necessary to ralse the temperature

to the first critical temperature T, . In the second interval the

temperature luncreases rapidly, within the unstable region,

TU < TS < TD' Finally the rate of the temperature rise decreases and

equilibrium is reached gradually.

In Fig. 4 we present the transmission coefficlents as a function of
time. The transmission coefficient was calculated by using eqn. (12)
replacing T by T . The general shape of the curves is similar to that of
the experimental ones except for the fact the calculated overshootings are

much more significant than the detected ones. The reason for this is the

following. By using eqn- {12) we determine the transmission coefficient at



the centre of the heam, while in the measurements the whole transmitted beam
was collected on the detector. The peak in the calculated curve corresponds
to the spot temperature at which the transmission coefficient is maximum
(GU(TS) = 0). However, because there is a temperature gradlent across the
spot, when the local transmission coefficlent is maximum at the centre of the
beam, the transmission coefficient of the total beam Is significantly lower
than this maximum. The overshooting, predicted for the centre of the beam Is
very much reduced by spatial effects.

In order to demonstrate that our model describes the observed critical
slowing down, we estimate the critical time, <., necessary to ralse the
temperature from its initial value, T; to T, In this temperature range
the absorptance A increases with increasing temperature. Consequently if
A(Ts(t')) is replaced by A(Tu) in eqn. (9), the temperature rise will be
overestimated. Hence we obtain the inequality

2 t
- - - — —) +
Ts(t) TF <:(TL TF) (1 arc tan v )
s T
(13)
PH A(TU) 2 £

175 —~ {arc tan ¥ —)
2pOKn i T

+

Rearranging the above inequality, we obtain for Te

- PUA(TU) - P A(T‘)

L
.7 T tan? (— ) (14)
2 PHA(TU) = PLA(TL)

where 1t was taken into account that by definition T _(x.) = T,. We

made use also of the relations




_\3_

P,A(T ) P A(T )
T =T = L L. - = u u

i /2 u F 1/2
2pykm 2pykn

which follow from the steady state solution (egn. (7).
For Py » P the r.h.s. of the inequality (l4) diverges and as a
consequence T, must diverge too. In fact for 4 only slightly larger

than P the inequality becomes a good approximation. As we showed the

switching time, Ty 1s roughly ZTC, so we obtain

T P A(T ) - P A{T,)
T, 2ty tan? (— = 4 L L } (L5)
2 PLA(T, ) = PLA(T)

The switching time as a function of Py» according to the above
approximation is displayed in Fig. 2(b). The similarity to the experimental
curve is obvious. A good quantitative agreement between the theoretical and
experimental curves can be obtained in the region near to PH/Pu =1

(where the approximation is valid) by assuming T, = 0.5 msec. On the other
hand, the relation 1, = 902/4D with p, = 30 um and D = 1.76 x 1072 cm?/sec
(float-glass) ylelds 5 = Q.36 msec¢, In reasonable agreement with the value
quoted above.

As can be seen from the curves in Fig. 3, the critical slowing down is
due to the fact that as Py approaches P the temperature rise becomes
slower and slower in the vicinity of the critical temperature T . This
behaviour is a universal fuature of histable systems and is discussed In

detail in [7,8,9].



Sl -

In Fig. 5 we present the spot size dependence of thé switching time. As
pointed out in section 2 our model predicts quadratic dependence of the
switching time (or any other transient time) on the spot size. This relation
is confirmed by our measurements in a rather good approximation. The actual
slope of the fitted stralght line in Fig. 5 is 2.3. We note that the

measurement of small spot sizes (pU 10 pm) is rather inaccurate and this

may explain the small deviation of the experimental and theoretical results.
Furthermore, as pointed out in I. for the steady state case, for small spot
sizes the replacement of the thermal constants, D and x, by those of the
substrate cannot be justified. This fact may lead to deviations from the

quadratic law for small spot sizes.

IV. Conclusions

In the theoretical part of our paper we presented a nonlinear integral
‘equation (egn. (6)), which can be applied to describe the temperature
variation in an absorbing thin film under the influence of a non-stationary
input power. We applied this model to describe switching processes In
nonlinear interference filters and compared the results with experimental
observations.

From our study we draw the important conclusion that by decreasing the
spot slze hoth the critical switching power and the switching time decrease.
Therefore for device application It seems desirable to work with the smallest
possible spot sizes. The limitations are the following. Firstly it becomes
inereasingly difficult to produce Gaussian beams with diameters less than a
few microns. Secondly with decreasing spot size the critical irradiance
increases (in contrast to the critical power). Consequently the problem of

photoinduced permanent changes becomes more serfous. We also note that for




spot sizes less than a few microns, the scaling laws estahblished in section 2
do not necessarily hold. This point needs further investigation.

The characteristic time involved in the problem is Ty < p02/4D. For
switching powers only slightly higher than the critical switching power,
P, there is a delay time which 1s much longer than Tg- However for

Py = 2P, the switching time is comparable with 1, (see Fig. 3). Assuming

H
Pp = O um and D = 1.76 x 10% cm?/sec we obtain T, = 3.6 psec. For many
applications this may be an acceptable switching time. Thus we believe that

thermally induced bistability, in spite of its relative slowness as compared

to electronic nonlinearities, can find useful device applications.
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Figure Captions

Fig.
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Fig.

Fig.

Fig.

1

Transmitted powers as a function of time for different PH/Pu
ratios. Spot radius 50 um, angle of Incidence 40°.

a) Experimental switching times as a function of PH/PU. Spot

radius 50 um, angle of Incidence 40°.
b} Theoretlical curves for switching times, according to eqn. (153).

Calculated spot temperatures as a function of time, for diffrent
P,/P  ratios. Angle of incidence 40°,

Calculated transmission coefficients as a function of time for
different PH/Pu ratios. Angle of incidence 40°.

Switching time as a function of the incident spot diameter. Angle
of incidence 40°; P = 0.6 P
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