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We explain by a simplified theory the existence of the undulation instability found by us in thick
samples of planar oriented $7 liquid crystals. We derive the order of magnitude of the threshold field
and explain the minimum in the frequency dependence of the unwinding critical field E_ as well,

INTRODUCTION

A number of instabilities induced by AC electric fields were found in various
liquid crystal phases. In nematic phases at a certain threshold voltage V; thin (in
the order of sample thickness) cylindrical vortices (so0 called Williams domains)
perturbing the initial orientation of the director form by the mechanism explained
(based on the idea of Carr') by Helfrich.* Similar instabilities were found in
cholesteric phases®*> and explained first by Hurault.®

There are electrohydrodynamic instabilities in smectic phases as well and were
observed”®® in nonchiral S, materials, however so far the theoretical explanation
is missing. In chiral S; materials the existence of electric field induced smectic
layer distortions was predicted and calculated theoretically for homeotropic cells
already in 1979 by Noel A. Clark."

As far as we know this prediction was verified only by us in planar S} samples
recently. We observed that in thick samples (the sample thickness is larger than
the pitch) at electric fields larger than a threshold, E,, but less than the
unwinding critical field E., an undulation instability of the originaily straight
parallel stripes occurs.'! At fields just above the threshold (E = E,,,) the distortion
of the stripes was found to be sinusoidal and had a zig-zag shape at higher fields.

Furthermore, a minimum was observed in the frequency dependence of the
unwinding critical field E,. The minimum in the frequency response coincides
with the characteristic frequency frc (fac= o/(27e), o and ¢ are the average
conductivity and dielectric constants respectively) of the substance. In the vicinity
of this frequency the unwinding is caused by a flow suggesting that the underlying
mechanism is linked to the conductivity.

The aim of this paper is to explain the existence of the measured unduiation
instability and the anomaly in the E.(f) function in the frame of the same theory.
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i. MODEL

The background structure i.e. the configuration just below the wundulation
threshold is shown in Figure 1. On the basis of the model of Glogarova et al.**
and our measurement on switching times of FK4'® we assume that below the
electric field Ey, ~ 10° V/m the film consists of a sequence of parallel stripes of
domains separated by dechiralization lines (instead of a uniform helical struc-
ture). In the domains the spontaneous polarization P, is alternatingly parallel and
antiparallel to the electric field at all the frequencies. (see Figure 1) (FK4 is a
room temperature binary mixture'® made by two compounds of 4-(2'-
methylbutiloxy)-phenil-4-alkiloxy-benzoate homologues (MBOPEnOBA) con-
taining 60% by weight of the compound with n = 8 and 40% by weight of n = 12).

Due to the anisotropy of the electric conductivity this periodical structure in the
z direction {z is parallel to the smectic layer normal #) yields a spatially periodic
electric field component in this direction inside the sample. As a result of this
component of the field, E,, it will be energetically favourable if the polarization
has a component parallel to z. For this reason a perturbation of the azimuth
angle @, and the displacement of the layers 1 occur. The boundary conditions for
u and @ at the boundaries of the smectic monodomains are; u =0 and ¢ =0. On
the basis of the former considerations we will examine the following
perturbations:

Su(y, z) = ug - cos gy - cos(zz/d) (L
Sy, z) =@y - singy - cos(mz/d) (2)

here ¢ is the wave number of the sinusoidal deformation, and 4 is the dimension
of the smectic monodomains. (As mentioned in Reference 11, in the samples
there were regions with diameters of about 200-300 pm which were perfectly
aligned with their smectic layers in one direction, but the difference between the
directions in the neighbouring regions did not exceed 5°).

FIGURE 1 Model of the structure of thick planar S sample just below the electric field
E,, ~10°V/m. The cell consists of a sequence of parallel siripes of domains (dashed line). In the
demains the spontanecus polarization Py is alternatingly parallel and antiparaliel to the electric ficld
E(w) at all the frequencies. Satisfying the boundary condition, near to the bounding plates straight
parallel stripes of so called dechiralization lnes'? exist in y direction (these indicated by continuous
lines}. The director d makes an angle 6 with the smectic layer normal n. If the azimouth angle @ =0
P, points up (indicated by continuous arrow), and if ¢ =z P, points down (indicated by dashed
ArTOW).
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H. THEORY

(A) Assumptions

For simplicity we use the following approximations:

1. E, = E is constant in the sample (As it can be seen in Figure 1 near to the
walls, the director must also depend on x to satisfy the correct boundary
conditions. However in our approximate treatment this is not taken into
account.)

2, As S8} is a locally biaxial system the dielectric tensor & has three different
eigenvalues ¢,, & and &, with the main axes: firstly the direction of spontaneous
polarization (n X €); secondly the direction perpendicular both to the spontaneous
polarization and the director (d X (m X ¢)); thirdly the director d. Here n and ¢
denote the smectic layer normal and the projection of the director on the smectic
layers respectively.

The director d (which can be distinct from the director as defined from theory
of elasticity)® makes an angle 6, with the smectic layer normal.

3. The electric conductivity tensor ¢ has three different eigenvalues
(01, 02, 03) as well. For symmetry reasons the first principal axis shouid be the
unit vector m X ¢. As the conductivity is presumably much less perpendicular to
the smectic layer than inside the layer we assume for the third principal axis that
it is the unit vector m. Thus the second principal axis is the unit vector
nX{nXc).

(B} Field equations

The equations for the fields are the following:
Sp/ét=—divy (continuity equation for the electric current J) 3)
here p is the electric charge density

p=divDy (the second Maxwell equation) (4)
J=(6)-E (Ohm’s law) (5

From the third assumption for the electric conductivity tensor ¢ with the notation
0, — 0, = 0, we have in the XYZ coordinate system:

oy~ ogsin® g (1/2)o,sin2¢ 0
o=| (1/2)o,sin2¢ 0o,+ g,sin*@ 0 (6)
0 0 a3

For the electric induction D we have



76 A, JAKLIY, I. JANOSSY and L. BATA

From the second assumption we get that in the XYZ system:

g cof p+e,sinf g (1/2)sin2¢(e; —,) —sin ge,
e=| (1/2)sin2¢ - (g, —£,) & sin® @+ e, co8® @  cos pg, (8)
—sin @ - g, cos @ &, £y

Here we used the following notations:

£y = £, O8> Oy + £45i0° G, (8a)
€, = (1/2) sin 284(e, — €5) (8b)
£, =£,5in* 8, + &5 cos® O, (8¢)

The free energy density f is the sum of the following terms:
fi is the free energy due to the variation of the layer distances

fi=(B[2)-[u) bz ~ (1/2)(du/ 8y)’ (9a)

here B is the elastic constant in case of compression
fz describes the curvature of the layers

fo= (K/2)(6%u/8y?)? (9b)

(K is the elastic constant in the case of layer bend)
/5 contains the terms arising from the director curvature

f=(K'[2)- (8°@/027) + (K"/2) - (8p/ By ) (9¢)

here K'=Kpsin®8-cos’@+ Krsin®*8 and K" = Kgsin® 0 + K, sin® 0 - cos® 6.
(Kp and K are the elastic constants for the director bend and twist respectively
and 6 is the tilt angle between the director and the layer normal.)

fs describes the interaction of the electric field and the material

fa= f EdD ' (9d)
The free energy density f is the sum of these terms
f=2r ©)

We obtain the average free energy F of the sample by averaging fin the y and z
directions, namely:

Pequmfdﬂuaf}@ (10)

where A = 2x/q is the wavelength of the undulation in the y direction.

(C) Calculation

I Calculation of E,. Applying an external electric field
E()=E- (11)
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in nonpertrubed state (8¢ = du = 0) from Equations (3)-(8) and Equation (11)
we obtain that
iweg
E,=—n— (B -EY(F-E)=E- 12
L= (R E)(Ry E) =B (12)
The perturbation of d¢ and Su creates an electric field in the y direction. This E,
modifies the field E,. However this is a second order effect, which can be
neglected in the calculation of the threshold.

2. Calculation of E,. Up to the first order in ¢ from Equations (1)—(8) after
some algebra one gets that

B =_¢[Eor*+iw(£1—s*)_P i

= —@(Ex—P, 1
d 0, + Iwe, 002+icos*] (Ex = Fyy) (13)

3. Calculation of the free energy F. From Equations (9) and (10} we have:

F = (1/8)[Bub(w/d)y + (1/64)ulq’] (14)
E, = (1/8)Kulg* (15)
= (1/8)K " gi(w/d)* + (1/8)K"pg” (16)

and from Equations (12), (13) and Equations (1)—{8) up to the lowest order in ¢
and du/dy one gets that

Fy= —(1/8){¢3(E% + Pib + EPyc) + ug@oq{EPpe + E*h)] (17
Here we used the following notations:

a= e’ —x(e1— &),
b=y + ye,

c=y(e1 £x) ~2xVEx— X
e=E+Ey(ey— &)
h=E[(e;— &) — x(&s — £4)]

4. Caleulation of E,. Minimizing with respect to 8¢ and Su we get an
expression for u3 as the function of £ and g. The threshold E,, is obtained from
the condition uj = 0. This condition leads to equation:
E%hg + EPjeg)*
B(n/d)*+ Kq* = (Eip . 18
(/) + R = 7 T K (w)dy — E%a — P3b — EPoc {18
a. First we calculate the threshold field Ey;, in the high frequency range, where
the spontaneous polarization cannot follow the electric field that is the permanent
dipole moment can be neglected compared to the induced one (P, < E¢,). In the
case of our material this is fulfilled at frequencies f > 7 Hz.
Introducing the notations:

S = [B(w/d)? + Kg*}(K"q* + K'(rt/d)]
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and
L=a(B(n/d)*+ Kq*)

we obtain from Equation (18) that

—L + (L7 + 41%¢*5)"
2h%g?

Using typical elastic constants® (B=10*J/m®, K=10"*J/m, K' =10 J/m,

and K"=10"2J/m) and considering the results obtained for the dielectric

constant of FK4'* (g,=4.5¢, and &, = —1g,, £, denotes the vacuum per-

meability) we find that 44°¢>S << L? thus we obtain as an approximation for the
threshold field F,, that;

2
Ey=

(19)

Eg~ (S/L)* (20)

Minimizing E,;, with respect to the wave number ¢ in this approximation we get
that g. =0 i.e. the wavelength of the undulation is infinite. (We regarded a
sample with infinite diameters and with perfect alignment in y direction.)
However we believe that taking into consideration the finite length of sample
thickness (40 ym and 60 um in the experiments'") or the average diameter of the
monodomains in y direction (200-300 um), the calculated value of the g would
be in the order of sample thickness and in the diameter of the monodomains. (In
the theoretical investigations of instabilities in nematics it is a usual condition
that the wavelength of the fluctuating mode cannot be much larger than the
sample thickness.'®)

We note however that the value of the minimum threshold field shows no
significant difference should we use the g.=0 or the much more realistic
g. = 10*1/m values. Substituting g, to the expression of E,, in Equation (20) in
both cases we get that

ERn = (K'a)"*(n/d) ~10° V/m (21)

The measured values of the threshold of the undulation was 5-10V for the
sample with thickness 60 um," hence the calculated ET™ agrees in a good
approximation with the experimental value.

b. In the low frequency range (f <7Hz) B>> Ee, (F,=10"°Q/m* at room
temperature’*), taking into consideration the parameters listed in part a., one
obtains from Equation (18) that

Ey = (K"q")/(Poe) (22)

In this approximation minimizing ¥, with respect to g, as in the high frequency
range onc obtains again zero for q.. However similarly to the paragraph a. with
the most realistic approximation, which takes into consideration the sample
thickness and the degree of alignment we would get that the wavelength 1/¢, is in
the order of the diameter of the smectic monodomains. Writing such ¢, to
Equation (22) we get that EqQ" ~10°-10° V/m. This value again is in a good
correspondence with the measured one. (It is in accordance with our observation
where we found that the dechiralization lines shift in the z direction except at the
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walls where domains with slightly different layer normals join together. At these
walls the lines are pinned down yielding a bended stripe structure.'’)

We note that N. A. Clark suggested such instabilitics even for this geometry™
and predicted for the threshold field, ER® that Eg™~ (K"/Fy)- (w/d)*. Our
expression with ¢ = m/d corresponds to this one, but we calculated the propor-
tionality coefficient as welil (see Equation 22).

1. EXPLANATION OF THE MINIMUM OBSERVED" IN THE
FREQUENCY DEPENDENCE OF THE UNWINDING CRITICAL
FIELD E.

At fields near to the threshold ER™ the bend distortion é¢(y, z) and layer
displacement u(y, z) are sinusoidally varying. Following Clark’s arguments'® we
assume that as E increases @ approaches xz/2 and the bend distortion saturates.
At sufficiently high fields, the distortion é¢(y, 0) can be represented by a series
of charged s-disclination walls of width w. The wall width w << 1/q, is determined
by the balance of D - E and the Frank elastic torques. The deformation of
azimuth angle d¢(y, z) in this limit can be approximated as

Sp(y, 2) = (7/2) exp(—(y — 2zn/q)*/w?) cos(sz/d) (23)

Here # is the number of walls counted from y = 0.

Consequently, the layer distortion has a zig-zag shape which is due to the body
force exerted by the F, field on the space charge p(y, z). This force is confined to
regions of width of Ay <w.

At the electric field E. the zig-zag structure may disappear due to the
ferroelectric or dielectric interactions'® or as a result of this body force.
Generally, in the case of pure samples at low frequencies the ferroelectric
coupling, while at high frequencies the dielectric coupling causes the disap-
pearences of the dechiralization lines possibly by the mechanism proposed by

Hudak."” However our latest measurement on impure samples (o> 107" 1/Qm) |

showed that at frequencies near to fac the unwinding takes place owing to a flow
in the z direction.’® This fact suggests that at these frequencies the unwinding is
caused by the above mentioned body force acting on the space charge which
appeared due to the conductivity anisotropy. At threshold value F; this force
tears the lines. This threshold is determined only by the elastic constants and the
degree of deformation, so we can suppose that it does not depend on the
frequency.
Thus the basic equation of the unwinding reads:

{p"ME"M) = E,( = independent of frequency) (24)

here { ) denotes time averaging.

If the force {pkE, ) reaches F, at a smaller E, than required for the ferroelectric
or dielectric unwinding mechanism the unwinding takes place by means of the
observed flow. With the help of Equations (5) and (3) we can calculate the
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charge density p(v, z). This reads:
ply, 2) = 1/ w) cos(mz/d)(0(OE,[8y) + 0.[E(Sq/20y) cos 2¢
+ E, (8@/8y)sin2¢ + (8E,/8y) sin” ¢}) (25)

The unwinding starts at places where the p(y, z) function has a maximum, p (it is
at z =0 and near to y = w/2). At these places one obtains for {pE,) that:

T g+ w 040, + 0*(8,— £.)E,
E, =—E2(—"——~[ o2+ 0
(PE:) 2w o+ wietl " o3 + w?e (024 0.)
2&,0,0) OBy — E,)— OL€
S o 32 i:(o_z+0_*) 2( 13 *)2 3 * *]) (26)
o5+ wle, 0, + w?el

Substituting typical constants to Equation (26) we find that the body force {pE,)
has a maximum at /27 ~ o5/2me,, which is practically equal to fac.

This means that the unwinding critical field E(w) (which is determined from
Equation {24)) shows a minimum at fic, provided this value is smalier than the
unwinding critical field determined from the ferroelectric or dielectric interaction
(see Figure 2). The unwinding near to fpc is caused by flow as it was
schematically illustrated in Figure 4 of Reference 11. Because in the dielectric
regime E, is much greater than in the ferroelectric one, the unwinding by flow
will be effective probably in the dielectric regime as it was observed actually in
our experiment.'’ As fi. is proportional to the average conductivity o, o must be
high enough to ensure that frc falls into the dielectric regime. E.g. in Reference
11 for the threshold conductivity o < 1078 1/Qm was found.

\ ! diilectric regime
i

-

logf

FIGURE 2 The caleulated frequency dependence of the unwinding critical field E,. At low
frequencies the spontaneous polarization can follow the electric field, thus the unwinding is cavsed
maioly by the ferroelectric coupling. At high frequencies (f>>f,) the spontancous polarization
cannot follow the electric field, thus the unwinding is due to only the dielectric coupling. In case of
large conductivity, in the vicinity of fo. = 0/(27¢) the unwinding is forced by a flow s the direction of
the smectic layer normal n. This calculated frequency dependence is in accordance with the
experimental data presented in Reference 11.
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Iv. SUMMARY

By the simplified theory presented in the paper we could explain the existence of
the undulation instability found by us in thick samples of planar oriented S*
liquid crystals. On the basis of this simple theory we were able to derive the order
of magnitude of the threshold field and to explain the minimum in the frequency
dependence of the unwinding critical ficld E_ as well.
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