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- Résumé. — On discute expérimentalement les modes d’instabilités hydrodynamiques obtenues
forsqu’un film nématique est placé dans un écoulement de Poiseuille plan tel que le directeur soit
perpendiculaire 4 la vitesse et au gradient de vitesse.

On peut obtenir des instabilités homogénes (distorsion uniforme dans le plan des plaques limites)
avec ou sans écoulement transverse induit. Les valeurs des seuils sont comparées avec Panalyse
théorique donnée dans Particle suivant,

Leffet d’écoulements alternatifs et celui de champs extérieurs appliqués sur la nature des modes
etz valeur des seuils sont étudiés, On s’intéresse en particulier 4 la transition avec le mode en rouleaux.
Comme aucune théorie n’existe actuellement sur ces problémes, I'analyse est faite en référence avec
le probléme de cisaillement simple bien que des différences importantes existent.

Abstract. -— This work discusses experimentally the hydrodynamic instabilities of an oriented
nematic film contained in a plane Poiscuille flow celf such that the director is initially perpendicular
‘to the velocity and velocity gradient.

Homogeneous instabilities having a uaiform distortion in the plane of the boundary plates are
obtained with or without distortion of the Row profile. The thresholds ase analysed and compared
with the theoretical analysis given in the following paper.

The eflect of alternating flow and of the application of external fields on the nature of the mode
and on the threshold is analyzed with attention to the transition from the homogeneous to roll
instabilities. No detailed theory exists for these problems and the analysis is carried with reference to
the simple shear flow case although marked differences are observed.

1. Intreduction. — In 2 previous article [1] (here-
after called I) we have given an initial qualitative
description of some instabilities obtained when a
nematic liquid crystal is inserted in a plane Poiseuille
flow cell with the initial director alignment at right
angles to the plane of the velocity (Geometry of
Fig.-1a). We wish to complement this study by semi-
quantitative results, both experimental and theoretical,
which lead to a better understanding of the homo-
geneous instability and to 'a closer contact with the
corresponding shear flow problem [2]. We will also /
present some additional data on the convective modes
although the theory of these modes has yet to be
developed. '

A semiquantitative analysis of both shear and
Poiseuille problems has been given, based on consi-
deration of the balance beiween elastic torques
magnetic, electric and hydrodynamic (including the
effect of hydrodynamic focusing effects in the case of a
heterogeneous distortion). This one dimensional model
neglects the variation of properties across the cell
thickness and in particular it fails to predict the exact

FiG. 1. — a) Director configuration in the Poiseuille flow cell in
small enough flows, 5} Is an even function of z in twist, odd in splay.
¢} Is an odd function'of z in twist, even in splay.

threshold as well as the detailed structure in the plane
of the cell (wave length of convective rolls in the
inhomogeneous case, existence of domains in the

. . . homogeneous one). Recently, a detailed two dimen-
{*) Ce travail a béoéficié de I'aide de UA.T.P. fastabilités dans les

fluides et plasntas du C.N.R.S.
(**) On leave from Central Research Imstitute for Physics, .
Budapest, Hungary.

sional analysis of the shear flow instability problem
has been given [3} which extends the previous treatment
and is in excellent agreement with experiments in this
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geometry. A similar study has been undertaken in the
Poiseuille case and will be described in the following
article by Manneviile and Dubois-Violette (Il in the
following).
The problem is more complex here because the
shear flow rate
§ = % s'z

az

is a function of the distance to the boundary plates
perpendicular to z. A simple approach is to consider
that the distortion develops first near the boundary
plates where the shear is largest. However, interference
between these solutions due to elastic as well as flow
coupling needs to be considered and the z dependence
effect is essential to the description.

In chapter 2, we discuss the original features in the
experimental description of the flow cell and of the
pressure measurement and coatrol.
the theoretical description for the homogeneous
instability.

Considerations of symmetry of the solutions will
shed some light on the more complex modes not yet
studied theoretically. In the same part 3, we discuss
the experimental occurrence of several homogeneous
instability modes. Part 4 discusses the effect of alter-
nating flows as well as of electric and magnetic field.
Despite the richness of the instability modes obtained,
much remains to be done before a quantitative
understanding of the convective modes can be
obtained,

2. Apparatus. — 2.1 Frow ceLL. — The flow cell
is made up of two parallel plates of organic glass
(altuglass) P, and P, separated by uniform metallic
wires F (diameter d = 0.2 mm), stretched along the
length-of the cell (Fig.'2) ; the width of the cell / has
been varied between 1 and 20 mm. The wires also limit
the transverse flows. In the upper plate two cavities C
have been milled near the ends. They act as reservoirs
for the L.C. supply in the cell and also serve to prevent

the formation of a meniscus inside the flow cell. The ‘

volumes are partially filled with L.C. (M.B.B.A,, a
room temperature nematic, was used throughout the
experiment). The flow is induced by applying a pressure

difference Ap between the small tubes T connected to ‘

the reservoirs. The size of the reservoirs is large enough
to allow us fo be able to neglect the pressure differential
due to the difference of levels in comparison with Ap.
The planar alignment of the nematic (n perpendicular
to the flow axis y} is obtained by polishing the inner
plates or by coating them with a semitransparent
conducting Au film deposited under oblique incidence
if conducting electrodes are needed. The cell 1s atta-
ched rigidly by two sets of screws and sealed with

epoxy.

2.2 PRESSURE MEASUREMENT AND REGULATION. —
A typical threshold for homogeneous instabilities for
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1. 2. — Schematic of the Poiseuille cell. The directions correspond
to those in the first figure.

the geometry used (length of the cell L = 108 mm ;
d==0.2 mm) corresponds to Ap~ 1.5 mm H,0. The
threshold can be 10 to 50 times larger if a stabilizing
magnetic field is used or in a large enough frequency
alternating flow (the sign of the pressure difference is
inverted with a frequency f from 107° to 10 Hz).
In order to produce and stabilize the small pressures
involved with an accuracy of the order of 1 %, we have
developed the following device with four pressure

stages {Fig. 3). :
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FiG. 3. — Pressure regulation and reading cquipment.

The first stage 1 uses a filter and a pressure reducing
valve (Fi, Va) to decrease the air pressure from 2
pressure tank to an overpressure P, ~ 1 atm with an
accuracy of 10 %, ‘

The second stage 11 is a morc accurate regulating,

valve (Re, . Va) (Gec Eilliott Automation 40-2) which
lowers the pressure to a value P, which can be regulated
from 1 to 100 cm H,0.

The third stage 11t is the crucial one : A thin tube C,

(length ~ 50 cm, diameter 5 mm) connects the second

- stage to a needle valve V opened to the outside. The

opening of the needle valve is automatically regulated
as a function of the pressure P, at the entrance of the
valve (the pressure head P,-P; is obtained from the
value of the length of C; and the opening of V).

The pressure Py is read with a differential mano-
meter with an accuracy of 0.} mm. The pressure is
regulated using an independent oil manometer. The




oil level is kept accurately constant using a system
with a photoceli and a light source [acing each other
and placed against one arm of the manometer {4].

As the oil level rses above that of the light beam
and photocell, the cylindrical lens formed focuses
light on the photocell. This causes an increase of the
photoelectric current — the error signal —used to
control the opening of the valve via a feedback
system (F.B.). _

In practice a direct action of the amplified signal to
conirol the motor opening the valve is not very
convenient : there is always a small dead zone in the
rotation of the valve; the valve will only react for a
minimum value of the photodiode signal. We have
developed an electronic circuit where the motor
controling the valve is subjected to a permanent
alternating motion by applying a voltage U during
a time * and — U during a time ¢~. The period
t=1" +¢ and U can be adjusted to optimize the
response time. The electronic circuit, between the
photodiode and a power amplifier which delivers the
voltage U, perform the following function : it chops
the unequal time intervals ¢~ and ¥ which are such
that (7 — ¢*) is proportional to the error voltage
read on the photodiode {5]. The system developed 1s
free from all the disadvantages of the direct command
of the motor of the valve by the error signal and gives
an excellent long term stability.

The fourth stage IV 1 In order to increase the sensi-
tivity of the reading of P, we have developed a simple
pressure divider. The pressure Py is applied to a large
reservoir through a long thin tubing C,. A leak (F,) is
produced by connecting the reservoir with the outside
through a thin open tube C; of the same diameter.
The overpressure P, in the buffer reservoir is a small

fraction of the overpressure P;. An estimate of the .
ratio P;/P, is obtained from.the ratio of the lengths.

of the tube C, over C;. However,-this is not very
accurate and a direct calibration (showing deviations
from linearity) has been used. The pressure P, (typi-
cally between 0 and 10 cm H,O) is applied to the flow
cell and can be regulated and read through the P,
stape with an accuracy of 5.
’ XA . WoTO i

3. Homogeneous instability (corresponds to P,
in ref. [1]}. -— 3.1 INTRODUCTION. — We consider
the case of a dc flow in the absence of external fields.
The flow can be applied for a time sufficiently long
along one direction (frequency f~ 1072 to 1072 Hz)

so that the maximum displacement of the liguid

D = v, /f is larger than the characteristic dimensions
(width of the cell /, thickness d( < /). When the pres-
sure gradient G, measured by Ap = GL and propor-
tional to the maximum velocity v, is increased, the
nematic becomes distorted above a critical threshold
Ap,.. Just above threshold, the distortion characterized
by the polar angles 8, ¢ defined below, is homogeneous
across the width of the cell.

n:n, =1; = @; n, =0
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It can be controlled by the rotation @ (associated
with ) and lateral displacement (8) of the conoscopic
image formed in convergent monochromatic light
incident on the cell (@ and @ are averages across thick-
ness). Another important factor is the finite angle ¥
of the flow, measured in the central portion of the
cell, with the y axis when distortion is present. The
angle is measured from microscopic observation of
the motton of dust particles introduced in the L.C.
It is found in practice that, above the threshold, the
only modification of the conoscopic image from the
classical double set of hyperbela obtained for a
planar sample is an overall rotation. Typical experi-
mental results are given on figures 4 and 5.
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FiG. 4. — Variation of the twist distortion {measured by ¢) above
threshold Ap_, for the homogeneous instability mode A (the angle
of the flow [ines with y, ¥, is practically zero everywhere).
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FIG. 5. — Same variations as in figure 4 for homogencous mode B
(¥ is different from zero above threshold Ap ).

3.2 MopeL. — The experiments and model deve-
loped here apply to materials such that the two
hydrodynamic torques o, and o4 are negative. This is
the case when the coupling of the torque components
due to fluctuating distortions n,, n, { (n)), (n,) < 1} is
destabilizing. The effect is acting against the stabilizing
influence of the twist (K,) and splay (K) elasticity.
In addition we mclude the effect of a transverse
flow v,{z) due to the component

do, [0z
of the Leslie-Ericksen stress tensor.
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The unperturbed velocity profile is given by (origin
of the coordinates midway between the plates) :

2) = 5o ((;) - 22) ()

and the shear rate by

Jo? G
s(z)=7;—y=—~—z=s'z (2)

we deduce the equations governing a fiuctuation from
those of the simple shear flow problem [3].

1) Torque equations : they are unchanged

&*n, du,
— 1.552"-+a35_z_+“33ny=0 (3.1)
n
;,_a—zl’uoczsnz:O. (3.2)
z

2} Force equation : we must take into account the
spatial variation of s(z) in dv,,/0z; this gives

%

']B_“_zx' +(m

a
az - Wa)a(sny) = O * (3‘3)

The consideration of instability mechanisms described

in ref. {2, 3] allows one to distinguish two types of

distortion [1]

D (=2 =n@ and n(-z)= - ng
which involves an average twist over the thickness,
S) n{—2= - n},-(z) and n(— z) = n(z)

which involves an average splay.

This property is already apparent in eq. (3.2). In
addition, from eq. (3.1) and (3.3), we deduce that o,
and n, have the same parity. Moreover, we may
consider the most general instability mode where the
velocity fluctuations v, and v, and the pressure fluctua-
tion no longer vanish, Using the continuity equation

do, 30, +dv, =0 ,

we deduce that v, has the same parity as v_ or n, and v,
that of n,. This result is of course compatible with the
whole set of equations that may be adapted from the
simple shear flow problem (ref (3}, appendix Al

A complete solution of the system (3.1) to (3.3)
taking into account boundary conditions

R, =n,=uv, =0 at z:ig 3.4
is developed in 2.

Let us give a simplified description of the solution.
Equation (3.3) describes a transverse flow effect,

Ne 10

coupling the distortion of n in the xy plane to g
deflection of the flow line along the x axis. By reinsert.
ing the variation of v.(2) in equation (3. 13, one obtaing
a term linear in shear which renormalizes the oy term.
If we neglect this renormalization which is tanfamount
to neglecting the transverse flow (such a solution can
in fact be produced experimentally) [7, 8] we obtain
the simple set

2
&°n,

ey
az?

- K +oaysn, =0 (3.5

3n,
az2

K, —xysn, = 0. (3.6)

Using the reduced variables A, =n,
. Ko, 12

A, = n

: Ky a5 :

we get the symmetrical equations

’n
D—a—T‘*SrZﬂy:O (37)
4

8%

D——s'z/, =0

> (3.8)

with a diffusivity of orientation

K, K,
‘Dcm'-',u's = { ! 2}
0y oy

by addition and substraction, we get the decoupled

- equations
2 .
g—gus'zu=o (3.9)
Z
2
Dg—g—.-!-s‘zuzﬂ (3.10)
Z

where u = A, +f, v = A, -,

The eigenvalue problems with the boundary condi-
tions (3.4) are somewhat similar to Schridinger
equations with a variable potential well + 5" z/D
(Fig. 6) and an eigenvalue = 0. We have obtained a
numerical solution of the two cquivalent equa-
tions (3.9), (3.10). The lowest eigenvalue is given by
an FEricksen number characterizing the critical Aow

rate
: G o ey (M2 (d}>
F, = — 4 —— 5 ¢ =128. (3.11
. a {Kl K, } 2 ( )

o

The corresponding eigenfunctions localized near
the bottom of the potential well are given in the
figure 6. From the functions u, v one can construct two
solutions for the distortion. The first one, given on
the bottom of the figure 6, is antisymmetric in the splay

fe
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F1G. 6. — The solutions «, & of the eigenvalue equations (3.9)-(3.10)

for the two possible forms T £z (E = 5'/D) and one of the possible

solutions for n, and n, {the one even in a2}, which is obtained
experimentally).

variable {n,(— z) = — n(z)) and symmetric in twist,
Another equally probable solution is symmetric in
splay and antisymmetric in twist.

In experiments dealing with very wide cells, the
first one is found to be more stable, The difference
comes from the neglect of the flow coupling in this
analysis : A transverse flow v.(z) symmetric in z is
coupled with the twist solution symmetric in z.

The exact solution given in 2 includes the effect of
transverse flow, Manneville and Dubois-Viglette use
int the following variables

N,

z‘_nz»

Ny = ﬁ,-('h/’?b)uz

and an Ericksen number
-

Br = &r(n,fn)'1* .

The dependence of the critical threshold Er, with
(n./my) is given for both the average twist (T) and
average splay (S) mode in figure 4 (II).

The analysis of U reduces exactly to our in the
limit #,/n, = 1. In this case, the thresholds for the g
and T solutions are the same. Note that i this limit

the transverse flow disappears [6]. (The viscosity in

the xy plane becomes also isotropic.)
(_3.\1}@

3.3 EXPERIMENTS. — The solution (3.1) never
applies exactly to the experimental condition as it
neglects the effect of lateral boundary conditions which
limit the transverse Aow.

We discuss first experiments done using relatively
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_plotted the angle ¥ of the flow with ¥,
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wide cells ({ ~ 10 mm, ¢ = 200 #). Interesting effects
assocrated with the finite width will be discussed next,

Two instability modes are obtajned which are
characterized by the absence (A), or the presence (B)
of transverse flows [13].

Regime A. —In figure 4, we have plotted the
rotation angle @ as a function of Ap. In this mode,
¢ does not vary across the length of the cell except
possibly near the ends where the fiow patiern is il
defined. Starting (rom large Ap, we sec that @ is close
to m/2. The director is everywhere nearly in the plane
of the flow. The effect of the splay is limited to an
angle 6, with the flow axis, such that tg? O = a/a,.
This is however an antisymmetric contribution across 4
and the conoscopic image remains centered around
the z axis. As the flow rate is reduced, 8 decreases and
vanishes for a critical pressure variation Ap,,. Note
the parabolic and continuous variation of ¢ near
threshold. This is characteristic of the second order
mean field transiticn. On the same figure, we have,
determined
from the motion of dust particles. No appreciable
transverse flow is observed.

Regime B. — Increasing the pressure from zero,
another possible solution is obtained which js shown
on figure 5. Above a critical value Ap.g, an average
twist distortion 8 develops as in the previous case.

An original feature of this solution is the existence
of a transverse flow, characterized by a finite angle ¥,
above Ap . The maximum value of ¥ around ¢ = 450
is easily understood i’ one refers fo our previous
study [6] of transverse flows where the uniform orien-
tation of the nematic in a Poiseuille How cell was
obtained by applying a large magnetic field at an
angle ¢ with the flow axis. It was found, and explained,
that the flow is deflected towards the direction of the
director, due to the effect of the variable shear across
thickness, and that a maximum deflection angle
¥ ~ 10° was obtained around an oblique orientation
of 45 as in this study.

A quantitative comparison between the two regimes
lead to the following results.

— Regime B appears to be more stable than
regime A for small distortions (typically ¢ < 459)
and has 2 smaller threshold.

This is why regime B is obtained by applying
progressively larger Ap. However, in the case of large
distortions, regime A is the most stable one and leads
to a larger distortion ¢ for the same Ap.

In figure 7, we have indicated the variation of @
obtained for decreasing values of Ap. Between two
points of measurements, a very long time was kept
(typically | hour). The discontinuous decrease of ¢ is
assoclated with the onset of mode B. However, as the
time constant is so long, it is possible to describe the
complete A and B curves as the time needed to obtain
a new distortion value within the same regime is much
shorter.
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F1G. 7. — In this experiment the pressure diflerence Ap was reduced

extremely slowly stacting from a largely distorted state without.

transvesse flow (solution A). For an intermediale pressurc value

another branch is reached which corresponds to the domain of

stability of solution B (with transverse flow}. Solution B is the most
stable at threshold.

The existence of two solutions is consistent with the
theoretical description.

Solution B corresponds to the solution (3.17) of I1
including the effect of transverse flow. A comparison
between the experimental threshold and the theoretical
one gives the following results for the experiment of
figure 10 : G, = 24.5 cgs, corrcsponding to a
theoretical evaluation, using equations (3.11} and
(3.1) and the viscosity data given by Gahwiller [14],
G, = 16,5 cgs. The order of magnitude agreement
is an indication of the overall validity of the model
on the experiments.

The lack of quantitative agreement cannot be taken
too seriously at the present stage as (3.11) involves 2
combination of viscous and elastic coefficients which
are not known accurately from one set of experimental
data to the next (for example the uncertainty on o;
is of the order of 50 %). '

Solution A can be understood if one considers the

possibility of a pressure gradient term Jdp/dx across

the width of the cell which compensates the d.c. flow
across the cell. This is possible for the solution
involving an average twist {n,(z) even in z) obtained
experimentally, where the velocity v (2} variation is
also even in z (for a type S solution where v () is odd
in z there is a possibility of transverse closed flow loops
as obtained in the corresponding shear flow problem).

The solution of this problem is obtained by can-
celling the contribution of the transverse flow (sce
form (3.11)). It clearly leads to a higher threshold
than B. However a correct sofution of this problem
should clearly imply a discussion of the x depen-
dence and on the side boundary effects, and the
quantitative comparison cannot be pursed in the
present stage.

Domains. — In our discussion of mode B we have
not yet mentioned the very spectacular formation of
regular domains along the length of the cell The
twist ¢ 1s uniform within one domain but changes sign

rapidly as one crosses the narrow twist wall separating

two domains. A photograph showing the optical

contrast due to the different diffusion of light between

domains was given in [, Fig. 4. Very regular structures
can be produced if the instability is produced in the
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presence of a transverse magnetic field which limits
the effect of defects due to surface misalignment. The
very long time needed before the regular structure ig
obtained (whose effect was already obvious in the
discussion of previous paragraph), arises from the fact
that the creation of domains involves a diffusion of
orientation over very large distances.

The wavelength of the domains, 4, is an increasing
function of the width / and varies roughly linearly
with it ;

For cells of width { = 5; 10; 20 mm, we have found
A= 3.1:4.3:8.6 mm. (In fact, the characteristic time
is so long, that the quantitative results must be taken
with some care as they do not necessarily represent
final equilibrium states.)

A possible mechanism for the description of the
walls can be obtained from consideration of figure &,
giving schematically the velocity distribution in a
frame moving with the velocity v,,.

FIG. 8. — In a frame of reference XY Z moving at the velocity of
the flow in the central portion of the cell the additional flow { })
due to transverse [orces is seen and cause a slightly backward motion
of the walls (# to x) separating domains of opposite average twist.

The formation of domains aliows the development
of a transverse velocity vy in a limited geometry. The
triangular shapes which can be seen in the figure 8
insure the continuity of the velocity from one domain
to the next. The sign-of the z component of the hydro-
dynamic torques due to the gradient dv;/dy is the same
n both domains 1 and 2. Consequently the domain of
existence of | increases and a backward relative motion
of the domain walls is obtained. Indeed it is observed
experimentally that the motion of the walls 15 slower
that the flow velocity in the central flow field. We have
also fotlowed the motion of small particles. When a
particle, in relative motion with respect io a wall,
crosses it, its transverse motion changes sign quite
discontinuously.

Narrow cells. — In cells typically narrower than
{ = 3 mm, the formation of domains and the solution B
are strongly inhibited. In these cells it is possible to
produce in a quite equivalent fashion the average twist
(type 1} and average splay (typc 2} solutions. By
applying temporarily an oblique magnetic field (/f in
the plane perpendicular to the flow) in the presence of
the flow, one induces a splay of o in the cell If the
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pressure gradient is larger than the critical value, the
splay solution (1, odd and », even functions of z)
of the Poiseuille problem remains after the field is
suppressed. It appears that the threshold of this
solution and that of the twist one are very close for a
given cell. This is consistent with the simplified solu-
tions obtained when one neglects the transverse flow.
The splay solution should however involve some flow
(v, has the same odd parity as n, and a transverse
pressure cannot cancel v, completely),

As a conclusion of this discussion we want to point
out the limit of applicability of the model to the
experimental situation and the need for a (apparently
complex) solution where long range two dimensional
effects in the plane of the film are considered.

4. Alternating flow and field effects. — An original
feature in the study of instabilities in nematics is the
possibility of control by application of electric and
magnetic fields. We have used both a stabilizing
magnetic field H, acting on n, and n,, and a stabilizing
electric field E, acting on n,.

The effect of the field can be introduced in the
definition of the relaxation time constants for n,
and n,.

The effect of H and / on the threshold have been
considered at the same time on the graphic construc-
tion of figure 9, :

Adp
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FIG. 5. — 3 D diagram indicating the limit of stability of the homo-
geneous (H.L) and roll (R.1) instabilities ; the constant Ap curves
(p) and magnetic feld curves (h) were obtained experimentally.
The d.c. threshold curve (f = 0) agrees quantitatively with the
analysis of (I} {see 3-3 of 1). The unstable region is above the surface.

4.1 FREQUENCY EFFECT (H = E = 0). — Let us
first consider the situation in the absence of fields
(Fig. 10). The threshold of the homogeneous insta-
bility (H.L) increases first with frequency. This is
simple to understand as the effect of a finite time for
the growth of an instability should increass the
effective threshold.

However for frequencies typically larger than
0.15 Hz another mode (which will be referred as R.L)
is obtained at threshold, where convective rolls along
the flow axis are formed. A qualitative description of
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Fi1G. 10. — Gives in more detail a constant field curve (for & = 0)

for a 200 p thick, 10.8 em long flow cell. In the transition regime (TR)

between the H.I and R.I. ones, both modes can be found at the same
time in different regions of the cell.

the rolls has been given in [ and will only be recalled
briefly. The mode obtained at threshold is even in R,
and odd in n, just as the homogeneous one (see Fig. 8
of I).

The rolls involve a periodic distortion n(x) of n
across the rolls. The effect of the distortion in inducing
hydrodynamic focalization terms and new destabiliz-
ing mechanisms has been analysed in detail in the
corresponding shear flow problems [2, 3].

The wavelength of the rolls is of the order of 4 for
low Ap and decreases as Ap increases (typically as
Ap~Y?), This feature indicates that the distortion is
localized in each half plane near the limiting plates
and suggests the formation of two sets of convective
rolls near the plates. This result is consistent with the
fact that the velocity v(x) should have the same
parity as n,(x) (see table of IT) and be zero in the central
plane. The convective rolis formed near one plate do
not extend to the opposite one and do not contribute
to the coupling between the two solutions. However
an elastic coupling is still present between the dis-
tortions present in the two superficial sheaths where
the shear is largest.

The convective [10] fiow has been detected directly
from the observation of the motion of dust particles
undergoing spiral motions in the flow. _

As the sign of the flow is inverted, the distortion n,
changes sign but not n,. This result was obtained by
optical observation of the focal lines which are formed
due to the modulation n(x). The lines do not change
position over each half period. In the corresponding
shear flow problem [2] such a regime was called Y
mode. It is not clear whether such a simple description
of the dynamic interplay of n, and n, is sufficient here.

One can characterize the threshold from the
occurrence of the diffraction pattern of a wide parallel
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monochromatic beam incident on the sample. A
photocell linear in response is coupled with a X — t
recorder and the onset of the transition is detected
accurately.

4.2 MAGNETIC FIELD. — Coming back to figure 9,
we analyse the additional effect of an applied field.
A curve similar to that of figure 10 but obtained in a
field H, = 2750 G is given (h). It also shows the
existence of a H.I, domain for small frequencies and
a R.I one for larger ones. Note however that the
thresholds Ap, are larper than for H = 0 due to the
stabilizing influence: of H. We may also note that the
domain of existence of the H.L does not appear to
decrease as # increases unlike the shear flow case.
In fact the limit frequency F = 0.15 Hz (for d = 200 1)
is the same on both H = 0 and 2 750 G curves. The
variation of threshold with fields at S = 0is discussed
n IL It is shown that the experimental variation
of Ap (H} expressed in terms of the Ericksen number
agrees with theoretical predictions (see figure 9 of II).

The critical surface can be also mapped by studying
the variation of the critical frequency versus H keeping
Ap constant (curves p). The curves also display the
change of regime between RI and HI. It may look
surprising that the homogeneous instability develops
in this case for larpe values of H. One could have
expected that the stabilizing effect of H, which is
independent of the spatial variation of n, overcomes
that of the elasticity and tends to favor the formation
of rolls if the destabilizing mechanisms are more
effective in this case. The detailed analysis of the forces
in this case remains to be done. We also note that, as &
increases at constant Ap, the wavelength of the rolls
tends to increase slightly (by 10 % from & = 0 to the
transition regime). This is due to the effect of the
corresponding decrease of f; 1 is never very large as
compared with the magnetic coherence length and the
elastic effect can never been neglected unlike the shear
flow case.

4.3 ELECTRIC FIELD. — The offect of an electric
field applied between two transparent conducting
electrodes deposited on the boundary plates has been
used extensively to control the type of instability mode
present at threshold.

The figure 11 presents the limit of stability of
convective solutions in coordinates ¥, 77! Each
curve corrcsponds to a given pressure difference and
the magnetic field is kept constant through the
experiment. The characteristic S shape solution has
already been obtained in other instability problems
in nematics (2}, [11] and defines two types of convective
solutions. '

For ¥V < V_, where Ve refers to the cusp of the
curve, the 'instabiiity observed at [requencies below
the critical corresponds to that discussed abave
for ¥ =0,

Above ¥, the instability mode appears to be
characterized by the following features :

/fo (Volts)
BOL
L d=200m
K=1500 G
s0l-
40 Ap=60 H,0mm
20l

Fri. 1. — Instability thresholds for roll instabilities oblained in AC

flow. Constant Ap curves are given. A destabilizing electric feld

along z2(E£ = V/d) has been applied. Note the hysteretic effect shown

on curve Ap = 100 mm. The broken line curve was obtained in
decreasing voltages.

— Zero average twist and non zero average splay
across thickness.

— Periodic modutation of . and 1, along x (across
the rolls).

— Wavelength of the rolls relatively independent
of voltage (the change of wavelength between the two
convective regimes can be quite large as the wavelength
in the previous case could be much smialler than o for
large frequencies and Ap).

— The velocity v,(x) is an even function of z (same
parity as n,(z)). This point is consistent with the pre-
vious one as it indicates the possibility of simple
convective loops across the cell, whose size is contrblled
by the cell thickness.

— The time dependent properties of this mode are
consistent with a Z type solution, as introduced in
shear flow problem (2], where only n, changes sign
over each period. The conditions of existence of this
solution as well as the dynamic behaviour are connect-
ed with the fact that, as £ increases, 7/ T, decreases,
which makes the #, relaxation easier.

The characteristics of this mode (refered as II) are
very similar to those of the mode P,y discussed in |
and which can be produced by application of a
value Ap sufficiently larger than the threshold value.

The cusp shape can be revealed in a single experi-
ment at a constant frequency [ = 0.5 H, (keeping
Ap = 80 mm H,0O constant). .

Figure "12 gives schematicaily the recording of the
intensity of the lowest order diffracted. peak of a
parallel laser beam. For £ = 0, Ap is larger than the
critical value and the light intensity is finite.

As L'is increased towards a first critical value £,,,
the intensity decreases regularly to zero (indicative of a
second order transition on the branch [). The inter-
mediate stable domain corresponds to the inside of
the cusp. At a critical value Egn, a diffraction pattern
is obtained again up to a value L. This is the domain

s
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Fi6. 12. — The photacell detection of the diffraction pattern of a

monechromatic beam by the convective structure, The pressure head

was kepl constant and the electric field E was increased continuously,

A time modulation of the intensity has been obtained systematically
and is not understood.

of existence of solution II. We note that the transitions
at the two fields are very sharp and, in fact, a hysteretic
behaviour indicated by the existence of two threshold
curves, depending on whether the field is increased or
decreased (see the full and broken lines in figure 11)
is obtained. The effect may be connected with the fact
that, for large electric fields, the distortion of the
electric field pattern within the L.C. s coupled with
that of n.

5. Conclusion. — In this ‘study, we have extended
our qualitative description of the Poiseuiile flow
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instabilities in nematics. If one compares with the
isotropic case [12], the remarkable features here are ;
the existence of instabilitics for very slow  flows
{Reynolds number ~ L072); existence of linear insta-
bility modes just above threshold ; a rich variety of
convective and nom convective structures, Some
problems have been solved but those involving a
constderation of the structure within the plane of the
celt remain to be treated.

From the point of view of liquid crystallographers
this problem may not appear as of primary urgency.
Many problems met in such a study can be carried out
10 the simpler shear flow case; the viscoelastic beha-
viour can also be studied on the basis of simple modcl
experiments. Nevertheless, some challenging problems
original to this study are left open. These include the
important role of the transverse flows which condi-
tions the domain structure in the homogeneous sofu-
tion and the interference between the two instabilities
nucleated near the surface layers and interacting via
elasticity and hydrodynamic coupling. Finally, the
simplicity of the preparation of this experiment and
the spectacular vizualisation of (he diffraction pattern
by the convection rolls makes it a remarkable pedago-
gical tool to demonstrate istabilities. All these
comments concern linear problems, In the wide open
field of non linear instabilities and approach to chaos,
the Poiseuille Aow problem may also be a good
candidate (in particular using the diffraction pattern
to analyze the growth of distortion).
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