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ABSTRACT. — A planar nematic (MBBA) sheared between parallel plates (perpendicular
to 2) with a velocity , (z) perpendicular to the director n along x can undergo homogeneous
orroll instabilities. This work discusses extensively both regimes in the case of continuous
as well as alternating shear. Theoretical emphasis is put on simplified description
(thresholds and wavelengths of rolls) dealing in particular with limiting behavior
(large magnetic fields or shear frequencies) and extending a detailed theoretical analysis
by E. Dubois-Violette and P. Manneville. The experiments are done in direct comparison
With this description and develop the previous work of E. Guyon and P. Pieranski.
They show that the high frequency behavior is characterized by a minimum displacement
rather than shear. They also analyze the role of a high frequency (stabilizing) as well
as low frequency (destabilizing) electric field E,. The diffraction pattern produced
by shining a parallel laser beam on the roll is used to characterize the behavior above
threshold.

REisuMi. — Dans un nématique initialement orienté dans une direction (Ox), deux
types d’instabilités, homogénes ou en rouleaux, apparaissent quand on applique un
cisaillement [vitesse v, (2)] entre deux plaques paralléles (3 xOy). .

Nous discutons ces deux régimes dans le cas d'un cisaillement continu et celui d’un

cisaillement alternatif, i

Une description théorique simplifiée est développée, notamment on étudu:. le comporte—
ment en champ magnétique élevé et A fréquence élevée. Cette d“m-pt'wn simplifiée
repose sur 1’analyse théorique faite par E. Dubois-Violette et P. Manneville. Les expé-

riences précisent une description déja donnée par P. Pieranski et E. Guyon.
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734 E. DUBOIS-VIOLETTE et coll.

Nous montrons que le comportement & haute fréquence est caractérisé par un déplace-
ment minimum des plaques. L’influence d’un champ électrique E, est analysée : role
stabilisant & haute fréquence et déstabilisant & basse fréquence. Le comportement
au-dessus du seuil est étudié i 'aide de la figure de diffraction, en lumiére paraliéle,
d’un faisceau laser.

1. Introduction

Over the last years we have investigated systematically some hydrodynamic
instabilities in well aligned nematic liquid crystals. A first study
([1], I in the foliowing) dealt with the effect of a simple plane shear,
s = dv,/0z = constant, applied on a nematic aligned along x (see Fig. 1).

\ -V/2 Q—’Vy

A

/

Y rd

% w/ nZz

Fig. 1. — Schematic of the cell indicating the director alignment («~---—) between two
parallel plates. An alternating voltage V (F) and a magnetic field H can be applied.

The motion of the upper plate defined by spacer wires (w) is obtained from the X
motion of a X ¢ recorder.

=

Two types of instabilities were obtained: an homogeneous one [2]
(H in the following) with a distortion uniform across xy planes parallel
to the limiting plates, and a mode involving a periodic distortion of the
director with a formation of rolls with axis along the flow direction (R mode).
These effects were understood as coming from a balance between destabiliz-
ing hydrodynamic torques described by the Ericksen-Leslie-Parodi (E. L. P.)
stress tensor and the stabilizing elastic torques. The effect of magnetic
and electric torques coming from applied fields (E, along z, H, along x)
was also studied. The discussion of the roll formation was carried as
an extension of a description of the electrohydrodynamic instabilities
i liquid crystals. More recently, two of us ([3], II in the following)
have done a detailed analytical and numerical study of the same shear
flow problem both in the H and R case. Our analysis of the H mode
is fully consistent with an independent analytical approach by Leslie [4]-
- This theoretical interest has led us to the more detailed study presented
in the present paper. The original features described here are: a study
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INSTABILITIES IN NEMATICS 735

of the flow pattern leading in particular to the observation of transverse
flows in the H case, as had been predicted theoretically; a quantitative
description of the cross-over between H and R regime in the presence
of a field H,; a more accurate characterization of the nature of the
instability thresholds; a more complete description of the threshold curve
for alternating flows. The alternating electric field E, is used to stabilize
or to destabilize the initial alignment and, consequently, to modify the
thresholds.

The theoretical description develops that of reference [3].  We also present
here a simplified analysis of the rolls which emphasizes the physical aspect
of the problem and leads to an analytical description of some asymptotic
behaviors both in the case of continuous and alternating flows: limit of
high magnetic fields and, in the latter case, limit of high shear frequencies.

The situation discussed here displays certain analogies with the case
of a Poiseuille flow between parallel plates, studied recently in detail
experimentally [5] and theoretically [6]. It is however a simpler case
than the Poiseuille problem and will be more appropriate for further
extended studies of convective instabilities in nematics, including the
behavior above threshold.

2. Experimental

Throughout the experiments, we have used methoxy-p-n benzilidene
butyl anilin (MBBA) in its nematic phase at 25°C. The nematic state
consists of a nearly parallel arrangment of these elongated rod like molec.ules;
the local ordering is characterized by a unit vector m, the director, aligned
along the average molecular direction (+n is equivalent to ~n). ?t also
gives the optical axis of this uniaxial material. In the present expex:m%epts
a uniform initial alignment is obtained by a treatment of the limiting

surfaces of the liquid crystal cell.

2.1. PLANE GEOMETRY

In most experiments, we have used a shear flow cell similar to' that
described in I (Fig. 1). Two parallel plates (3 10cm) perpendicular
to z, separated by a distance d ~ 100 to 300 js, are allowed to slide parallel
to each other. The spacing is defined by parallel wires stretched along
the length of the flow. The wires also prevent the existence .of a net ﬂf)w
across the transverse direction. In another set-up the variable spacing
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‘736 E. DUBOIS-VIOLETTE et coll.

was adjusted by three teflon screws passing through the upper plate and
making the contact with the lower one. The parallelism is easily verified
by observing the Perot Fabry rings in parallel monochromatic light;
their spacing leads to an accurate thickness measurement.

In the present experiments, the motion of the upper plate with respect
to the fixed lower one is obtained by coupling it, through a system of
reducing gears, to the displacement along X of an (X, ) recorder. This
method permits us to produce various types of displacements to the cell,
by injecting on the X axis a desired signal coming from a function generator,
as well as to record the displacement of the upper plate. Continuous
flows are obtained by applying a symmetric triangular signal of large enough
amplitude, (amplitude of displacement of the upper plate, D up to 1cm).

The planar alignment of the liquid crystal on the glass plates (n parallel
to the x direction in the plane of the plates when no shear is applied) is
obtained from oblique evaporation of a semi transparent conducting
Au film. The conducting electrodes are also used to produce an electric
field E, across the cell. The orientation is characterized in the H case
by the conoscopic image in converging monochromatic light. The rotation
and tilt of the image are connected with the “twist’’ and *“splay’’ components
of the distortion (respectively n, and n, components of the director).

In the R case the formation of rolls is easily detected optically thanks
to the large birefringence of nematics. An optical diffraction study of
this mode is also possible and is discussed in d).

2.2. CYLINDRICAL GEOMETRY

Near thresh.olds where long time constants are involved, the use of
a saw-tooth signal of large amplitude to produce a “quasi d.c. flow”

1s not correct and the effective threshold is increased due to the alternating
character of the shear.

A Inore appropriate experiment uses a cylindrical geometry (Fig. 2)-
In. a lucite block, a cylindrical hole of Dy = 4 mm diameter has been
dnlle_d. Within this hole, a tightly fitted lucite cylinder can be set into
rotation. Over a third of its length, its diameter has been reduced to
.Di = 3.4mm thus creating an annular space in which a Coueite flow
is produced.

_The initial director alignment (m along the cylinder axis x and perpen-
dicular To the shear as in case a) is induced by rubbing the cylinders along
the x direction prior to the filling of the cell.
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INSTABILITIES IN NEMATICS 737

A possible optical detection of the homogeneous distortion uses the
reflection of an incident beam on a reflecting inner cylinder. A convergent
monochromatic beam with an average oblique incidence is focused on
the cell and the twist of the reflected conoscopic image is measured. We
have tested this technique in independent test experiments using a planar
geometry and a twist cell. However it is not appropriate in our cylinder

I .

lel

Fig. 2. — Cylindrical geometry. The liquid crystal (L. C.) is aligned parallel to the
axis of rotation by polishing the inner and outer lucite cylinders. A quadrupolar
arrangment is used to record the twist distortion.

with a small radius of curvature because of lens effects. A quadru-
polar (see Fig. 2) technique has been used instead. The capacitax.lce C
of a system of 4 parallel wires connected 2 by 2 was measured as a function of
the shear rate. The variation of the effective dielectric constant compoxzuent
along the azimuthal axis gives the amount of twist in the. distortion.
The total capacitance is very small (~ 1pf) and the relatl've changes
are weak (~ 1/100) due to the relatively small dielectric constant

anisotropy of MBBA (g, = g, —¢&, ~ —0.5). An a. c. technique
Was used to characterize the variation of the capacitance above

threshold.

Effect of the rotation on threshold

Two kinds of forces must be taken into account:
~ the centrifugal one responsible for the classical Taylor instability;
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738 E. DUBOIS-VIOLETTE et coll.

— the anisotropic Leslie-Ericksen forces plus a coupling between both
effects. To determine the exact nature of the instability, one needs to
evaluate this coupling.

A first analysis was presented in [9] and we summarize here the relevant
results of a more recent study [7].

In the case of the homogeneous mode considered here, the coupling
is absent. The threshold of the homogeneous instability is not modified
by the rotation.

The situation is different for the roll instability. The coupling depends
on the average rotation ®, and the relative variation of the critical shear
rate s, due to w,, is of the order of @,, (pd?/m) where p is the density and 7
a typical viscosity. However instabilities, specific of nematics, correspond
to very low thresholds. When one of the cylinders is at rest, as it is the
case here, this implies ®,, very small and corrections due to rotation are
completely negligible.

We may also mention, to conclude this discussion, the experiments
by Cladis and Torza [8] in the Couette flow geometry with a different
initial alignment and a different nematic where the usual Taylor threshold

was observed for rotation rates much above the roll pattern associated
with the R instability.

2.3, VISUALIZATION

The hydrodynamic motion is followed from the microscopic observation
of t}le motion of dust particules or of articificially introduced small (2 p) Cu
grains. The cylindrical geometry with an horizontal axis is rather con-
Yement as the small particles are continously recycled in the main flow
in a vertical plane. We have observed that, in the homogeneous mode above
threshold, the flow is deflected from the initial axial direction as predicted
them:etically. We have also observed, in agreement with the theoretical
predictions of references [4] and II, that the additional—transverse—
component of the flow along the rotation axis x, v, (r), changes sign as
one gets across the width of the cell. Rather amusingly, the grains which

hapm to be f:longated align towards the direction of the distortion giving
a relatively direct qualitative picture of the distortion.

The convective motion associated with the R instability has also been

detected and is comsistent with the flow pattern presented in 1I
(see Fig. 12 of II).
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2.4. OPTICAL DIFFRACTION STUDY OF THE ROLL INSTABILITY

The threshold of the R instability as well as the characteristics above
threshold (wavelength of the rolls, amplitude of the distortion) can be
analyzed from the diffraction image given by a narrow parallel laser beam
incident on the cell. The technique has already been described in the
case of electrohydrodynamic instabilities in nematics in references [10]
to [12] and we will give in a separate work a more detailed discussion
of its application in the case of the present hydrodynamic ones [13].
A photocell having a linear response in intensity (Photodiode Pin 10 DP,
united detector) is placed at the position of the most intense diffracted
spot. The extrapolation to zero of the diffracted intensity gives a precise
determination of the threshold. In the present experiments with a large
(compared with the wavelength of light) wavelength of the rolls the
difftaction pattern is due essentially to the phase grating produced by
the periodic distortion of the director axis. Only the vertical component n,
is acting if the light beam is perpendicular to the shear flow cell. From
the quantitative analysis of the intensity variation of the central as well
as diffracted spot as a function of shear we have been able to obtain the
variation of n, just above the instability threshold.

The wavelength of the rolls is measured from the angle betw?en
consecutive diffraction rays. The n, variation can be determined using
a laser beam incident obliquely on the cell.

2.5. APPLICATION OF A MAGNETIC OR ELECTRIC FIELD

Through the experiment, the magnetic field as well as the electric one
are used to control the instability regimes. A magnetic field up to 10 kG
produced by an electromagnet is applied parallel to tl%e unperturbed
director in plane and cylindrical geometries. The magnetic field p'arallel
to the director is stabilizing and shortens the relaxation time of the dlrect.or
1o the unperturbed state. It leads to increased thresholds and can rein-
force the stabilizing action of elasticity if it is large enough. The alter-
nating electric field E (F) can be applied across the cell using the evapo-
rated Au films as electrods. A high frequency electric field E, limits .the
distortion of the director out of the plane xy and decreflses the relaxation
time constant of the component n,. We will see that thishasa rather. com-
Plex effect on the R threshold. A low frequency electric fiel of: low inten-
sity has a quite opposite effect. It tends to induce a convective 1;;6::;’?1;
hydrodynamic instability [14] and, by doing so, 1t Increases the re
time constant of n,.
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740 E. DUBOIS-VIOLETTE et coll.

3. Continuous shear

The mechanisms of the H and R instabilities have been largely described
in [1], [2] and [3] and we send the reader to these references for a detailed
presentation. The notations are the same as those of reference 1I. The
case of the H instability is sketched on Figure 3 and involves a coupling

¥ 4 Z
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Fig. 3. — Mechanism for a homogeneous distortion. (a) Suppose 2 fluctuation n, > 0.
The flow induces a viscous torque T, > O such that a fluctuation n, > O appears.
(b) Suppose a fluctuation n, > 0. The flow induces a viscous torque I', such that
the initial fluctuation n, is increased (a; < 0).

between the 7, and n, components of the distortion via the shear which
causes viscous torques on these components. In the R case new force
ten?ls arise from the Leslie Ericksen Parodi stress tensor due to the
variation of m along x. The equations describing the linear coupling
between the n, and », variables will be presented later [equations (3) to @]

3.1. HOMOGENEQUS INSTABILITY

. Thc.’, hc?mogeneous distortion mode, obtained with the director configura-
tion indicated in Figure 1, involves both twist and splay; the interplay
between the viscous torque components is constructive when the product
of the two viscous torque coefficients a, and a, [15], a; o3, is positive "

: .

o) The torque cocficent @z (10| > | in goneral), measured in sheas flow

crperiments when the di t’or‘ls initially ’perpendicular to the plates, is always negative-

poth signs of o ;for ! obtained. A s:mple.way to characterize a3 < 0 materials is

to obse: ge enough sh@rs the director aligns nearly along the flow axis.
, if one uses a planar sample, aligned along a shear produced by moving an upper

5::,’1 ??emmdiﬂy that the conoscopic image formed above the plate is first displaced
g e on of the shear when a; > 0, ““against’ it when as < 0.
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The product —a, sn, [resp. (o3 n3/n,) sn,] is the viscous torque experienced
by n which tends to create a component n, (resp n,) parallel to y
(resp. to z [3], [4]). In this work, we restrict our study to experiments
on MBBA where a; is negative over the complete nematic rage and where
the two torques act constructively to develop the instability (the homo-
geneous distortion cannot exist in materials where the small torque oy
is positive [16]).

For a H distortion two modes are possible (see II). A first mode
corresponds to a distortion which is an even function of z and a second
one to a distortion odd function of z. An essential point in the discussion
of I is the prediction of the existence of a transverse velocity component v, (z)
due to the anisotropy of the viscous tensor. In the case of the first mode
which has also been discussed independently by Leslie [4], the transverse
velocity is an odd function of z: a wide roll is formed across the sample
thickness and transversely to the main flow. In paragraph 2.3 we indicate
the observation of a transverse flow changing its sign as one goes across
the cell in agreement with the case of the first mode. In the case of the
second mode (, and n, odd functions of z) a net flow is expected along the x

df2 i
direction U v, (2) dz # 0) flow lines would have to close in the xy plane,

i 1 —djz . » .
This is not observed here although such a situation with a net transverse

flow is obtained in the case of a Poiseuille flow [5].

3.2. RoLL INSTABILITY
Unlike the H mode where analytical solutions are obtained, the exact
description of the R instability rests on a complicated mathematical

Procedure which has been developed in [3]. Here we sha}l ?oncenu?te
our attention on a simplified presentation which gives the limit bebavior

in the presence of a magnetic field H, parallel to the x direction. In this
limit the stabilizing role of the elasticity is small coml?ared to that of the
field. The approximation comes from a simplification on the depen-

dence of the fluctuations of the director.
Let us consider (see II and the appendix) fluctuations of the form:
n, . (x,z,t)=n,.( )c05(g, x) €0 (4 2),
v, :(%, 2, 1) =0, ,(t)sin(g.x)cos(d:2),
= v, (t)cos (g, x)sin (g, 2),

v, (x, z, 8)
= p(t)sin (g, *)sin (g 2).

p(x, 2, t)

JOURNAL DE MECANIQUE



742 E. DUBOIS-VIOLETTE et coll.

The instability threshold is given by a balance of the elastic (characterized
by the Frank coefficients K, , ), magnetic (magnetic susceptibility
anisotropy Yx,), electric and viscous torques:

(1) ry = 0 = (Kl q12+K3 q§+XaH2— %‘Ez)nz+a2 qxvz+a3 (qzvx+sny)’
T

(2) ‘Fz =0= (KZ q3+K3 q:2:+Xa Hz) ny+u2 (qx vy+snz)‘

We have omitted dynamic terms such as y, dn,/dt, since we suppose,
as experimentally observed, that the instability is stationnary. Close to
the threshold, the fluctuation is of the type w(f) = aexp A ¢ with A real.
The value A = O corresponds to the threshold.

Using force and continuity equations one can eliminate the velocity
components in equations (1), (2). System (1), (2) reduces to the two

fundamental coupled equations between n, and n, , expressing the effective
torques acting on variables n, and n,:

(3) f}'n}'+Asnz = Oa
@ fn.4+Bsn, =0,
where
® fy= K2‘13+K3 q§+xaH2,
(©) fz:Kl‘li'}’qu:’*’XaHz—f&Ez’
T
2 2
<14, 2__ 2
A=a2n32“—ﬁ“q“, B=u3+(a2qi_a3q§)elqz e3qx’
; f

with

B=naai+n39l, f=mgt+®+b)a>q>+n20"

Notations are those of II plus the following:
Ni—MN3 =¢€y, N2—M3 =e,, 115~d=e3, d=b,

The abov? expression (5) for £, is given in the limit of low shears where
the cml.vc.ac.txve term psv, in the force equation can be omitted. The
compatibility condition between (3) and (4) gives the threshold

(7) fyfz=ABSZ.

In the li.mit 9%—0 Wl¥ich is the case of the homogeneous instability,
and assuming ¢, = n/d (in order to have a sinusoidal variation of the
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fluctuations vanishing on the limiting plates where strong anchoring of n
is assumed), we obtain the following threshold:

d(“_a @)"’ —
KK, ny

NoTe. — The form of the left hand side is that of the Ericksen number
characterizing the hydrodynamic instabilities in nematics. It is deduced
from the form of a Reynolds number for ordinary fluids by replacing
the diffusivity of the vorticity by that for the relaxation of the distortion of
the form K g¢%/y where K is an elastic constant and ¥ a viscous coefficient.

In the case of a R instability the equation (7) which is of fifth order
in g, defines ten roots (¢ j=1to 5), in terms of 5 and ¢,, which
characterize the z dependence of the fluctuations

+5 .
w(x,z,t)= Y A;expi(g,x+q.z).

i=+1

Generally, for arbitrary values of s and q,. this solution will not fulfill
the boundary conditions v, = v, = v, =n, =n, =0atz = + d/2. The
threshold corresponds to the minimum value s, (¢,) such that the boundary
conditions are fulfilled. The exact two dimensional calculation (IT) shows
that, at threshold, among the roots of (7), one wave-vector g, is close to ?t/ d
and the others only contribute in thin layers close to the boundz?ncs.
A good approximation, as shown in II, is obtained by retaining a single
Mode with g, ~ n/d. This corresponds to a mode satisfying roughly the
boundary conditions on v,, U;, M, n, varying as cos (¢,z) but not on v
Which behaves like sin (g, z). The wave vectors different from m/d contribute
in the boundary layer in order to make v, vanish. In this one mode
approximation, the threshold corresponds to the minimum shear rate fc
Solution of (7). This defines the critical wavevector of the rolls, 4.

As the magnetic field is increased, the wavevector of the rofls, ¢,
increases. This result is not obvious since raising H corresponds to

. 2
: . .. ; ari nd
'creasing the stabilizing torques: the magnetic one varies as H . ace
the elastic one as g2. But one must consider a more precise balan

with the viscous torques, including all new c.aﬁ'ects such as ;focusnllie
forces due to the roll distortion, in order to get this dependenfie- 3 o
analysis of the q. dependence on H has been developed in {3].

JOURNAL DE MECANIQUE
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Large magnetic field behavior

For a large magnetic field such that g> > ¢ one can expand expression (7)
in powers of (¢,/¢,)*. Assuming an isotropic elasticity (K; = K, = K3=K),
and no electric field, a first order expansion gives:

2 2 232 2
® o= (K@ +a) Lt} (1+2x(&>)
(@) x
with
o’ =ojay  and 2h=p-<;
N2
p=20 g0,
N2 M2
b+ b
_agu=a2e3{a2e1+a3e3+ + }
N2 oy es (P

For MBBA at 25°C [15] we obtain a* = 0.21P; 2 = 1.47.

Let us measure the length in units of the thickness 4 and define dimension-
less wave vectors g, = dq,; g, = dq,. The shearing rate is characterized
by an Ericksen number:

©) B = sd?o*
K »

and the intensity of the magnetic field by:

(10) FoXH 4
K »

F is a measure of the ratio of the applied field to the characteristic field
one would need to distort the structure in a Freedericks experiment.

Equation (8) may be written in a dimensionless fashion

R ~ N2
Er = [qi+q3+F][1+k(?) ]
9x
The threshold is obtained for §° such that d(Er)/d(g%) = 0.
This leads to:
(n @ =rg @ +F).
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For large field H, one obtains:

H*qd?
i 4 o F = Xa
(92 <
and a dependence
1/2
(12 g oc /Hd or (}%) < Hd
and
2 72
(13) Er, ~ % Hd
K

3.3. EXPERIMENTS
(@) Thresholds

The measurements of thresholds are done in the cylindrical arrangment.
They are given in terms of the critical angular velocity of the inner cylinder
on Figure 4, A stabilizing magnetic field parallel to the axis of the cylinder
(the unperturbed molecular direction is obtained’ by surface treatment)
is applied. The existence of two different solutions as the magnetic field
is varied is clearly seen from the inset of the Figure. The low field d.ata,
where an homogeneous instability (H. L) is met at threshold, were obtained
by keeping the shear rotation constant and decreasing the field. When
the field becomes smaller than a critical value the capacitance 'of the
quadrupolar arrangment begins to increase linearly thus providing _an
accurate estimate of threshold. The linear variation is consistent wxgh‘
2 variation of the twist —axial —distortion with shear n, = N. (s~s)V2:
the capacitive experiment detects changes of the effective di?lec’fnc Cf)nstant
Proportional to n? near the distortion threshold. The fostlﬁcatxon for
the 1/2 exponent corresponding to a “mean field”” like behavior has recently
been given by P. Manneville [17] who has also obtained the explicit form
of N from a non linear analysis of the homogeneous mode. .

In large magnetic fields, a roll instability (R. 1.) mode is obtained at
threshold ,

The two instabilities are well described on Figure 4 by two branches
linear in H2. This form of dependence is expected for the H mode (I)
as well as for the R mode as was discussed above [formula (13)]. The
exact two dimensional analysis of reference II can also be fitted to these
results. We can rescale the exact calculation of Figure 6 of II, which

50
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corresponds to our Figure 4, by using reduced units Hd for the field
and sd? (i. e. a term proportional to the Ericksen number) for the shear.
(The coefficients used in the numerical calculations were also obtained
from Gahwiller [15] work.) There is an excellent quantitative agreement
with theory. The straight line (Th.) represents the result of the asymptotic
calculation and there is not much deviation from a straight variation down
to low field (the X represents an exact calculated point). The calculated
value of the crossover field is given by H d ~ 18.8 whereas the experimental

10°s & lcm? s)
?

15L & (t/min) /° s/

/’/
Ny reZatlil 1,107 o)
A9 Bytidigem?
5 10 15 T

Fig. 4. ~ This figure gives the experimental results on a cylindrical cell (D; = 3.4 mm;
D, =4 mm) of threshold. The stabilizing field is along the cylinder axis. These

results are compared with theory (asymptotic straight line form and point X) in
normalized coordinates s42, H? d2.

one is Hd ~ 30. The agreement is good if one realizes that it is given
rather inaccurately both theoretically and experimentally by the intercept
of two straight lines of close slopes. A word of caution should be given
concerning the meaning of a quantitative fit: the elastic constants are
known in materials likc MBBA with a large dispersion (20 %). This is
due largelhy to the poor stability of this compound between or even during
our experiments. This is also true for the viscous terms (our determinations
are very consistent with those given in reference [15]. Notice from (7)

that a small change of the «, viscosity term modifies strongly the homo-
geneous threshold but not the roll one.

(6) Wavelength

The wavelength c.iependence in the R. 1. regime as a function of H has
been measured using a microscope observation. Figure 5 gives this
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variation in reduced units (d/A)? versus (H d ). For low fields, A is of
the order of the thickness. It decreases as H™ /2 in large fields. This
asymptotic behavior agrees qualitatively and quantitatively with the
theoretical description given above [formula (11), (12)]. The fit is also
given for low fields where we have used the numerical results of 1L

T T T T
)
A ’
6L / .
/9"
SL 7/ .
//
4l // .
//
31 (] |
2 /Q .
. ,6
1 /,‘)@ © i
L 1 1 i
o 50 100 150 200
H.d{Gs.cm)

Fig. 5. — The circles are experimental measurements of wavelength of the R. 1. mode
in continuous shear, right at threshold. The straight line gives the asymptotic
theoretical behavior whereas the solid curve gives the result of the numerical
calculation. Note however that the R. I does not extend down to Hd = 0.

The good agreement on thresholds and wavelength over the whole
fange of fields between the experiments and the theory based on the
Leslie-Ericksen hydrodynamic description may be considered as an
indication of the validity of this theory. However, in order to verify
more completely the form of the Leslie-Ericksen tensor, one should check
the exactness of the sd? parametrization by varying the thickness 4 over
a large enough range [18] (3.

() One of us (E.G.) wishes to thank F. M. Leslie for pointing out to' him the van:ous
implications concerning the validity of the shape of stress tensor as coming from various
flow experiments.
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4, Alternating flow

4.1. LINEAR MODEL

Experiments with alternating shear show that, except for very low
frequencies, the roll instability is preferred to the H one even in the absence
of a stabilizing magnetic field. This can be understood by the simple
following argument: in the torque equations, the viscous torque terms
Y on, /0t play a role similar to the term %, H? n, ., and are also independent
of the wave vectors ¢,, q,. The time constant for the relaxation of the
distortion under a field H is T, (H) = v/(x, H?). 7 is a rotational viscosity
and damps the effect of the magnetic torque A magnetic field of 10° G,
corresponding to the cross over between the H and R regime, will correspond
to a cross over frequency v ~ Tg! (H) ~ 3 Hz. This value corresponds
well to the limit between H and R instabilities. In the following we shall
only consider the R regime.

Since the velocities relax much more rapidly than the orientation
variables, the motion of the director is obtained by including the director

relaxation in the torque equations (3), (4) (the forces equations are unchanged
since we can neglect terms such as p v):

Yy;'y+fyny+Asnz =0,
‘Y,r'l,+f,n,+Bsny =0,

with
{ Y, = Y1—o3q2/B
Y. =Y~ 92 —~a392)/f

or
) n+ 2 LA sn, =0,

T’
(15) n+ % +B'sn, =0,
with :
(16) T’ = ‘—Y—’, Tz == ‘E N

5 Y
amn A=A p_B

'Y! 7:

Here s depends explicitely on the time variable t.
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The v,,, are effective rotational viscosities and T, , are time constants
for the spontaneous relaxation of the distortion characterized by n, .
components.

The time variation of the variables n, (¢) and n, (¢) coupled with a variable
shear term s (f) can be simulated analogically. This was done in an
independent work [19] and was found to give a variation of threshold
in excellent agreement with the analytical solution obtained with a square
Wwave excitation (I). The analogical solution has also the merit of displaying
the characteristic functions [feedback coupling (A, B) and damping
(/T,,,)] in an analogical electronic description applicable to many
instabilities.

We shall consider mainly two types of periodic excitations (T = 2 n/w):

(i) sine waves (denoted as ~) of the form s(t) =5 /2cosw¢;

(ii) square wave signal (denoted as [J) corresponding to a saw-tooth
displacement of the upper plate

s(t) = +s5, 0<t<;,
s(t) = —s5, ;<t<T.

éomidering equations (14) and (15), one sees that the solutions are of
one of the two following types:

T .
Y mode where n,(t+ g) =—n,(t); ”z(“‘ '2‘> =n,(t);

. T
Zmode  where n,(t+ —g) =—n,(t); "y(t"' 5) =ny(t).

The effect of fields has been discussed at length in refereno'e.[.l]. Th;
decrease of the relaxation time constant T, due to a stabilizing higl
frequency electric field E, as well as the decrease of T, and T, due to &

Stabilizing field H, can be included in the variation of the dimensio;lss
ratios T,/T, and o T, , which characterize the time constant effects. y

lead to change in the threshold value and also to an interchange of modZe
from Y (only n, goes through zero over one period of the flow) to :
(same for n,). Here we will complement this study under three aspects:

() we will give a better description of the thresholds;
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(i) we will compare the response to different alternatingsi goals;

(iii) we will extend the diagram using the effect of a low frequency
field.

4.2, QUALITATIVE DESCRIPTION

Let us first ignore the time dependence of the parameters T, and T,
and consider T, and T, as constants. This is only true for low shears
where the convective term in the force equation can be omitted. A simple
analysis allows us to interpret qualitatively the shape of the experimental
instability curve of Figure 8. Consider, for simplicity, a square shape
signal. We take », and n, positive at the initial time 7 = 0 where we

Ty &1z

) IR

4

Fig. 6. — Fluctuations of #, and #, at the threshold E;, of Figure 18 in the Y regime.
When the shear is reversed at ¢ = 0, n, decays more rapidly than n, for T, < Tee
When n, changes sign, the source term causes n, to increase.

reverse the sign of the shear. This induces a change of sign of the source
terms in equations (14), (15) and n, and n, begin to decrease (the variation
of n, and n, with time is given on Fig. 6). For T, < T,, n, relaxes much
much more rapidly than », and goes through zero first. Then the source
term .in (15) turns out to be positive and », starts increasing, its amplitude
growing up to ¢ = T/2 where the signal is again reversed. At the start
of each period there is a lossy time (~ T,) where the source term does
not contribute to the amplification of the n, fluctuation. Increasing T,
broadens this region and there is less and less amplification of n,. In

this Y regime we can assume that n, oscillates whereas n, is nearly constant
except when T, approaches T,.

For T, = T, one sees easily that both fluctuations decay to zero at
the same rate: the system is always stable.

For T, » T, we have a Z regime similar to the Y one but where 7,
plays the role of n, in the previous case and oscillates through zero.
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4.3, THRESHOLDS
We consider first the Y regime. Integration of (15) leads to

— t ’
(18 n,(t)=—PB CXP(TI‘J).[ 3} n,s(t’)exp%-dt’.

z - z
For T, > T, exp (#'/T,) may be considered as constant over one period.
This corresponds to a first harmonic approximation.
For a sinusoidal excitation it leads to
_ T._ T
19 n,(t):n,:—B’—’i:’s\/iJ‘o coswt.ny,(t)dt,

one deduces n, from (14):
- - {* , '\
(20) n,(t) =_exp(T_f)A'§\/§nzf cosmt .exp(:r—)dt.
y - ’

By integration it gives:
(cosot+T,0sin0i)
1+0>T?

2

n,(t)=—~A"s/2n,T,

The compatibility with equation (19) leads to the threshold expression:
sSPABT,T, _,

(1)
1+0°T}

b

for the Y mode. Let us emphasize that this expression if"pﬁes not only
the condition T, » T but also the condition T, > T, since the system

chooses the solution where only n, oscillates.
For a square wave signal one obtains for the Y regime:

T [ iy
@ () == =28 5[ m i,
£ T Jo
-t JR—
23) n,(t)= Cexp(-—) —A’sT,n,,
T’
where o
2A'sTyn,

" ({+exp(-TR2T,)’

is determined by writing the condition n, (t+T/2) = —7 (¢) for t =0.
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The compatibility between (22) and (23) gives the threshold:

4 A B’EZT,T,(1~ tanh (TAT)Y _ .
T/4T,

The thresholds of the Z mode are obtained by changing T, and T, leading
to expressions valid when T, » T and T, > T..

Ty t12)2
o

Fig. 7. — Threshold curves drawn, for a constant shear, as a function of the reduced
frequency & =® T,. The part to the left of the curve is unstable. Curve A
corresponds to the theoretical simplified model. Curve B corresponds to analogical
and numerical solutions of equations (7) and (8).

?‘1gure 7 gives different determinations of the instability threshold in
units (T,/T,)"/? and reduced frequency & = o T,. At first sight the Z
and Y mode do not seem to contribute in a symmetric way. This is only
due to the nature of the plot. The two regimes will appear similar if
one will plot the shear s as a function of the frequency. Curves A correspond
to the “first harmonic™ description given above for a sine wave excitation
and for the Y mode (19). The curve B is the analogical solution of (14
and (15) and is indistinguishable from that of a numerical integration
of the same equations, which we have also performed. The cusp extending
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to zero on this curve and associated with the impossibility of instability
when T,/T, = 1, is not reproduced on the curve A. Indeed we have
assumed in the first harmonic model that T, > T, (T, >T)in the Y (2)
regime then one cannot expect the two curves to be similar in the inter-
mediate regime (T, ~ T,).

A comparison can also be made between different types of excitations.

Let us define the effective shear by
2= n’ Di f 2

(25) = ,  for a sine wave,
~ 2 d2
2 r2
(26) b= 4Dd‘;‘f , for a square wave

where D is the total displacement.
The numerical and analogical solutions indicate that the curves are
practically the same for both types of excitations provided Ef = sk
The behavior is also apparent on equations (21) and (22) giving the
thresholds for the two types of excitations. We consider the two limits:
(i) ®@—0:
The two expressions lead to the same result:

A'B's*T,T,=1 or f,f.=ABs*;

(i) ® — oo:
—2A'M’ 2ATR' 2
(27) s”ABTz:i-_A’EZ—Iz—I—:l;
o’T, 4n*T,
—2A'M’ 2
(8) sspA BT _
48T,

The two results differ by less than five per cent. '
In fact we have checked, using our analogical solut?on, that this
result applies also quite generally for different shapes (_)f signals (square,
triangular...) indicating that only the average shear is important at least

as long as the period of the signal is short enough compared with the
time constant of orientation. In the opposite limit, the distortion would
come to equilibrium with the instantancous value of the shear and the
alternating problem loses interest. The cusp shape vanatlon' agrees
with the theoretical analysis of section 3. We may also note the difference
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with the electrohydrodynamic instability (E. H.D.) case {20} In this
problem it was found both experimentally and theoretically that the insta-
bility curves (electric field versus frequency) corresponding to our variation
of Figure 18 were quite different for both types of excitation. However
in this problem the time constant itself is a function of the instantaneous
value of the destabilizing force (the alternating electric field) and the
relaxation process should adjust to it during the course of a period. In
the present problem the relaxation time constants of the director are inde-
pendent of the shear rate (and averaging is completely consistent) at least
as long as the convective contribution can be neglected. In fact, as it
is shown in the appendix, this term is negligible for the frequencies of the
excitation used in this study. If not, one would expect a behavior very
similar to the electrohydrodynamic instabilities where one relaxation
time depends on the applied excitation.

4.4. EXPERIMENTS AND DISCUSSION
{a) Threshold

The variation of intensity of one of the intense diffraction peaks is used
to obtain an accurate determination of the R threshold. We consider
here only this determination and will study in an independent work [13]
some properties above threshold that are obtained from the diffraction
experiment. One can adjust the values of the coefficients T, and T,
[see (16), (5), (6)] by the application of an electric and magnetic field.

In a given experiment, the magnetic field as well as the shear are kept
constant. For a given frequency (f, on Fig. 8), where, in zero electric
field, a Y instability mode is obtained, a diffracted intensity is recorded.
As tl.le high frequency electric field (or voltage V) is increased from zeI0,
the intensity decreases continuously to zero for a value E,. A 1eW

diffracted ix%tensity is measured above a field E,,. For a much large
value E;,, it decreases again to zero.

The cusp in the instability diagram is related to the change of regime
between the two parts of the diagram shown on Figure 8.
Awe have used expeﬁmel}tany both a sinusoidal and square wave shear.
given curve is characterized by a constant value of the effective shear §

deﬁnm.i by (25), (26). The points given on the curves for the two modes
of excitation are such that: 52 = 5% for the two experiments.
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The two variations are rearly identical. — The comparison was extended
as a function of a stabilizing magnetic field H from 1 to 2.5 kg and no
systematic deviation from this simple remarkable result has been obtained.

TV(V’ ~g Eno 0 AN
LT
b TN
[} S~=sn.
i (o]
i o
- .z
4
e
. s
e
110 ,OILLEO,
'g; /EIO
ﬂ\n
03 y 'qu\ \os X fJ>

I /ARd
Fig. . — Experimental threshold curve for both sinewave and square wave excitation.

The part to the left is the domain of existence of the Y and Z roll
instabilities,

This behavior agrees with the analysis given in the previous paragraph.
Experimentally one observes on Figure 8 curves similar to A curves
of Figure 7 and not to B ones but this is fortuitous.. In fact, the previous
solution (A) did not take into account the.expli.cn. de;')cndencc on thf
Wavevectors ¢, and g,. If one introduces this variation in the s;xmes ;:;
plified way as for the continuous shear with g, = r/d fixed an Fq, .
to vary, one obtains curves very similar to the expenmex{tal ones. xgur;d
gives a set of calculated curves in E units as a function of the redu
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0

[} 100 200 Wy
Fig. 9. — Critical electric field E in esu as a function of the reduced frequency
o =y d*AK)2H
The experimental points (A) correspond to an Ericksen number
Er = (sd?/4) (a2 03/K, K,)}/2 =75 .
(calculated from Gahviller data on MBBA at 25°C). We see that small (less than 5 %)

adjustment on Er and on the ratio K/y, would give on excellent quantitative fit with
the theory.

——ay
>

frequency ®, = (y, d?/4 K,) o for various of the Ericksen number
defined by:
Er= s_d_{li}’
4 {K,K,

Some experimental points are also given which correspond to an Ericksen
number equal to 75 (calculated using data of reference [15]). The points fall
on the calculated curve Er = 70. The 5% discrepancy is not significant
and well within the errors on the viscoelastic coefficients.

For low Er numbers we also obtain that the cusp disappears pro-
gressively, in agreement with the experiments (see Fig. 7 of I; see also Fig- 14
of this article). However the field of the cusp is rather insensitive 10
the value of Er,

(b) Wavelength

The Figure 10 reproduces the curve Er = 70 of Figure 9 and indicates
the calculated wavelength of the rolls along the threshold curve.
Experimentally one also observes, in qualitative agreement with this
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Elesu) |

-~
>

&

0

Fig. 10. — Numerical calculation of the variation of the reduced wavelength along
the instability curve calculated for Er = 70. It is found that the cusp disappears
for small Er, in agreement with experimental results of (1).

result, that in the Y regime the wavelength is nearly constant whereas
it increases markedly with field in the Z regime. Let us consider the
ratio of the wavelengths at points 10, OII et II0 for the same frequency
(e Fig. 8). One observes a good agreement between experimental
values (exp) and the theoretical ones (th).

ex, h
P Y (_7“_"1‘) =1.07,
Ao Mo
ex] th
Ao Y 0.85, ( 2“2) = 0.88.
7"10 )'xo

NOTE. — The variation of diffracted beam intensity around Eqy and.E,,‘,
on Figure 8 are very steep. This variation is very similar to that obtained
in the Poiseuille geometry, as given in Figure 12 of [5]. In both cascs
this relatively sharp variation at E,; and Ep, is also assocla.ted with .a
small hysteresis in the determination of critical values. Tln.s result is
1ot understood at present. It would be of interest to know if thlsfxs a
Property of the Z regime by itself or if it is due. to ?he presence of an
electric field by having a nematic where the Z regime is obtained in zero
electric field. The hysteresis suggests a mechanism with an mverse

and
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bifurcation (see for example [21]) (*). It is known in this case that the
threshold measured when starting progressively and carefully from an
undistorted state corresponds to the solution of the linear problem.
This procedure was used to obtain the results of Figure 8. In practice,
the hysteresis is rather small in the experiments and the agreement with
the predictions of a linear model suggests that the non linearities associated
with this sharp transition are not too severe.

4.5. HIGH FREQUENCY SHEAR

Let us suppose that the elasticity is isotropic and that no electrical field
is applied. Then we get using (5), (6) and (16):
’_I'_y = ‘Y._y

5L=rs
¢ T, 7.

We will consider the high frequency limit with (g,/g,)*> < 1. With
this approximation we get:

~ N2 ~ N2
qx Qx

with:
* a3 3N o (20, b+bn
Y =Y——, )\'y=—i—;, ;\,z= 2 __:?-{-___.).
M2 nz2Y . v* 7 N2
Consequently

T ~ 2
7S 1+(x,—x,)(€_=) .
TZ qx

Typical values for MBBA at 25°C are: y* = 0.18 P,A, = 1.35,), = 444

As A, < },, this implies T, < T, and one expects, for E = 0, a Y regime
as observed experimentally.

) Up to now there has been no attempt to describe the non linear hydrodynamic

problem in the case of the roll instability. Such a discussion should include convective
contributions which are here negligible.

VOLUME 16 — 1977 — N° 5



INSTABILITIES IN NEMATICS 759

25| LogEr

201
‘Theory _—_

Expert o

).5 o 1 Log Ur L
20 25 30
Fig. 11. — Plot of the Ericksen number Er : (sd%/4) (a; a3/K; K3)"2 as a function
of the reduced frequency w, .
The theoretical curve is the exact calculation for a square excitation. A slight
adjustement of the vertical scale has been done when starting from Gahviller data.
Experimental points apply to exactly the same situation as the theory.

If one expands equation (21) in terms of powers of (q,/q,)* one gets:

2 2.2 *2 ~ \2
pe ~ q.
29) @=L 12N 32 +m2.7._<1+2(x +x)(~_) )
57 (w) AB+ 3 = 0) o y :
or: ~ 3
Er?(0) = Er2(0)+m212(1+x'<3—’) )
dx

Where © = y* 42/K is the relaxation time of an orientation fluctuation
of wavelength d; A’ = 2 (A, +1).

A typical value in MBBA at 25°C is T ~ 70's for d = 200 p.

The threshold condition dEr/dg, (@) = O leads to the relation:
(30) @ +F)QIE+AGZEAEF) = PV

In the one mode approximation using g, = n/d, relatio.n (30) leads to
the variation of the wave vector component g, as a function of @. The
highest order contribution gives:

@31 288 c0®* NG or g, (@r)'3,
and
(32) Er’ c 0?7’

Figure 11 gives a comparison between the experimental andcalct;latg
variation. We note in particular the wide range of validity o

approximate form (32).
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bFig. 12. — The extrapolation of the minimum displacement required to produce an

instability at infinite frequency gives a determination in agreement with that
deduced from equation (33).

We can write the asymptotic expansion for the critical shear rate using
the amplitude of the displacement D, which is a physical variable adjusted
in the experiments. For a sine wave excitation D is given by

%"3=2\/§§.

In the limit of very high frequency the critical shear rate can be expressed
in term of the existence of a minimum displacement (independent of ©)

needed to produce the imstability: D,  is given from (29) by

. *
(33) Dain _ 5 /2T,
d o*

In Figure 12 we give a direct measurement of the amplitude of displace-
ment as a function of the frequency of the shear in units D?, £ ~2. The
linear variation agrees with formula (29). The minimum displacement

D,;, = 1.1 mm is in reasonable agreement with a theoretical deter-
mination D_,, = 0.7 mm,
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The result is insensitive to the value of the magnetic field (2,100 G in
the first experiment; 3,200 G in the second one). Experimentally an
increase of field from 1.5 kG to 3.3 kG leads to an increase of the
minimum displacement by 10 %.

The fact that the displacement rather than the shear characterizes the
threshold for high frequency can be analysed in relation with acoustics.
The large displacements involved for the instability described here (~ mm)
are far beyond the reach of usual shear wave experiments such as produced
by piezoelectric transducers. One should not expect to be able to produce
a R. instability similar to that described here. However, for large
frequencies the viscous penetration depth & = (o,/pw)"/? is smaller than
the sample thickness (whereas our experiments were done in the limit
of a uniform shear such that d < 8): the distortion induced by the flow
takes place over a reduced distance. This in turn may reduce the
orientation time constant and favor the instability. A more complete
study could be carried as an extension of the work of Candau and
Martinoty [22]. Scudieri [23] has recently obtained roll instabilities
with rolls perpendicular to the shear starting from an homeotropic sample
sheared at a frequency of 7.46 kHz with displacement thresholds of the
order of 5x 1072 p. The geometry as well as the planform of the rolls
indicate a fairly different problem from the one discussed here. Very
Tecently, we have considered experiments in the same homeotropic geometry
using an audiofrequency excitation. Instabilities apparently quite similar
to those reported in Scudieri’s work and with very low thresholds were
obtained. However, the presence of an elliptically polarized (rather than
just linearly) shear appear to be indispensible to produce the convective
instability.

4.6. EFFECTS OF A LOW FREQUENCY ELECTRIC FIELD

The analogy between the system of rolls produced in a shear an'd .that
obtained under the influence of a low frequency electric field E, (lehams
domains) [14] suggests that the two mechanisms could be superimposed
in a single experiment.

In a shear flow, an initial fluctuation of n,, periodic along x, induces
a periodic distortion of n, which, in turn, causes a flow in the z direc-
tion, o, (x). On the other hand, when a low frequency electric field is
applied, the fluctuation of n, creates space charges which, via the electro-
static forces, also induce a velocity v, (x). In both cases, in MBBA,

51
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the velocity v, reinforces the distortion and is the main contribution to
the development of the rolls.

The velocity v, (x) can in fact be induced partly by the shear, partly
by a low frequency electric field. We expect that the critical shear should
decrease when a low frequency field is applied.

A2
. 4 B5Hz
o THz
F = 40Hz
\ H. =z 15006
2,
d \A\ d = 200}1

0 100 y2

Fig. 13. — This figure gives the decrease of the critical shear rate as a low frequency

(F = 40 Hz) voltage V; = E,; d is increased. The decrease is given for two shear
frequencies f=.5 Hz (A) and 1 Hz (0).

On Figure 13, experimental data are presented at two different shear
frequencies. The square of the threshold of the shear decreases roughly
linearly as a function of the square of the applied voltage. A small
deviation is found from this behavior near V = 0. The shear becomes
zero for V,, i. e. for the critical voltage needed to induce Williams domains.

.A Sil:ﬂpliﬁed quantitative description can be found, based on the one-
dimensional analysis of roll-instabilities recalled in the theoretical chapter.
We suppose that the frequency F of the electric field is low enough t0
produce Williams domains but high enough so that, during one period
of the field, 7, and n, can be taken as constants (for ¢. g. 40 Hz and 200 pm
cell thi@mms, these assumptions are correct). In this case a simple
calculation gives a set of equations equivalent to (14) and (15) with:

(34) 11 i
T, T v,
35) 1_1 +x~f§f_a1s,2.
TZ TzO b 41‘72’

2 ¢ .
E s the applied low frequency field; a is an effective dielectric constant
taking into account the effective conductivities, dielectric constants and
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viscosities [14]. It is positive for MBBA: a low frequency field, smaller
than the Williams threshold, increases T,.

When T,/T, is sufficiently smaller than 1, the square of the critical shear
is proportional to 1/T, [1]. As 1/T, decreases linearly with VZ, we expect
the square of the shear threshold to decrease also linearly with V7, as
observed experimentally on Figure 13.

The effect of a low frequency can be compared with that of a high
frequency one E,. For the latter case we must replace in (14) and (15),
the expression (35) by
(36) 1_1  wH’ =B | _&E

Tz TzO Yz 4 Y, TzO 4 Ty,
and retain the expression (34) for T,. The ration | a/es | is of the order
of 1 in MBBA (%). It can be determined by applying simultaneously
a low and high frequency field and measuring the ratio of the two fields
at which their effects compensate (i. ¢. at which the shear threshold is
the same as without field). The ratio T,/T,, can be also determined

by the following method:

In the simple one dimensional analysis (I), the cusp is given by T, = T, or
1 1 ¢,
(37) - _‘Efusp .
TzO Ty YZ
At the critical field for Williams domains, E,, we have T !=0and
2
38) Aok
TzO Yz

From (37) and (38) we get
T, _ (1 _ LL) "
T, aE2

(%) The threshold for the Williams domain is given by‘
for a Freedericksz transition on an homeotropic sample is

2
lsa!E?::(g) Ks-

o (Exr)ZEl qfdz.
I—e:—l E)Ks

os are found experimentally to be of the order

a E? — g2 K, whereas that

! of unity-
In MBBA, these three rati
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Now it is possible to determine T,/T, for an arbitrary field:

-2
I! = l’_(l - X’—) (low frequency),
Tz TzO Vf
T, T A\ .
Dl =f2-1 —1 )(high frequency).
Tz ( TzO ) ( ansp ( g q
pay 11"
S=cst
H = 15006
d=200p
Lo“*_ I F=4%10%Hz
118
. - V=0
l F=40 Hz
0 E‘: ; f(Hz)A?

Fig. 14. — This curve is an extension below the axis V = 0 of the usual instability
one (Fig. 5,7, 12). In addition to the data points for a high frequency field obtained
above the line V = 0, points below this line correspond to the effect of an increasing
low frequency one (T,/T, decreases as E, increases). No discontinuity of slope is
found around the point V = 0. F is the field frequency, f the shear frequency.

On Figure 14 a threshold curve, measured at constant shear, is given
in terms of (T,/T,)"%. The T,/T, values have been determined by the
method described above. If no electric field is applied, we have T,/T,=0.82.

We note that the cusp shape curve which we had only been able up 10
now to draw for values of T,/T, larger than this limit value by using a high

frequency field E, extends continuously, with no discontinuity of slope,
for smaller ratios of T,/T..

It is possible to estimate both the n, and n, variation using the laser
beam diffraction technique if the beam is oblique with respect to the shear
flow cell and is in the yz plane. In a Y mode both alternations will give
different diffraction images as the angle between m and the beam will
be different.

Let us consider the time dependence of n, and n, during a period of
the shear. We have investigated the effect of the increase of the T./T,
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ratio on the time variation of n, and n, by applying a low frequency
electric field E,. (In principle, with a high frequency electric field it should
be possible to do a complementary study, i. e. to decrease T,/T,. However,
due to the first-order like character of the Z-mode threshold, one cannot
study small distortions in this last case.)

When T,/T, is increased, two effect are expected:

(a) the fluctuation of n, during one period becomes smaller;

(%) ny/n, decreases and tends to zero as T,— co (i. e. as the applied
voltage approaches V).

The effect (a) can be studied by using a normal incidence laser beam.
We have indeed observed that if we increase the electric field E, the
amplitude of the variation of the intensity of a diffraction spot, which

characterizes the time variation of n, , decreases. (The experiment was
done at the same distance from threshold for the different values of E.)

rny/nz

—
>

A\

\ 2
\ (W)
i

0

Fig. 15. — By using an oblique incidence beam one can estimate the absolut'e value
of the ratio (n,/n,) where n, and n, represent the maximum distortions obtamed‘at
the end of each half period of a square wave shear. The low frequency voltage applied
across the cell V, is measured with respect to the Williams threshold V..

In order to measure n,/n, e use an oblique laser beam (which probes

differently the n, and —n, distortions in the two half period's). The result
of a measurement discussed in reference [13] is given on Flgure 15. The
Tatio n,/n, corresponds to the times of maximum distortion. We see
that n,/n, decreases as V, increases. In the limit of the Williams instability

in the absence of a shear, with V,/V. = 1, we indeed expect that only
the , distortion will be present (m, = 0).
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5. Conclusion

This work has given a rather extensive description both theoretically
and experimentally of the continuous and ac plane shear flow instabilities
in nematic MBBA, extending the studies done in previous works in
Orsay (I, II) and by Leslie [4]. The H and R modes obtained in
a continuous flow seem to be well understood and quantitatively well
described now. We feel that we have enriched the description of the
alternating flow: by providing some analytical solutions and numerical
ones in the theoretical part; by introducing the notion of minimum
displacement applicable to accoustical shear waves; by showing the small
influence of the nature (~ or [J) of the alternating flow; by studying
the role of a low frequency electric field. However, the description of
the alternating mode even near threshold (in particular for the Z mode)
s not completely satisfactory.

A very systematic approach has not been done due to the number of
parameters involved in the problems and should be done on some simple
modes with very well characterized materials where preferably most
viscoelastic coefficients should be obtained within the same experiment.
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