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A high-accuracy optical method for the determination of the rotation of the liquid-crystal director on
solid substrates is reported. The measurements involve the use of a photoelastic modulator in
conjunction with a white light source. The detection of the first and second harmonics of the light
signal allows for the determination both of the director position and the twist deformation at the exit
face of the cell. The method is illustrated by experiments on the liquid crystal penthylcyanobiphenyl
aligned by polyimide layers. The importance of director gliding is pointed out as well. © 2005
American Institute of Physics. �DOI: 10.1063/1.2031927�

I. INTRODUCTION

The study of alignment properties of liquid crystals on
solid substrates, in particular, on polymer surfaces, is not
only a challenging task for fundamental research, but it is
also very important for device applications. Reliable tech-
nologies were developed to ensure proper orientation of
nematic liquid crystals on the cell substrates with sufficient
stability under the influence of applied fields or with time.
The quantitative characterization of the anchoring properties
is, however, sometimes a difficult task. One of the problems
is to find consistent procedures to determine small rotations
of the liquid crystal on the cell boundaries.

Several methods were proposed and used to determine
the surface reorientation of the nematic liquid-crystal direc-
tor. These methods, however, often give markedly different
results, even when the same system is investigated. As an
example, the reported values of the anchoring strength for
azimuthal reorientation in planar nematic cells deviate by
more than an order of magnitude. The anchoring strength is
usually characterized by the extrapolation length, which is
the ratio of surface rotation of the director to the director
gradient at the interface.1 Vilfan and Copic2 investigated
thermal fluctuations using light scattering and found �
=450 nm for the azimuthal extrapolation length of penthyl-
cyanobiphenyl �5CB� on polyimid �PI�. Zhang et al.3 ana-
lyzed the optical transmission curves in an electric field ap-
plied parallel to the substrates �in-plane switching�. From the
measurements they estimated ��100 nm. Another method is
to measure the deviation of the actual twist angle from the
applied twist in planar cells using a polarizing microscope.4,5

This method, however, is not suitable to measure strong an-
choring energies, i.e., extrapolation length well below 100
nm. Faetti and Nobili6 and Faetti7 developed procedures to
measure such small extrapolation lengths. In their methods a
magnetic field was used to control the twist deformation in
the sample. The surface director rotation was measured by
detecting either the change of the intensity of the reflected
beam, or the polarization direction of the transmitted beam in

a wedge-shaped cell. With the latter method they found for
5CB on PI �=34 nm. Clearly, further precise methods should
be useful in clarifying the real anchoring properties of liquid
crystals on solid substrates. The determination of the azi-
muthal anchoring strength is especially important for in-
plane switching, which became recently a significant display
technology.

In the present paper, we describe an optical method,
which allows for measuring surface director rotations as
small as a fraction of an arcminute. Our method is similar to
that of Faetti and Nobili insofar as the twist deformation is
induced by a magnetic field. To determine the director orien-
tation at the substrate, a photoelastic modulator �PEM� is
used in conjunction with a white light source. PEM is a very
efficient device to analyze the polarization state of a light
beam;8 some details are given in Sec. II. The purpose of
applying white light instead of a laser beam is to avoid in-
terference effects in the liquid-crystal cell �and also in the
PEM itself�, which can give spurious results.6,7 We show that
the method is suitable not only for the precise measurement
of the surface director orientation but also for the direct de-
termination of the twist deformation at the interface. The
extrapolation length can be therefore deduced from the data
without additional measurements. We also show that the
measured director orientation is determined by the alignment
at the exit face of the cell alone; it is insensitive to the align-
ment at the entrance face. As a consequence, it is possible to
compare the alignment properties of the two substrates of the
cell independently. Finally, the method can be used for dy-
namic investigations on a time scale shorter than the bulk
reorientation time of the director. This circumstance is useful
in the study of the so-called gliding phenomenon, i.e., the
slow drift of the surface orientation after the bulk equilib-
rium is attained.

II. THE PRINCIPLE OF PHOTOELASTIC MODULATOR
MEASUREMENTS

The main part of PEM is a quartz window, which is
periodically compressed and stretched with the help of a pi-
ezoelectric transducer, typically in the frequency range of
20-100 kHz. The mechanical stress induces an optical aniso-a�Electronic mail: janossy@szfki.hu
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tropy in the window, producing a periodical phase difference
between the polarization components of a light beam passing
through it. In the standard setup �Fig. 1�, behind the PEM the
light passes through an analyzer polarized at 45° with respect
to the modulator axis. The first and second harmonic Fourier
components of the detector signal are measured with a
lock-in amplifier.

For a monochromatic light, the first harmonic signal
�FHS� is proportional to S3J1��Ad�, where S3 is the Stokes
parameter defined as

S3 = i�ExEy
* − Ex

*Ey� . �1�

Ex and Ey are the electric-field strengths of the light beam
along the modulator axis and in the perpendicular direction,
respectively. J1 is the first-order Bessel function, � is the
wavelength, A is the amplitude of the refractive index modu-
lation, and d is the window thickness. We note that A can be
regulated through the amplitude of the driving voltage of the
PEM. The second harmonic signal �SHS� is proportional to
S2J2��Ad�, where S2 is

S2 = �ExEy
* + Ex

*Ey� , �2�

and J2 is the second-order Bessel function. When the PEM
and the analyzer are rotated together by an angle �, the
Stokes parameters for the latter position of the setup, S2� and
S3�, can be expressed with the help of S2 and S3 as

S2� = S2 cos 2� + S1 sin 2� ,

�3�
S3� = S3,

where S1 is the Stokes parameter

S1 = �ExEx
* − Ey

*Ey� .

From the above relations it follows that for an elliptically
polarized light S2=0 when the principal axis of the polariza-
tion ellipsoid is along x. Therefore this direction can be
found by rotating the PEM until the SHS becomes zero. We
note that the SHS varies linearly with angle around the zero
position �see Eq. �3��. This fact makes possible very sensitive
detection of changes in the direction of the principal axis. S3

characterizes the ratio of the principal axes of the ellipsoid;
for linear polarization it is zero.

For white light, the Stokes parameters for different
wavelengths are added together. The FHS and SHS are pro-

portional to the “effective” Stokes parameters, Ŝ3 and Ŝ2,
respectively, defined by the relations

Ŝ3 = �
�

w���S3���J1��Ad�d�/�
�

w���J1��Ad�d� ,

Ŝ2 = �
�

w���S2���J2��Ad�d�/�
�

w���J2��Ad�d� ,

where w��� is the spectral density of the light source, multi-
plied by the detector sensitivity at the given wavelength. An

effective Stokes parameter Ŝ1 can be defined as

Ŝ1 = �
�

w���S1���J2��Ad�d�/�
�

w���J2��Ad�d� .

With this definition, the transformation equation �Eq. �3�� is
valid also for the effective Stokes parameters.

III. DETERMINATION OF THE SURFACE DIRECTOR
ORIENTATION AND TWIST DEFORMATION
WITH PEM

The setup used for our method is depicted in Fig. 1.
Similar to the experiments of Faetti and Nobili a uniformly
twisted planar nematic cell is prepared, with the boundary
conditions ��0�=�0 and ��L�=�L, where � is the azimuthal
angle of the director and L is the sample thickness. The
sample is placed into an electromagnet, which can deform
the initial director alignment. A polarized white light beam
passes through the liquid-crystal cell and enters the PEM.
The measurements consist of detecting the first and second
harmonic signals as a function of the magnetic field.

First we consider light propagation through the liquid-
crystal cell in the so-called Mauguin approximation,9 valid
for the limit d� /dz�1/�, where z is the direction along the
cell normal. In this limit the light polarization follows the
director “adiabatically,” so a beam polarized parallel to the
director at the entrance face emerges from the cell polarized
parallel to the director at the exit face. From the relations

presented in Sec. II it follows that Ŝ2 is proportional to
sin 2�L, where �L is the director angle at the exit face, i.e.,
the angle between the polarization direction of the output
light beam and the modulator axis. The polarization direction
can be obtained by rotating the PEM unit until the SHS
disappears. When the magnetic field is switched on SHS re-
appears, indicating a rotation of the director at the exit sur-
face of the cell. The new position of the director can be
found either by rotating the PEM until the SHS disappears
again, or by calibrating the proportionality factor between
SHS and sin 2�L through rotating the PEM by a known
angle.

In the Mauguin limit one does not expect to obtain FHS,

as Ŝ3 is zero for linearly polarized light. As it will be pre-
sented in Sec. IV, in the experiments we do observe FHS. In
addition, in the above considerations we did not take into
account the effect of a possible reorientation of the director
at the entrance face. In order to deal with these problems, we
consider a next approximation, which we will call general-
ized adiabatic propagation �GAP�. The details of GAP is
given in the Appendix; here we summarize the results.

FIG. 1. Setup used in the experiments. P is the polarizer, A is the analyzer,
D is the detector, and N and S are the poles of the electromagnet. The PEM
and the analyzer are mounted on the same stage and can be rotated together.
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In the absence of magnetic field the cell is uniformly
twisted. There is an exact solution for light propagation in
this configuration, given first by De Vries in 1951.10 There
are four elliptically polarized normal modes; in the Mauguin
limit they correspond to forward and backward propagating
extraordinary and ordinary beams, respectively. The princi-
pal axes of the ellipse are parallel and perpendicular to the
director. In the GAP limit we assume that these modes propa-
gate independently, even when a nonuniform twist deforma-
tion is created by the magnetic field. According to this ap-
proximation, if only one of the normal modes is excited at
the entrance face, the exit beam also corresponds to the same
normal mode. It should be noted that a linearly polarized
input does not correspond exactly to a single normal mode.
For example, if the input light is polarized parallel to the
director at the entrance face, beside the forward propagating
e mode, a forward propagating o mode is excited with a
certain amplitude as well. For monochromatic light, due to
the interference between these modes, the major axis of the
output polarization ellipsoid can deviate from the director.
This effect can appear as a spurious director rotation.7

As pointed out in the Appendix, the above problem is
avoided if a wide distribution of wavelengths is used. In this

case the Ŝ2 Stokes parameter becomes zero when the director
at the exit face is parallel to the modulator axis, at arbitrary
input polarization. Consequently, the same procedure can be
used to determine the director orientation as described earlier
for the Mauguin limit. Director rotation at the entrance face
has no influence on the method.

The GAP approximation also accounts for the observa-
tion of FHS. The normal modes are elliptically polarized

hence the Ŝ3 Stokes parameter has a small but finite value. As
we show in the Appendix, in the limit of slow spatial director
variations it is proportional to the twist deformation at the
exit boundary, i.e., to ���L�. According to this description,
when twisted cells are used in the experiment FHS should be
observed even without magnetic field, corresponding to the
uniform twist deformation in the undistorted cell. This signal
can be used to calibrate the relation between FHS and the
twist deformation at the exit face.

To sum up, the director orientation at the exit surface can
be obtained by determining the PEM position at which the
SHS disappears. In the actual experiments, the compensation
is done at zero magnetic field and then SHS is detected as a
function of the magnetic field. For calibration of the angular
rotation the PEM is rotated by a known angle at fixed
magnetic-field strength and detecting the corresponding
SHS. The twist deformation at the exit surface can be de-
duced from the FHS; the calibration factor can be obtained
from the zero-field value of FHS, which corresponds to
��L−�0� /L.

IV. RESULTS AND DISCUSSION

In the experiments a Hinds Instruments photoelastic
modulator was used with a resonance frequency of 42 kHz.
The light source was a tungsten lamp. A filter was placed in
front of the detector to cut off infrared light. The cells were
prepared using commercially available plates, covered with

rubbed PI layers �E.H.C. Co., Japan�. The nematic liquid
crystal was 5CB, supplied by Merck Co. In the cell we ap-
plied a twist angle slightly smaller than 90° in order to avoid
formation of domains with opposite twist directions. All
measurements were carried out at 25 °C.

As a first step of the measurements the PEM was rotated
to a position where the SHS disappeared. In good agreement
with the theoretical prediction, this position was insensitive
to the direction of the input polarization; rotation of the input
polarization by 10° caused about a 0.5� change in the zero
position of the PEM. For calibration of the SHS the PEM
was rotated by 20�, with a precision of 1�. The calibration
was carried out without and with magnetic field; no signifi-
cant difference was found between the two calibrations.

In Figs. 2 and 3, we present an example of the experi-
mental results. The cell was 72-�m thick; the twist angle
was 86°. In Fig. 2 the change of director orientation is dis-
played as a function of the magnetic field, as deduced from
SHS measurements. The data in Fig. 2�a� were obtained with
the director on the exit face approximately perpendicular to
the magnetic field, while Fig. 2�b� shows the result when
these directions were approximately parallel. The corre-
sponding results for FHS are shown in Fig. 3 �squares and
triangles, respectively�.

In order to analyze the results, we note that according to
the theoretical considerations, the FHS is proportional to the
twist deformation at the exit face, ���L�. Using the Frank
elastic theory of liquid crystals,11 �� can be readily obtained
by solving the differential equation

FIG. 2. Rotation of the director on the exit face as a function of the mag-
netic field. Director at exit face �a� perpendicular and �b� parallel to the
magnetic field. ��L=�L�H�−�L�0�.
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K2�� =
1

2
	aH2 sin 2� ,

where K2 is the twist elastic constant and 	a is the anisotropy
of the diamagnetic susceptibility. We define the magnetic-
field direction as �=0. The boundary conditions are ��0�
=�0 and ��L�=�L. In Fig. 3, the solid lines corresponds to
theoretical fits with �0=4° and �L=90° and �0=−86° and
�L=0° for the fit of squares and triangles, respectively. �In
the calculation we neglected the variation of �0 and �L with
magnetic field, as it is less than 10� �see Fig. 2�.� Both curves
were fitted with �K2 /	a�1/2=2.3
10−6 T m. The fits are sat-
isfactory, although the value of �K2 /	a�1/2 is about 15%
higher than that reported in the literature.7 The deviation may
be due to a small deviation between the assumed and actual
director orientations at the substrates, relative to the mag-
netic field.

According to the accepted models of anchoring, the bal-
ance of two different surface torques determines the director
orientation at the interface. The first torque is experienced by
the liquid-crystal layer, it is equal to K2���L�. The second
one is the due to the orienting action of the substrate; it can
be given in the form W��e−�L�, where W is an energy pa-
rameter characterizing the interface and �e is the azimuthal
angle of the “easy axis,” i.e., the direction along which the
liquid-crystal-substrate interaction energy is minimal. The di-
rector orientation is therefore

�L = �e − ����L� ,

where �=K2 /W is the extrapolation length. In Fig. 4 a direct
proof of the above relation is presented, based on the data of
Figs. 2�a� and 3. The absolute scale of the twist deformation
was obtained by matching the zero-field value of the FHS
with the initial twist of the cell, ��L−�0� /L. The extrapola-
tion length is in this case 23 nm, which is a much lower
value than those reported in Refs. 2 and 3, but it is compat-
ible with the results of Faetti.7 We found that � changes to
some extent across the substrate; it is the smallest at the
center and increases towards the cell boundaries.

In Fig. 4 a small but systematic deviation from the pre-
dicted linear behavior can be observed. We believe that this

divergence is due to director gliding,12–16 i.e., the drift of the
director under constant applied field on time scales much
longer than the bulk reorientation time.

The anchoring properties can be analyzed also for the
geometry when the director at the exit face is parallel to the
magnetic field. In this case we expect that the twist is re-
moved by the field at the interface and as a consequence �L

decreases from its initial value to �e. The experimental re-
sults are in good qualitative agreement with this expectation;
the FHS decreases to zero �Fig. 3, triangles� while the varia-
tion of �L is significantly smaller and of opposite sign as in
the other geometry. Quantitatively, however, these measure-
ments are less accurate than the previous ones, as the mea-
sured signals are reduced by a factor of about 7. A similar
evaluation of the extrapolation length as presented before
yielded 15 nm. The deviation may be due to the fact that the
measurements were not carried out on exactly the same spot,
or to the influence of gliding on the experiment.

Finally, we discuss the limitations of the method. The
measurement of the zero position of the SHS is limited by
the thermal fluctuations of the liquid crystal, which intro-
duces noise into the recorded signal. In steady-state experi-
ments the noise can be reduced by time averaging; we found
that with an integrating constant of a few seconds the fluc-
tuations are in the order of a few tenths of an arcminute. As
shown in the Appendix, the theoretical precision of the opti-
cal method for the present experimental circumstances is of
similar magnitude. Therefore the accuracy of determining �L

is less than an arcminute, which corresponds in our experi-
ments to an error in the extrapolation length below 2 nm. In
addition, the calibration procedures �magnetic field, rotation
angle� and the imperfect determination of the alignment of
the sample relative to the magnetic field may introduce sys-
tematic errors, which we estimate to cause a 10%–15% error
in the evaluation of the correlation length for our experimen-
tal circumstances. In the case of thin samples or very strong
magnetic fields, the proportionality between the FHS and
���L� breaks down which has to be taken into account when
applying the present method.

V. CONCLUSIONS

We presented a procedure for the precise determination
of the azimuthal director orientation at a liquid-crystal-solid-

FIG. 3. Normalized FHS signal as a function of magnetic field with the
director at the exit face perpendicular �squares� and parallel �triangles� to the
field. Solid lines: theoretical fit with 	K2 /	a=2.3
10−6 T m.

FIG. 4. Director rotation as a function of the twist deformation at the exit
surface, field and director perpendicular. The curve is deducted from the
data in Figs. 2�a� and 3.
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substrate interface. Using this method changes of less than
an arcminute in the director orientation can be reliably de-
tected. In addition, the method allows for direct determina-
tion of the twist deformation at the interface, thus the ex-
trapolation length can be calculated without any
supplementary measurement. The procedure makes possible
also dynamic measurements on time scales shorter than the
bulk reorientation of the liquid-crystal layer. This fact is es-
pecially useful in the study of gliding, which in our opinion
plays a much more significant role in anchoring properties
than usually anticipated, even in the case of strong anchor-
ing.

This work was supported by the Hungarian Research
Grants OTKA T-037275 and NKFP-128/6.

APPENDIX
We consider a planar nematic liquid-crystal layer, in

which the azimuthal director angle ��� changes along the
direction normal to the cell boundaries �z direction� while it
is constant in the xy plane. We discuss the properties of a
light beam propagating along the cell normal.

A general method to calculate the propagation of a
monochromatic light beam in stratified liquid-crystal layers
were given by Berremann and Scheffer17 and by Allia et

al..18 Following their approach, we introduce a four-
component field vector F= �E� ,E� ,H� ,H��, where E and H
are the electric- and magnetic-field vectors; � and � are the
axes in the xy plane parallel and perpendicular to the direc-
tor, respectively. The field vector obeys the linear differential
equation

F� = ik0VF, �A1�

where the prime stands for derivation with respect to z, and
k0=2� /� �� is the wavelength�. In our specific case

V = 

0 − ip 1 0

ip 0 0 − 1

ne
2 0 0 ip

0 − no
2 − ip 0

� .

Here p=�� /ko, and ne and no are the extraordinary and
ordinary refractive indices, respectively.

The solutions of Eq. �A1� for p=const �uniform twist�
were first given by De Vries.10 There are four independent
normal modes of the form

F = Fl exp�ik0mlz� ,

from which the matrix M= �F1 ,F2 ,F3 ,F4� can be
constructed,

M = 

ue − iuoro ue iuoro

iuere uo − iuere uo

ue�me − pre� − iuo�moro − p� − ue�me − pre� − iuo�moro − po�
− iue�mere − p� − uo�mo − pro� − iue�mere − p� uo�mo − pro�

� . �A2�

The normal modes are elliptically polarized, and the po-
larization ellipsoid rotates together with the director, the
principal axes being along � and �. They can be specified
into forward propagating extraordinary mode �ml

=me ,E� /E�= ire�, forward propagating ordinary mode �ml

=mo ,E� /E�= iro�, backward propagating extraordinary mode
�ml=−me ,E� /E�=−ire�, and backward propagating ordinary
mode �ml=−mo ,E� /E�=−iro�. The parameters ue and uo are
chosen in a way that the z component of the vector E
H
�which can be considered as the Poynting vector of the given
mode� should be unity,

1/ue
2 = me�1 + re

2� − 2pre �extraordinary modes� ,

1/uo
2 = mo�1 + ro

2� − 2pro �ordinary modes� .

The exact expressions for me, mo, re, and ro can be found in
standard textbooks of liquid crystals �e.g., Ref. 9�; here we
only give their values in the limit p�1,

me = ne + O�p2�, re =
2pne

ne
2 − no

2 ,

mo = no + O�p2�, ro =
2pno

ne
2 − no

2 .

For nonuniformly twisted layers we can write the field vector
as a superposition of the normal modes,

F = �
l=1

4

Cl�z�exp
ik0� mldz�Fl,

or

F = MĈ, Ĉl = Cl exp
ik0� mldz� . �A3�

As a detailed consideration shows, in the limit
�� /k0

2�ne−no��1, the z dependence of the Cl coefficients
becomes negligible, i.e., the modes propagate independently
through the liquid-crystal layer �GAP�. Let us consider a
light beam entering the sample with C1�0�=c1 and C2�0�
=c2. The backward propagating modes are not excited, hence
C3�0�=C4�0�=0. For simplicity, we assume that c1 and c2 are
real quantities, although this is not essential for our consid-
erations. In the GAP approximation, at the exit face,
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C1�L� = c1 exp�i�e�, C2�L� = c2 exp�i�o� ,

with

�e = k0� medz � k0neL and �o = k0� modz � k0noL .

To calculate the Stokes parameters at the exit face with ref-
erence to the � , � system, we note that from Eqs. �A2� and
�A3�,

E� = M11C1 + M12C2,

�A4�
E� = M21C1 + M22C2.

Using the definition of the Stokes parameters and applying
Eq. �A4� for z=L, we find that for monochromatic light,

S1 = �1 − re
2�ue

2c1
2 − �1 − ro

2�uo
2c2

2

+ ueuo�re − ro�c1c2 sin��e − �o� ,

S2 = ueuo�1 − rero�c1c2 cos��e − �o� ,

S3 = 2�reue
2c1

2 + rouo
2c2

2� + ueuo�1 + rero�c1c2 sin��e − �o� ,

where the parameters u and r have to be taken at z=L.
For white light the Stokes parameters have to be aver-

aged over the wavelength, as discussed in Sec. II. The terms
containing the phase difference �e−�o�k0�ne−no�L oscil-
late rapidly with the wavelength; for example, with ne−no

=0.2, L=70 �m, and �=500 nm, the phase difference
changes by 2� over a wavelength range of 20 nm. If the
spectral width of the light beam is much larger than this
interval, one can assume that the average of the terms con-

taining �e−�o is zero. Under this circumstance Ŝ2 is zero at
arbitrary c1 and c2. This fact was used in the measurements
to determine the director orientation at the exit face.

To see the accuracy of the above assumption, we solved
the light propagation equation �A1� numerically. In the cal-
culation the sample thickness and refractive indices corre-
sponded to the experimental conditions. It was found that for
monochromatic light the angle between the zero position of
S2 and the director at the exit face deviates about 0.5° and the
deviation oscillates with the wavelength, as expected from
the previous considerations. For white light, the light spec-
trum has to be specified. Assuming a Gaussian distribution

for w���J2��Ad� with a half-width of the order of 100 nm,
we found that the deviation was reduced to less than 1
arc min.

In order to analyze the first harmonic signal, we consider

Ŝ3, which becomes for white light

Ŝ3 = 2�reue
2c1

2 + rouo
2c2

2� �
4p�L�
ne

2 − no
2 �c1

2 + c2
2� . �A5�

In the experiments a linearly polarized beam enters the
sample, where the polarization may have a small angle 

with the director at the entrance face. At z=0 the electric-
field components are E�=E0 cos 
 and E�=E0 sin 
. Invert-
ing Eq. �A4�, and applying for z=0 one finds that

c1 = 	neE0 cos 
 + O�p�; c2 = 	noE0 sin 
 + O�p� .

From these relations, combined with Eq. �A5�, it follows that

the Ŝ3 Stokes parameter is, in linear approximation �with
respect to k0���, proportional to p�L�. In the measurements
we took advantage of this fact to determine ���L�.
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