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Light-induced rotation of dye-doped liquid crystal droplets
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We investigate both theoretically and experimentally the rotational dynamics of micrometric droplets of
dye-doped and pure liquid crystal induced by circularly and elliptically polarized laser light. The droplets are
dispersed in water and trapped in the focus of the laser beam. Since the optical torque acting on the molecular
director is known to be strongly enhanced in light-absorbing dye-doped materials, the question arises whether
a similar enhancement takes place also for the overall optical torque acting on the whole droplets. We searched
for such enhancement by measuring and comparing the rotation speed of dye-doped droplets induced by a laser
beam having a wavelength either inside or outside the dye absorption band, and also comparing it with the
rotation of pure liquid crystal droplets. No enhancement was found, confirming that photoinduced dye effects
are only associated with an internal exchange of angular momentum between orientational and translational
degrees of freedom of matter. Our result provides also direct experimental proof of the existence of a photo-
induced stress tensor in the illuminated dye-doped liquid crystal. Finally, peculiar photoinduced dynamical
effects are predicted to occur in droplets in which the molecular director is not rigidly locked to the flow, but
so far they could not be observed.
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I. INTRODUCTION

It has been known since the early 1980s that light can
transfer its angular momentum to liquid crystals with high
efficiency, causing the rotation of the average molecular ori-
entation, as specified by the molecular director �1�.

In the early 1990s it was discovered that by adding small
amounts of certain dyes to the liquid crystals, the light-
induced torque on the molecular director could be greatly
enhanced �2,3�. This effect, initially rather puzzling, was
later explained by a model relying on the reversible changes
of intermolecular forces occurring between photoexcited dye
molecules and liquid crystal host �4�. This model was subse-
quently extended and refined �5� and confirmed with several
independent experiments �6–10�.

The understanding achieved with this model has also pro-
vided an answer to a fundamental question related to the
observed torque enhancement: Where does the additional an-
gular momentum come from? Clearly, the angular momen-
tum that is transported by the optical wave impinging on the
material cannot be affected by the presence of dye. It is true
that absorption of light due to the dye does lead to some
additional transfer of angular momentum from light to matter
and therefore to a variation of the light-induced torque. How-
ever, this effect cannot account for the magnitude of the ob-
served torque enhancement �6� and for its peculiar dye-
structure dependence �7�. The clearest solution to this puzzle
was put forward in Refs. �5,11� and is as follows. The angu-
lar momentum transfer from light is indeed approximately
unchanged. Light absorption, however, triggers a transfer of
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angular momentum between different internal degrees of
freedom of the liquid crystal, namely from the center-of-mass
molecular degrees of freedom, corresponding macroscopi-
cally to fluid flow, to the molecular-orientation degrees of
freedom, corresponding to the molecular director. Being an
internal transfer, the total angular momentum given to the
material as a whole is not affected by the presence of dye.
Another consequence of this internal transfer is that, by the
force action-reaction principle, in dye-doped liquid crystals
there should be another �opposite� torque acting on the fluid
in the form of a photoinduced stress tensor �5�.

However plausible they may be, both these predictions
have never been tested directly in an experiment. Here we
address these questions by studying the rotational behavior
of pure and dye-doped liquid crystal droplets of micrometric
size, optically trapped in water, under the effect of circularly
and elliptically polarized infrared and visible laser light. In
particular, we measured the rotation speed of dye-doped
droplets illuminated with visible light, having a wavelength
in the dye absorption domain, and compared it with that of
undoped droplets and with the case in which the illumination
is by infrared light, not absorbed by the dye. Should we
observe some significant dye-induced enhancement �or other
anomalies� of the droplet rotation speed, this would imply
that the current understanding of the photoinduced torque as
entirely due to an internal exchange of angular momentum is
not correct, or at least not complete.

But what do we exactly mean by droplet rotation? From a
theoretical point of view, a liquid crystal droplet actually has
two independent rotational degrees of freedom: the average
molecular director, corresponding to the average orientation
of the liquid crystal molecules in the droplet, and the internal
rotational flow, corresponding to a fluidlike motion of the

molecule centers of mass �this is already a strong simplifica-
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tion: a liquid crystal droplet has actually an infinite number
of rotational degrees of freedom associated with changing
inhomogeneous configurations of director and flow�. These
two rotational degrees of freedom of the droplet are always
strongly interacting with each other, via viscosity, elastic
forces, and possibly also photoinduced effects. This interac-
tion may be strong enough to lock the two degrees of free-
dom together into a single one, so that the droplet effectively
behaves as a rigid body. This is what we actually observed in
our experiments. Nonetheless, by properly choosing the ex-
perimental parameters, it should be possible to reach a re-
gime in which the two rotational degrees of freedom become
effectively unlocked. We would expect that in this “un-
locked” regime, photoinduced dye effects become important,
even if the angular momentum exchange is entirely internal.
We investigated theoretically this case and predicted the oc-
currence of highly nontrivial photoinduced rotational effects,
which we then tried to observe experimentally.

This paper is organized as follows. The general con-
tinuum theory of the light-induced dynamics of dye-doped
liquid crystals is reviewed in Sec. II. In Sec. III, we then
apply this theory to the case of a spherical droplet immersed
in water. With the help of several strongly simplifying
approximations, analytical solutions are found, predicting
what should be the light-induced rotational behavior of the
droplets as a function of light power and polarization and
of droplet size. Our experiments are then described and
discussed in Sec. IV. Our results are finally summarized in
Sec. V.

II. GENERAL THEORY OF PHOTOINDUCED
DYNAMICS OF NEMATICS

A. Dynamical fields and equations

In general, the dynamics of a nematic liquid crystal under
the action of laser light is defined by the temporal and spatial
dependence of the following fields: �i� the molecular director
n specifying the local average molecular alignment �12�, �ii�
the velocity vector v defining the flow of matter, and �iii� the
electric and magnetic fields of the optical wave, E and B,
respectively.

The optical fields E and B are governed by the usual
electromagnetic Maxwell equations in �anisotropic� dielec-
tric media �13�. The two material fields n and v are, respec-
tively, governed by the director torque balance equation,

In
d

dt
�n �

dn

dt
� = �tot �1�

and by the Newton equation for the acceleration �or momen-
tum conservation law�,

�
dvi

dt
= � jt ji

tot, �2�

where � j stands for the partial derivative � /�xj and the usual
sum convention over repeated indices is understood. In these
equations, �tot is the total torque density acting on the mo-
lecular director, ttot is the total stress tensor associated with a
fluid displacement with no director rotation �this corresponds
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to Ericksen’s definition of stress tensors in liquid crystals
�14��, In is a moment of inertia per unit volume associated
with the rotation of the nematic director, which is actually
negligible in all practical cases �it is included only for mak-
ing the equation physical meaning clearer�, and � is the mass
density, hereafter assumed to be constant �incompressible
fluid approximation�. Moreover, in both equations above we
have used the so-called “material” or “convective” time de-
rivative, defined as d /dt=� /�t+v j� j, corresponding to a de-
rivative taken following the fluid element along its motion.
Incompressibility actually adds the following constraint on
the velocity field v:

�ivi = 0, �3�

which is a particular case of the mass continuity equation.

B. Constitutive equations

Equations �1� and �2� are to be completed with the appro-
priate constitutive equations for the total torque density and
stress tensor. To first order in all deviations from equilibrium
and in all gradients, we may distinguish five additive and
independent contributions to both the torque density and the
stress tensor �14,15�: hydrostatic pressure �hp�, elastic �el�,
viscous �vis�, electromagnetic �em�, and photoinduced �ph�,
the latter being that associated with dye effects. In summary,
one may write

�tot = �
�

�� �4�

and

t ji
tot = �

�

t ji
� . �5�

Each of the ten �� and t� ��=hp, el, vis, em, ph� terms
appearing in these two equations has a well-defined �first-
order� constitutive dependence on the dynamical fields,
which we will now briefly discuss.

First, there is actually no torque density associated to
pressure effects, i.e., �hp=0 identically. The hp stress tensor
term has instead the usual simple form t ji

hp=−p� ji, where p is
the pressure field and �ij is the Kronecker delta. In the
incompressible-fluid approximation we are adopting, p must
be treated as a pure “constraint force,” i.e., assuming just the
space and time dependence needed to ensure continuous va-
lidity of Eq. �3�.

Next, the constitutive laws of the elastic and viscous
torque densities and stress tensors are fully standard and we
refer to Refs. �14� or �15� for their explicit expressions.

Let us now turn to the electromagnetic terms. They are
also standard, but it is nevertheless convenient to introduce
them explicitly here. We assume for the time being that the
electromagnetic fields present in our systems are associated
only with an approximately monochromatic optical wave
having a given vacuum wavelength �. Let us first introduce
the uniaxial optical dielectric tensor of the liquid crystal

�ij = �0����ij + �aninj� , �6�

where �0 is the vacuum dielectric constant, �� the relative

dielectric constant for E�n, and �a the relative dielectric
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anisotropy. Neglecting all magnetic effects at optical fre-
quencies, the electromagnetic torque density is then given by

�em = �D � E	 = �0�a��n · E��n � E�	 , �7�

where D is the usual dielectric displacement field �Di

=�ijEj� and where � 	 denotes a time average over an optical
cycle. The electromagnetic stress tensor can be written in the
following form �13,16�:

t ji
em =
�F̃em − �

�F̃em

��
�� ji + DjEi + BjBi/�0� , �8�

where �0 is the vacuum magnetic permittivity constant and

F̃em is the electromagnetic free energy density at given elec-
tric field E and magnetic field strength H=B /�0, which in
our case can be written as

F̃em = −
1

2
�ijEiEj −

B2

2�0
= −

�0

2
����ij + �aninj�EiEj −

B2

2�0
.

�9�

Let us finally consider the photoinduced terms, i.e., those
appearing in dye-doped liquid crystals when illuminated with
light having a wavelength falling within the dye absorption
band. These are absolutely nonstandard. In the limit of small
light intensities, simple symmetry arguments show that the
photoinduced torque density must be identical to the electro-
magnetic one except for the replacement of the dielectric
anisotropy �a with a new material constant 	, proportional to
the absorbance �or to dye concentration� �5�. Therefore its
explicit expression can be written as follows:

�ph = 	�0��n · E��n � E�	 �10�

�the constant �0 is inserted for making 	 dimensionless�.
Similarly, we may apply symmetry arguments for identifying
the most general possible expression of the photoinduced
stress tensor. This expression contains seven unknown mate-
rial constants �all proportional to the absorbance�:

tij
ph = ��a1E2 + a2�n · E�2��ij + a3EiEj + �a4E2

+ a5�n · E�2�ninj + �n · E��a6Einj + a7Ejni�	 . �11�

The effects of this stress tensor have not been measured or
even detected in ordinary liquid crystals, although related
photoinduced effects may have been observed in polymeric
nematic elastomers �17,18�.

We have thus completed the set of constitutive equations
needed to close the dynamical equations �1� and �2�.

C. Angular momentum conservation

Before moving on to the specific case of a droplet of
liquid crystal immersed in water, it is convenient to see how
the law of angular momentum conservation enters our prob-
lem.

In contrast to the case of the conservation of �linear� mo-
mentum, which provides an additional dynamical equation,
the law of angular momentum conservation actually sets
only a general constraint on the possible constitutive laws of
051707
torque densities and stress tensors. For any given volume V
of material, the corresponding angular momentum rate of
change will be given by the following law:

dL

dt
= Mtot, �12�

where L is the total angular momentum within volume V and
Mtot is the total external torque acting on it. The two sides of
Eq. �12� can be deduced by multiplying the corresponding
sides of Eq. �2� vectorially by r, integrating them over the
volume V, and then adding to them the volume integral of
the corresponding sides of Eq. �1�. In this way we obtain

L = �
V
��r � v + Inn �

dn

dt
�dV �13�

and Mtot=��M�, with

Mi
� = �

V
��ijhxj�ktkh

� + �i
��dV , �14�

where �ijh is the fully antisymmetric Levi-Civita tensor �19�.
However, in order for Eq. �12� to be equivalent to a local
conservation �continuity� law, it should be possible to reduce
the total external torque to a pure surface integral over the
boundary �V of V, such as the following:

Mi
� = 

�V
�ijh�xjtkh

� + njskh
� �dAk, �15�

where skh
� is a material tensor expressing the torque per unit

area exchanged by the director n directly through the surface
and dAk denotes a vector having direction equal to the local
surface normal �pointing outward� and modulus equal to the
area of the surface element �14,15�.

By equating the two expressions �14� and �15� of the ex-
ternal torque for any possible volume V, and exploiting the
standard divergence theorems, one obtains the local identity

�i
� = �ijht jh

� + �k��ijhnjskh
� � . �16�

Generally speaking, this identity holds true only for �=tot,
and not separately for each term �=hp,el ,vis,em,ph. How-
ever, since in our first-order theory these five terms can be
tuned independently from each other, identity �16� must hold
true also for �=hp,el ,vis,em,ph, separately.

Moreover, since in the first-order approximation only the
elastic forces �torque density and stress tensor� are taken to
depend on the director spatial gradients, we may deduce
from Eq. �16� that skh

� is nonzero only for the elastic contri-
bution �=el. In all other cases one must have s�=0 within
first-order approximation. Therefore in these cases, owing to
angular momentum conservation, the stress tensor defines
completely the torque density, or conversely, the torque den-
sity defines the antisymmetric part of the stress tensor. In
particular, Eq. �16� with �=ph yields the following relation-
ship between the material constants appearing in expressions

�10� and �11�:
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	�0 = a7 − a6. �17�

In concluding this section, we note that the theory we have
just described and in particular the constitutive equations we
have adopted for the photoinduced torque density and stress
tensor already imply that the photoinduced angular momen-
tum transfer associated with the dye is fully internal to the
liquid crystal. Indeed, the flux of angular momentum through
any boundary surface, as given by Eq. �15�, will vanish iden-
tically if the stress tensor vanishes on it. Since we have as-
sumed that all material constants ai are proportional to the
dye concentration, they should vanish on a surface lying just
outside the liquid crystal �in water� and therefore the flux of
angular momentum through such a surface will vanish, i.e.,
one has Mph=0. We note that the same argument does not
hold for Mem, as tem has a finite value also in the isotropic
liquid.

Is there a possible way out of this conclusion, justifying
perhaps a hypothetical photoinduced flow of angular mo-
mentum out of the liquid crystal? Within a first-order theory
of the constitutive equations the answer is no. However, it
cannot be a priori excluded that higher-order terms in the
constitutive equations become important in specific situa-
tions and justify a strong exchange of angular momentum
with the outside. For example, at the surfaces between the
liquid crystal and the surrounding medium, the mass and
composition densities suffer sharp discontinuities. Therefore
a first-order theory in the spatial gradients is clearly not jus-
tified anymore �this, by the way, is just how surface anchor-
ing enters the problem�. It would then be conceivable that
higher-order terms in the photoinduced torque density and
stress-tensor expressions could give rise to photoinduced sur-
face effects leading to a significant angular momentum ex-
change with the outside, i.e., to a Mph�0. In the end, this
hypothesis can only be tested, and eventually ruled out, ex-
perimentally.

III. DROPLET ROTATIONAL DYNAMICS

Equations �1�–�3�, supplemented with all constitutive
equations for torque densities and stress tensors, completely
define the light-induced dynamics of the liquid crystal. In the
case of a droplet of liquid crystal immersed in water one
should also include in the system the appropriate boundary
conditions at the droplet surface. We limit ourselves to men-
tioning them: continuity of fluid velocity and forces across
the boundary, continuity of tangential components of E and
of normal components of D, continuity of B, and appropriate
anchoring conditions on n. Moreover, one should account for
the dynamics of the water surrounding the droplet. The latter
is also governed by Eq. �2�, but with a simpler expression of
the stress tensor, including only hydrostatic pressure, New-
tonian viscosity, and the electromagnetic stress tensor.

The resulting system of equations is clearly very complex
and an exact solution can be determined only numerically. In
the following, we instead approach the problem analytically
with the help of several approximations.

First, we will assume that the droplet is always perfectly

spherical, with a radius R and a total mass m �spherical
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droplet approximation �SDA��. This is an approximation be-
cause anchoring effects combined with elastic interactions
may actually slightly distort the shape of the droplet into an
ellipsoid. The molecular director configuration within the
droplet will be taken to be axial, namely the director n has a
well-defined uniform direction close to the center of the
droplet, while it will be distorted to some extent close to the
surface due to anchoring �20,21,24�. This allows one to prop-
erly define an average molecular director of the droplet.

Second, for calculating exactly the overall electromag-
netic torque acting on the droplet we would have to deter-
mine in all details the light propagation within the spherical
droplet, including all the birefringence and wave diffraction
�Mie scattering� effects: an exceedingly complex task. In-
stead, following a common practice in the literature �22–24�,
we will use an approximate expression of the electromag-
netic torque obtained by simply replacing the spherical drop-
let with a homogeneous slab of liquid crystal having a thick-
ness equal to the droplet diameter and the strongly focused
light beam with a plane wave �planar symmetry approxima-
tion �PSA��. This approximation will tend to become more
exact in the limit of large droplets and weakly focused light
beams.

Third, we will restrict the possible dynamics of the fluid
and the director to either one of the following two approxi-
mate models: �i� the droplet behaves exactly as a rigid body,
i.e., rotating only as a whole and with the director perfectly
locked to the fluid �rigid body approximation �RBA��; or
�ii� the droplet fluid flow and director are allowed to have
different, although uniform, rotation dynamics but the direc-
tor field is taken to be perfectly uniform �uniform director
approximation �UDA��.

Let us now go into the details of the outlined approxima-
tions. The SDA approximation needs no further comments,
so we move on to the calculation of the total electromagnetic
torque acting on the droplet within the PSA approximation.

A. Total external electromagnetic torque

We assume that a focused light beam passes through a
liquid crystal droplet and that the average molecular director
inside the droplet is oriented perpendicular to the beam axis.
We choose a reference system in which the z axis coincides
with the beam axis and the average molecular director lies in
the xy plane. Note that, even if initially the average director
of the droplet will not necessarily lie in the xy plane, the
electromagnetic torque itself will force it there, in order to
align the director to the optical electric field. So, at steady
state, our assumption will be always verified.

In order to calculate the total electromagnetic torque we
must use either Eq. �14� or Eq. �15�, with �=em and with
expressions �7� and �8� of the torque density and stress ten-
sor, respectively. The main difficulty is that the field to be
used in the integrals is the total one, including both the ex-
ternal input field and the diffracted or scattered one. Neglect-
ing the latter will give a vanishing result. So we need to
calculate the propagation of light in the birefringent droplet.
The first approximation introduced here for this calculation

consists of simply replacing the droplet with a uniform pla-
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nar slab of nematic liquid crystal having the same molecular
director as the average one in the droplet. Therefore all dif-
fraction effects are neglected and the only optical effects left
to be considered are the changes of polarization due to bire-
fringence �and dichroism� and eventually the attenuation due
to absorption. Moreover, any distortion of the director con-
figuration induced by light itself is assumed to be negligible,
due to elastic interactions. As a second approximation, we
treat the input light as a monochromatic plane wave propa-
gating along the slab normal z. These two approximations
combined are here named “planar symmetry approximation”
�PSA�. We stress that, despite its common usage �22–24�,
PSA is very rough for the typical experimental geometry of
strongly focused light beams and rather small droplets.
Therefore we can only anticipate semiquantitative accuracy
of its predictions. For example, in a strongly focused beam a
large fraction of optical energy is actually associated with
waves propagating obliquely, at a large angle with respect to
z, which will see a much reduced birefringence with respect
to the PSA plane wave. At any rate, all the model inaccura-
cies associated with the PSA approximation will not be very
different for pure and dye-doped droplets.

The slab thickness is taken equal to the droplet diameter
d=2R. The liquid crystal birefringence is denoted as 
n
=ne−no, where no=Re����� and ne=Re����+�a� are the
ordinary and extraordinary refractive indices, respectively.
The absorption coefficient is denoted as �0 �we neglect the
dichroism for simplicity�. The input light beam properties are
the total power P0, angular frequency �=2�c /�, vacuum
wave number k=2� /�, and a polarization assumed to be
elliptical with its major axis parallel to the x axis and a
degree of ellipticity fixed by the reduced Stokes parameter
s3 or equivalently the ellipsometry angle  �in a com-
plex representation of the input plane wave, their definition
is s3=sin�2�=2 Im�ExEy

*� / ��Ex�2+ �Ey�2��.
The calculation of the output wave fields emerging at the

end of the slab is lengthy but straightforward, so we skip it.
Inserting the input and output fields in Eq. �15� and integrat-
ing �the integration surface �V will be given by the two
planes delimiting the slab and corresponding to the input and
output fields; moreover, it is necessary to start the calculation
with a finite wave and then take the plane-wave limit only
after having performed a first integration by parts �25��, we
obtain the following final expression of the external electro-
magnetic torque �22�:

Mz
em =

P0

�
�s3�1 − e−2�0R cos�
���

− ��1 − s3
2�e−2�0R sin�
��sin 2�� , �18�

where � is the angle between the director n and the x axis
within the xy plane and 
�=2kR
n is the total birefringence
retardation phase.

It is interesting to note that the two main terms appearing
in Eq. �18� tend to induce conflicting dynamics. The first,
maximized for a circularly polarized input light �s3= ±1� and
independent of the director orientation, tends to induce a
constant rotation around the z axis, in a direction fixed by the

sign of s3. The second term, instead, maximized for a lin-
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early polarized input light �s3=0� and dependent on the di-
rector orientation, tends to align the average molecular direc-
tor of the droplet either parallel or perpendicular to the
x axis, i.e., the major axis of the input polarization ellipse,
depending on the birefringence retardation 
�. For small
values of s3 the latter term dominates and there is always an
equilibrium angle � at which Mz

em vanishes. If, instead, the
polarization ellipticity �s3� is larger than a certain threshold
s3t=sin�2t� such that the former term dominates for any
value of �, the torque Mz

em cannot vanish and the droplet
must keep rotating �although not uniformly, unless s3= ±1�.
The threshold ellipticity is defined by the following equation:

s3t

�1 − s3t
2

= tan�2t� =
e−2�0R sin�
��

1 − e−2�0R cos�
��
. �19�

It will be useful to consider also the mathematical limit of
Eq. �18� for �0→�. This corresponds to the case in which
the torque contribution of the light emerging from the output
plane of the slab vanishes completely, as it occurs for very
large absorption. However, we note that the same mathemati-
cal result is also obtained by taking the average of Eq. �18�
over a wide range of birefringence retardations 
�, so that
oscillating terms are canceled out. Such an average may oc-
cur as a result of two factors neglected in our PSA model: �i�
oblique propagation of strongly focused light in the droplet
�in our opinion this is the strongest effect�, leading to re-
duced 
n and hence 
�; and �ii� propagation of light off
droplet center, leading to an optical path length that is shorter
than 2R. Whatever the actual cause, in this limit the electro-
magnetic torque reduces to the simple expression

Mz
em = Mz0

em =
s3P0

�
, �20�

corresponding to the total flux of “spin” angular momentum
associated with the input light only.

Let us now turn to the droplet dynamics.

B. Droplet dynamics in the rigid body approximation (RBA)

The RBA approximation can be justified by the fact that
the typical viscosity �Leslie’s� coefficients of the nematic
liquid crystals �a typical value is �1�100 cP� are much
larger than the water viscosity ���1 cP at room tempera-
ture�. So any internal shear or relative rotation of the director
with respect to the droplet fluid will be much slower than the
overall droplet rotation with respect to the surrounding water.
Moreover, it is possible that rigid-body behavior of the drop-
let �in particular in the steady-state dynamical regimes� is
further enforced by the elastic interactions in combination
with anchoring conditions �this second effect is especially
plausible in the case of imperfect sphericity of the droplets�.

Within the RBA, the fluid velocity in the droplet is given
by

v�t� = ��t� � r , �21�

where ��t� is the droplet angular velocity. Moreover, the
molecular director is taken to rotate, everywhere in the drop-
let, at the same angular velocity as the fluid, i.e., it satisfies

the following equation:
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dn

dt
= ��t� � n�t� . �22�

Since the orientation of the average director of the droplet in
the xy plane is given by the angle � introduced in the previ-
ous section, one also has �z=d� /dt.

As with all rigid bodies, all one needs in order to deter-
mine the droplet rotational dynamics is Eq. �12� for the an-
gular momentum rate of change, as applied to the entire
droplet volume V=Vd. By introducing Eqs. �21� and �22� in
Eq. �13�, the total angular momentum of the droplet can be
rewritten as

L = I� , �23�

where I is the total moment of inertia, given by I=�Vd
��x2

+y2�dV=2mR2 /5, and we have neglected In.
The total external torques M� acting on the droplet can

be computed more conveniently using their surface integral
expression, Eq. �15�. As already discussed in the previous
section, the surface integral can be actually evaluated on a
surface that lies just outside the liquid crystal droplet bound-
ary, i.e., within water, thereby making the calculation much
simpler. Let us now consider each of the five contributions
�=hp,el ,vis,em,ph.

First, owing to the spherical shape of the droplet �within
the SDA�, the pressure torque Mhp will vanish identically, as
it can be readily verified by a direct calculation. Since in
water there are no elastic stresses, the elastic torque Mel will
also vanish identically.

The viscous term does not vanish and it can be easily
evaluated by solving the Navier-Stokes equations in water
with assigned velocity on the droplet boundary as given by
Eq. �21� in the laminar flow limit �and neglecting the effect
of the electromagnetic stresses in water�. The result of such
calculation is the well-known Stokes formula for the rota-
tional viscous torque acting on a rotating sphere in a viscous
fluid:

Mvis = − 6�Vd� , �24�

where � is the water viscosity coefficient.
The electromagnetic torque Mem does not vanish. Within

the PSA approximation discussed above, its z component
will be given by Eq. �18�, while its x and y components will
vanish.

Finally, as already discussed in the previous section, the
photoinduced torque Mph should also vanish based on our
theory, as in water there should be no photoinduced stresses.
However, as discussed above, we cannot exclude that a
higher-order theory might predict a nonvanishing Mph asso-
ciated to interfacial effects �a specific possibility for such an
effect would be, for example, a photoinduced discontinuity
of the flow velocity at the boundary between liquid crystal
and water�. Therefore we should consider this possibility in
our analysis.

Neglecting inertial terms, Eq. �12� in the RBA model is

then reduced to the following torque balance:
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Mvis + Mem + Mph = 0, �25�

where the first two torques are given by Eqs. �24� and �18�,
while the expression of Mph is unknown. Equation �25� is
actually a first-order differential equation in the rotational
angle ��t�.

Let us assume initially that Mph=0. As discussed in the
previous section, the steady-state solution of Eq. �25� de-
pends on the value of the polarization ellipticity s3 with
respect to the threshold value s3t given in Eq. �19�. For
�s3 � �s3t the solution is static, i.e., ��t�=�0 is constant, while
for �s3 � �s3t the solution is dynamical and corresponds to a
generally nonuniform rotation of the droplet around the z
axis. In the circular polarization limit the rotation becomes
uniform.

By a simple integration, it is possible to determine the
overall rotation frequency f of the droplet, which takes the
following expression:

f = f0 Re��s3
2�1 − e−2�0R cos 
��2

− �1 − s3
2�e−4�0R sin2 
��1/2� , �26�

where

f0 = P0/�16�2��R3� �27�

�note that Eq. �26� includes also the stationary solutions
f =0, for �s3��s3t�. The highest frequency is obviously
reached for s3= ±1, i.e., for circular polarization of the input
light. Note also that if we take the �0→� limit �which may
be actually due to all the factors discussed above and ne-
glected in PSA�, we obtain simply f = f0 instead of Eq. �26�.

Let us now consider what should happen instead for
Mph�0. As we said, we do not know the actual expression
of a nonvanishing Mph, as this should result from some un-
known higher-order term in the constitutive equations. How-
ever, since the photoinduced torque density �ph acting on the
molecular director is proportional to the electromagnetic one
�em, it is reasonable to expect that also this photoinduced
torque Mph is proportional to Mem. The ratio of the photoin-
duced to electromagnetic torque density is 	 /�a, a number
which is of the order of several hundreds. The corresponding
ratio of total external torques is therefore limited by this
value, although it could be smaller.

In the case of circularly polarized input light, the effect of
the photoinduced external torque would be that of inducing a
dye-enhanced droplet rotation, as revealed by a higher rota-
tion frequency achieved for the same input light power, or a
smaller light power needed to obtain the same rotation fre-
quency when compared with the undoped case or to what
happens when light falling outside the dye absorption band is
used. In the experimental section we will specifically search
for such effects.

C. Uniform director approximation (UDA)

According to the RBA model presented in the previous
section, the rotation speed of a droplet is independent of all
photoinduced effects, unless higher-order interfacial effects
should be found to be significant. This conclusion relies

strongly on the assumption that the droplet rotates effectively
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like a rigid body. In this section we analyze theoretically a
situation in which the director is not constrained to rotate
together with the fluid flow. Such a situation may occur with
appropriate boundary conditions for the director orientation
and fluid motion at the droplet interface. We show that in this
case the velocity field and the director rotation are influenced
essentially by photoinduced effects.

In order to keep the model manageable analytically, we
assume here that the spatial distribution of the director in the
droplet is always approximately uniform �this assumption
was unnecessary in the RBA model�. Moreover, we will still
consider the fluid motion to coincide with that of a rigid
body.

The dynamics of v and n fields will therefore still be
taken to be given by Eqs. �21� and �22�, but the two �’s
entering these equations will be different, in general. Let us
then label �v and �n the angular velocities of the fluid and
director rotations, respectively.

We can find two dynamical equations for �n and �v
starting from Eqs. �1� and �2�, respectively, and following a
procedure similar to that used when finding Eq. �12�. First,
we integrate both sides of Eq. �1� over the whole droplet
volume Vd. Second, we multiply both sides of Eq. �2� vecto-
rially by r and integrate over the whole volume Vd. Owing to
Eq. �16�, we can then write the two resulting equations in the
following form:

InVd
d�n

dt
= Ttot,

�28�

I
d�v

dt
= Mtot − Ttot,

where the total external torque Mtot=��M� is still defined by
Eq. �15� and it is therefore identical to that used in the RBA
model, and we have also introduced the total internal torque
Ttot=��T� exchanged between director and velocity degrees
of freedom. More precisely, for each kind of interaction
�=hp,el ,vis,em,ph, the torque T� is simply defined as the
volume integral of the torque density �� over the whole
droplet.

Equations �28� highlight the coupling between the droplet
fluid rotation and the director dynamics inside the droplet.
One recovers the RBA model when the internal torque Ttot is
very rigid and acts as a constraint that locks the director to
the fluid.

Since In�0 with excellent accuracy, from the first of Eqs.
�28� one finds Ttot�0. Then the second of Eqs. �28� becomes
identical to that of the RBA. This result, however, should not
be taken as saying that within the UDA the droplet always
behaves exactly as in the RBA, as the external torques M�,
and in particular the electromagnetic one, can be affected by
the director orientation in the droplet, which will not be the
same as in the RBA. In particular, as we will see, the photo-
induced effects will be present even in the first-order theory,
in which they only appear via the internal torque Tph.

Let us now calculate the internal torques T� using the
explicit constitutive dependence of the corresponding direc-

�
tor torque densities � . The hydrostatic pressure contribution
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vanishes identically. For a perfectly uniform director the
elastic torque density �el and therefore the total torque Tel

also vanish identically. However, it is not obvious that one
can truly neglect the elastic torque density, as it is just this
torque that keeps the director approximately uniform. If all
other torque densities are always uniform then the director
will remain uniform “spontaneously,” and the elastic torque
density will indeed vanish. Whenever the other torque den-
sities are nonuniform �in our case, for example, the electro-
magnetic torque density is not very uniform in large drop-
lets�, their effect will give rise to a nonvanishing elastic
torque density which balances them, in order to constrain the
director to remain approximately uniform. At any rate, we
assume here that the total elastic torque, obtained by inte-
grating this elastic torque density over the whole droplet,
remains always negligible. Further work will be needed to
assess the validity of this assumption.

Let us now consider the other interactions. The viscous
torque under our assumptions is easily calculated and is
given by

Tvis = − �1Vd��n − �v� , �29�

where �1 is the orientational viscosity coefficient �14,15�.
As for the electromagnetic term, under our hypothesis of

uniform director �UDA� and spherical droplet �SDA� of con-
stant density, it can be shown that the following identity
holds with high accuracy:

Tem = Mem. �30�

The proof of this identity is reported in the Appendix.
Thereby, the calculation of Tem=Mem can be based on the
PSA approximation, and its explicit expression is given by
Eq. �18�.

Finally, the photoinduced term �in first-order theory, the
only one we consider in this section� is simply related to the
electromagnetic one when the latter is caused by an optical
wave having a wavelength within the dye absorption band.
In this case, since �ph= �	 /�a��em, the photoinduced internal
torque will be exactly given by

Tph =
	

�a
Mem. �31�

However, it must be kept in mind that this strict relationship
between the photoinduced and the electromagnetic torques is
only valid when the electromagnetic field is that of an optical
wave absorbed by the dye. It is instead possible to separately
tune the electromagnetic and photoinduced torques by add-
ing a second wave whose wavelength is out of the dye ab-
sorption band, or alternatively by adding static electromag-
netic fields. In these cases, Eq. �31� will only apply to the
contribution of the wave having a frequency within the dye

absorption band.
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By using these results, Eqs. �28� can be rewritten in the
following dynamical equations, which define our UDA
model of the droplet dynamics:

InVd
d�n

dt
= − �1Vd��n − �v� + Mem + Tph � 0,

�32�

I
d�v

dt
= − 6Vd��v + �1Vd��n − �v� − Tph,

where in the second equation we have canceled the two elec-
tromagnetic terms Mem and −Tem as they are exactly oppo-
site to each other.

Equations �32� show explicitly the internal nature of the
photoinduced effects �according to first-order theory�, with
the “action” and “reaction” torques appearing, respectively,
in the former and latter equation �or vice versa�. In contrast,
the electromagnetic torque is external �the “reaction” term
acts on the electromagnetic field� and is applied on the di-
rector only, in the first place. It is only via the viscous inter-
nal coupling between the director and the fluid motion �and
possibly also the elastic one, which we neglected� that the
electromagnetic torque finally drives also the droplet fluid
rotation.

Let us now study the dynamics predicted by Eqs. �32� in
a couple of interesting examples.

Let us assume first that a single circularly polarized laser
beam traveling along the z axis drives the droplet rotation.
The director will spontaneously orient in the xy plane. Then,
the electromagnetic torque becomes independent of the di-
rector orientation within the plane, so that its rotation may
become uniform at steady state. In this case, Eqs. �32� are
readily solved and give

�nz =
Mz

em

Vd
� 1

6�
+

1 + 	/�a

�1
� ,

�33�

�vz =
Mz

em

6�Vd
,

where Mz
em can be approximately calculated using Eq. �18�.

These results show that the droplet fluid and the director do
not rotate at the same rate. For 	=0 �no photoinduced effect�,
the difference in angular velocity is very small as the viscous
coefficient �1 is about two orders of magnitude larger than �.
In contrast, in the presence of photoinduced effects, the ratio
	 /�a can be larger than a few hundreds �3,26�, so that a
significant difference in the two angular velocities should
become possible.

As a second example, let us assume that there are two
linearly polarized optical waves traveling along z and driving
the droplet dynamics: one is assumed to be polarized along x
and to have a wavelength falling outside the dye absorption
band; the second is instead assumed to be polarized at an
angle � with the x axis and to have a wavelength that is
within the dye absorption band. Having two waves with only
one being absorbed by the dye, the electromagnetic and
photoinduced torques can be adjusted independently to each
other.
051707
Being linearly polarized, the two waves will induce
torques that tend to align the droplet director parallel or per-
pendicular to the polarization direction of the respective
wave. So we may assume that at steady state the director will
acquire a fixed orientation along some intermediate direction
� with 0����. Therefore at steady state one may assume
�n=0 and the electromagnetic and photoinduced torques to
be constant in time. By solving Eqs. �32� with these assump-
tions, one finds that the equilibrium orientation of the direc-
tor is actually fixed by the following balance:

Mz
em +

6�

�1 + 6�
Tz

ph = 0, �34�

while the droplet fluid rotates constantly with the following
angular velocity:

�v =
Mz

em

6�Vd
= −

Tz
ph

��1 + 6��Vd
. �35�

This result is rather counterintuitive: a continuous droplet
rotation is induced by two linearly polarized optical waves
having different planes of polarization. This could not occur
without the presence of photoinduced effects, i.e., based only
on the electromagnetic torque �it must not be forgotten that
the two waves have different wavelengths, so their superpo-
sition is not coherent�. We see, then, that the photoinduced
effects associated with the dye can give rise to highly non-
trivial effects in a liquid crystal droplet, as long as the direc-
tor can be decoupled from the fluid motion.

IV. EXPERIMENT

We prepared emulsions of pure and dye-doped liquid
crystal �LC� in bidistilled water. By properly choosing the
relative quantities of liquid crystal and water, we could ob-
tain relatively stable emulsions containing many liquid crys-
tal droplets having micrometric size, most of them in the
1–20 �m diameter range. Most experiments were performed
using the commercial liquid crystal mixture E63 �see Ref.
�27� for its composition�, provided by Merck, Darmstadt,
Germany. This material is convenient for the wide tempera-
ture range of its nematic phase �from −30 to 82 °C. A few
experiments were performed using the liquid crystal
4-cyano-4�-pentyl-biphenyl �5CB�. The dye used in doped
materials was the 1,8-dihydroxy 4,5-diamino 2,7-diisopentyl
anthraquinone �HK271, provided by Nematel, Mainz, Ger-
many�, known as one of the most effective dyes in the photo-
induced effects. We prepared dye-liquid crystal solutions at a
concentration of 2% in weight, leading to torque enhance-
ment ratios 	 /�a of several hundreds �3,26�.

For performing the optical rotation experiments, a small
volume of emulsion was placed on a microscope glass slide
and covered with a thin �thickness of about 0.18 mm� glass
coverslip, thus forming a thin cell �open on the sides�. A
100� oil-immersion microscope objective �Carl Zeiss, NA
=1.25� was used both to image the droplets on a charge
coupled device �CCD� camera �using lamp illumination from
below the cell, in combination with other optics� and to focus

the input laser beams that were used to trap the droplets and
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induce their rotation, as discussed in the following �see Fig.
1�. The objective was attached, via an oil thin film, to the
glass coverslip. When needed, the microscopic imaging
could be made in the crossed or nearly crossed polarizers
geometry, in order to visualize the droplet birefringence.
CCD images and movies �acquisition rate of 50 frame/s�
could also be recorded on a PC, for subsequent frame-by-
frame analysis.

The setup for the optical trapping and manipulation is a
dual-wavelength optical-tweezers apparatus �see Fig. 1�. Our
setup differs from usual optical tweezers arrangement in that
two laser beams, respectively generated by a diode-pumped
solid state laser ��=785 nm, subsequently called “IR” beam�
and a He-Ne laser ��=633 nm�, are brought to a common
focus at the specimen plane of the microscope objective.
Both beams were able to achieve trapping of droplets for
diameters in the 2–12 �m range, as proved by a sudden stop
�or confinement� of the droplet Brownian motion after trap-
ping. The beam-waist �Airy disk� radius at focus is estimated
to be about 0.4 �m, in the adopted objective-overfilling con-
figuration. Actually, due to the thickness of the glass cover-
slip, our optical trap center �roughly corresponding to the
laser beam waist� could not be located right in the middle of
the cell but was close to the coverslip. This fact might have
led to some contacting of the droplets with the glass, particu-
larly in the case of the largest droplets. In such cases the
droplets may have experienced a somewhat stronger friction,
and therefore our results on the rotational speed could be
biased. However, any systematic effect will be identical for
pure and dye-doped droplets and obviously independent of
the light wavelength used for inducing the rotation. So, our
comparison will remain valid. Moreover, the agreement be-
tween theory and experiments will show that these possible
systematic effects are certainly small, at least for not too

FIG. 1. Experimental setup. Legend: P=polarizer,
WP=half-wave plate, DM=dichroic mirror, L=lens, CCD=CCD
camera, BE=beam expander for objective back aperture overfilling,
and X=either retardation wave plate �for the appropriate laser
wavelength� or optically active plate �see text� for rotating the linear
polarizations of the two wavelengths by a different amount, depend-
ing on the specific experiment.
large droplets.
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The common focus of the two lasers allowed us to switch
the controlling beam from one wavelength to the other �e.g.,
to switch the He-Ne beam on and the IR off, or vice versa�
without changing the trapped liquid crystal droplet. Since the
He-Ne wavelength is close to the maximum of the dye ab-
sorption band, while the IR wavelength falls completely out-
side the absorption band, this corresponds to adding or re-
moving the photoinduced effects, so as to allow for a direct
comparison of the behavior obtained in the two cases with
the same droplet.

Besides for trapping, the two beams were also used to
induce the electromagnetic and photoinduced torques acting
on the droplet and driving its reorientation or continuous
rotation. By inserting along the beam �just before the micro-
scope objective� a suitable birefringent wave plate, we could
control the polarization of each beam �separately�. In particu-
lar, we have used linear polarizations with an adjustable po-
larization plane and elliptical polarizations with an adjustable
degree of ellipticity s3=sin�2�. We could also obtain certain
specific polarization combinations of both beams together,
such as one linear and the other circular or elliptical. By
using a suitably dispersive optically active plate �homebuilt
using a chiral-doped randomly oriented liquid crystal cell�
we could also obtain two linearly polarized beams with two
different polarization planes, forming an angle of ��40°.

Micron-sized LC droplets are known to show either one
of two possible director spatial distributions �20,21,24�: axial
�or bipolar�, already discussed in the previous section, and
radial, which has full spherical symmetry and a hedgehog
defect at the droplet center. The images of axial and radial
droplets under a polarizing microscope can be almost iden-
tical. However, we could identify axial droplets by checking
that their image changed if the microscope polarizers were
rotated, or by looking directly at their dynamical behavior
under the laser beam, as only axial droplets could be readily
set in rotation if illuminated with circular polarizations or
reoriented using linear polarizations. Radial droplets could
not be rotated at all �because all the optical torques vanish,
due to radial symmetry, if absorption is neglected�. About
80–90% of the droplets of our emulsions were found to be
axial �28�. In the following we will only refer to them.

Using linearly polarized light, we could easily fix the av-
erage director orientation of our trapped axial droplets. By
looking at the microscopic image pattern under crossed po-
larizers �29,30�, we verified that the director orientation was
indeed parallel to the polarization plane. By slowly rotating
the polarization by means of a half-wave plate, the droplet
alignment followed the polarization. These experiments
could be done both with pure liquid crystal droplets and with
dye-doped ones, the latter both with IR and He-Ne beams,
without much difference.

Using elliptically polarized beams and axial droplets, we
could perform the analog of the classic Beth’s experiment
�31�, i.e., set the trapped droplets in continuous rotation by
the transfer of angular momentum with light. Depending on
the droplet size and on the laser beam power and ellipticity,
the rotation could range from very slow �periods of several
seconds� to very fast �down to the millisecond range�. We
used two different methods for measuring the spinning of

droplets by analyzing the frames of a droplet rotation movie.
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First, using the crossed-polarizers geometry we could image
the birefringence rotation, corresponding to the director mo-
tion, as a periodic pattern modulation in time. For the small-
est droplets, we could observe a significant modulation of
light intensity during the rotation even without the analyzer,
presumably due to the anisotropic scattering cross section of
the droplets. Second, we could also measure the droplet fluid
rotation �i.e., regardless of director rotation� when a smaller
satellite droplet �or another small object� happened to get
trapped close to the rotating droplet and was thereby dragged
around, as in the case shown in Fig. 2. The rotation speed
measured in these two ways �when the satellite was suffi-
ciently small and close to the rotating droplet� was always
found to be the same.

In order to check if the photoinduced effects give rise to a
rotation speed enhancement, on each droplet we measured
the rotation frequency induced by the He-Ne and the IR
beams as a function of input beam polarization ellipticity. We
repeated this for many different droplets having a range of
diameters. We also measured the rotation frequencies in-
duced in pure �undoped� liquid crystal droplets, although of
course in this case the comparison could not be done with
exactly the same droplet sizes. In all these measurements, the
two laser beams were adjusted for having a roughly equal
angular momentum flux, as given by Eq. �20�. In particular,
the light power measured after the microscope objective was
about 4.1 mW for the He-Ne beam and 2.8 mW for the IR in
most data shown. These values correspond, for a given po-
larization ellipticity s3, to the same angular momentum flux
to within 15% �Mz0

em= �1.3±0.1��10−18 N m for the case of
circular polarization�. However, we also investigated the
power dependence of the rotation frequency in some drop-
lets.

An example of the measured rotational frequencies of a
given droplet versus light polarization ellipticity �given by
the angle � is shown in Fig. 3. We actually measured this
dependence for many other droplets of different sizes, made
of both pure and dye-doped LC. Each of these measurements
was then fitted by means of Eq. �26�. In these fits the radius
R was fixed at the value determined by analyzing the droplet
microscopic picture. The absorbance at 633 nm was instead
measured separately on a bulk sample �we obtained �0
= �1.0±0.2��103 cm−1� and then kept fixed to this value in

FIG. 2. Sequence of photograms showing the light-induced ro-
tation of a LC droplet in time, as highlighted by the revolution of a
dragged small object. Scale bar: 1 �m.
all fits. The constants f0 and 
� were adjusted for best fit. f0
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was found to be roughly consistent �to within a factor of 2
in most cases� with its predicted value, as given by Eq.
�27� �using the known or measured values of the laser power
and frequency, water viscosity, and droplet radius�. From
the best-fit value of 
�, we could also estimate the birefrin-
gence 
n, which was almost always found to fall in the
range 0.11–0.13 �average 0.12�, with a few droplets giving
a value of 0.10 and 0.14. These values are inconsistent
with the known refractive index difference of the bulk mate-
rial �
n=0.2273 at 589 nm, Merck data sheet�. We ascribe
this discrepancy to the strong approximations associated with
the PSA model �in particular to neglecting the contribution of
obliquely propagating waves in the focused beam�, as a
strong depression of the optical anisotropy due to confine-
ment effects is not plausible for micrometric droplets. It is
apparent from Fig. 3 that the rotational behavior of a dye-
doped LC droplet under IR or He-Ne laser beams is not
identical. However, the difference is well explained by the
different wavelength and absorbance in Eq. �26�, while no
particular rotation enhancement is seen in the He-Ne case,
where photoinduced dye effects should take place.

In Fig. 4 we show the rotation frequency observed for
several pure LC �open symbols� and dye-doped LC �closed
symbols� droplets of different sizes using circularly polarized
light. Panels �a� and �b� refer to rotations induced by the IR
and He-Ne beam, respectively. The insets show the corre-
sponding �linear� dependence on laser power for a fixed
droplet �incidentally, this linear behavior supports our as-
sumption that the laser light induces no significant distortion
of the director configuration in the droplet, in the power

FIG. 3. Droplet rotation frequency f vs input light ellipticity
angle , for a dye-doped LC droplet having a radius of 2.4 �m,
using the IR �a� or He-Ne �b� laser beams, with a power of 2.8 and
4.1 mW, respectively. The dots are the measured values and the
solid line is the theoretical fit based on Eq. �26�. The threshold
ellipticity t is obtained from the fit from the two symmetrical
points at which the solid line crosses zero.
range used in our experiments�.
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Again, a first conclusion that can be immediately drawn
from this figure is that no significant rotation speed enhance-
ment takes place in the dye-doped LC case with the He-Ne
beam as compared both to the IR beam case and to the pure
LC case. Should the photoinduced torque be external, one
would have expected a rotation speed enhancement by a fac-
tor of the order of 	 /�a, i.e., of several hundreds.

In Fig. 4, the dashed lines are the predictions of Eq. �26�
after adjusting the laser power P for best fit to data. The
birefringence was kept fixed to the average value 
n=0.12
obtained from the measurements discussed above �and con-
firmed by the threshold ellipticity data, as discussed below�,
but increasing its value led to worse fits �in particular, 
n
=0.23 leads to very bad fits�. From Fig. 4, it is seen that the
agreement between data and theory is reasonable, although
there is a statistically significant discrepancy. In particular,
the data do not show at all the oscillations predicted by Eq.
�26� �of course, small residual oscillations might be hidden
in the noise�. Moreover, for both lasers the best-fit values of
the power were found to be about a factor of 2 smaller than
the actual measured values �assuming a water viscosity �
=1 cP, corresponding to the room temperature of 20 °C�.
The solid lines in Fig. 4 correspond instead to the simpler

FIG. 4. Frequency f of the droplet rotation induced by circularly
polarized light. The main panels show the dependence on droplet
radius for a fixed laser power �power on the sample: 4.1 mW for the
He-Ne and 2.8 mW for the IR beams�, while the insets show the
dependence on laser power for a fixed droplet radius of 1.8 �m.
Panel �a� refers to rotations induced by the IR laser, panel �b� to the
He-Ne case. Closed �open� circles refer to droplets made of dye-
doped �pure� liquid crystal. Solid and dashed lines are the theoret-
ical predictions obtained as explained in the text.
theory f�R�= f0�R�, as given by Eq. �27�, obtained in the
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limit �0→�. In this case, no adjustable parameter was used,
i.e., the values of the laser power and of the water viscosity
are both fixed to the known values ��=1 cP�. Nevertheless,
it is seen that the agreement is even better and that the same
theory �taking into account the difference in light power and
frequency� explains all the data, i.e., both the dye-doped case
with a He-Ne beam, when there is significant absorption, and
the IR beam or pure LC cases, when there is no absorption
�incidentally, this agreement shows that any systematic effect
due to the droplet closeness to the glass wall is essentially
negligible, except perhaps for the largest droplets�. This bet-
ter agreement of the simplified theory obtained for �0→�
clearly cannot be truly ascribed to absorption �negligible in
the IR and pure droplets case�. It is instead the likely result
of light diffraction, oblique propagation, and other effects
neglected in the simple PSA calculation, which may all con-
tribute to averaging out the oscillations due to the outgoing
light, as discussed previously. This view is also confirmed by
the fact that previous works on transparent liquid crystal
droplets reported similar observations �23,24�.

Let us now consider the behavior of the threshold ellip-
ticity t for droplet rotation versus the droplet radius R. For
each droplet and wavelength, t was obtained from the best
fits performed on the measured rotation frequency versus
light ellipticity �such as that shown in Fig. 3�. In particular,
t is entirely determined by the best-fit value of 
�, via Eq.
�19�. The resulting data are shown in Fig. 5, together with the
predictions obtained using Eq. �19� combined with 
�
=2kR
n and adjusting the birefringence 
n for best fit. It is
seen that the theory agrees reasonably well with the experi-
ment. The best fit is for 
n�0.12 for both laser wave-

FIG. 5. Threshold ellipticity for droplet rotation t as a function
of droplet radius. Data points are actually obtained from the fits
described in the text and in the caption of Fig. 3. The solid line is
from Eq. �19�. Panel �a� refers to the IR case, panel �b� to the
He-Ne. All data are for droplet of dye-doped liquid crystal.
lengths, confirming the average value obtained before. More-
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over, for the He-Ne case the effect of light absorption is
clearly seen in the data.

It must be noted that Eq. �19� is based on the PSA model
including the effect of the light emerging from the droplet.
Indeed, taking the �0→� limit leads to t=0 for all droplet
sizes, which is inconsistent with our data. We do not know
exactly why the PSA-neglected effects do not affect the
threshold ellipticity as much as the rotation frequency �apart
from the depression of 
n�, but this is what we actually find
and what was also reported in previous works �23,24�. At
any rate, we stress that all inaccuracies of PSA theory do not
affect our comparison between pure and dye-doped droplets
or between IR and He-Ne beams.

Finally, we tried to find evidence of a decoupling between
the droplet fluid and the average director degrees of freedom.
In particular, we searched for the effects predicted by the
UDA model to occur when the He-Ne and IR beams are
simultaneously impinging on the droplet, both linearly polar-
ized with the two polarization planes forming an angle of
about 40°. In order to visualize the droplet fluid rotation
independently of the director, we imaged the dynamics of
droplets having small satellites �such as smaller droplets or
other particles in the suspension�, so that the droplet surface
flow would be highlighted by the revolution of these dragged
objects. However, despite many efforts, we could not find
any sign of a steady-state decoupling between the director
and the fluid motion in the droplets �except, perhaps, for
some complex transient effects� and, therefore, of a corre-
sponding continuous fluid rotation of the droplet. This prob-
ably indicates that elastic effects associated with the nonuni-
form director distribution and a not perfectly spherical shape
of the droplet �effects neglected in the UDA model�, concur
to keeping the orientational and flow degrees of freedom
locked to each other.

V. CONCLUSIONS

In summary, we have studied the dynamical behavior of
droplets of dye-doped nematic liquid crystal trapped in water
by a strongly focused laser beam and set in rotation by the
optical torques generated by the same beam. We searched for
evidence of a dye-induced enhancement of the droplet rota-
tion speed associated with photoinduced effects, but no en-
hancement was found. This null result is in accordance with
the leading first-order theory of these photoinduced effects
�4,5� and directly proves that the dye-enhanced optical
torque is not associated with an exchange of angular momen-
tum with light or other external degrees of freedom, but that
it must instead be associated with a fully internal exchange
of angular momentum between the molecular orientation and
fluid flow degrees of freedom. The latter exchange is cor-
rectly described only by assuming the existence of a dye-
induced stress tensor acting on the fluid flow in the illumi-
nated region, as first proposed in Ref. �5�. This photoinduced
stress tensor embodies the internal “reaction” to the photoin-
duced torque acting on the molecular director. Our null result
is therefore also a direct proof of the actual existence of this
stress tensor.

The interplay between fluid flow and director dynamics

within the droplet is also predicted by our models to give rise
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to very peculiar effects, such as a continuous droplet fluid
rotation induced by two linearly polarized optical waves hav-
ing different polarization planes. However, the occurrence of
these phenomena requires one to unlock the constraint exist-
ing between the droplet fluid and the molecular director. This
constraint is partly due to viscous forces, but it may also be
due to elastic interactions combined with anchoring forces.
Ex-perimentally, we could not reach a situation in which this
constraint was effectively broken, so we could not demon-
strate the predicted effect.
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APPENDIX: PROOF OF THE ELECTROMAGNETIC
TORQUE IDENTITY

To prove the validity of identity �30�, we start from Eq.
�14� as applied to the case �=em, which can be rewritten as
follows:

Mi
em − Ti

em = Ii = �
V

�ijhxj�ktkh
em. �A1�

We must therefore prove that the integral Ii vanishes identi-
cally within the SDA and UDA approximations.

Let us consider the first term in Eq. �8� of the electromag-
netic stress tensor. This is an isotropic pressurelike term, i.e.,
of the form p�hk. For such a term, the integral �A1� can be
recast into a surface integral as shown in the following:

Ii
�1� = �

V
�ijhxj�kp�hkdV = �

V
�ijhxj�hpdV

= �
V

�ijh�h�xjp�dV = 
�V

�ijhxjpdAh.

Within the SDA, the surface element normal dAh and the
position vector xj will be parallel to each other, and therefore
their cross-product �as expressed by their product times the
antisymmetric Levi-Civita tensor� vanishes identically.

Let us now consider the second term in Eq. �8� of the
stress tensor. Omitting the time-average for brevity, we must
consider the following integral:

Ii
�2� = �

V
�ijhxj�k�DkEh�dV = �

V
�ijhxjDk�kEhdV

= �
V

�ijhxjDk�hEkdV − �
V

�ijhxjDk�khl
�Bl

�t
dV

= �
V

�ijhxj�klEl�hEkdV − �
V

�ijhxjDk�khl
�Bl

�t
dV ,
12
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where we have used the two Maxwell equations �kDk=0 and
�kEh−�hEk=−�khl�Bl /�t and introduced the dielectric tensor
to express D in terms of E. The dielectric tensor is always
symmetric for a permutation of its indices. Moreover, within
UDA and constant density approximations, the dielectric ten-
sor is also uniform within the droplet. Exploiting these two
properties, we obtain

Ii
�2� =

1

2
�

V
�ijhxj�h��klElEk�dV − �

V
�ijhxjDk�khl

�Bl

�t
dV

= − �
V

�ijhxjDk�khl
�Bl

�t
dV ,

where the first integral vanishes identically �within SDA� as
it has taken a pressurelike form.

The third stress-tensor term, in the magnetic field, can be
treated analogously to the second, obtaining the following
expression:

Ii
�3� = �

V
�ijhxjBk�khl

�Dl

�t
dV .
2nd ed. �Oxford University Press, Oxford, 1993�.
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Summing up the three contributions, the whole integral
Ii= Ii

�1�+ Ii
�2�+ Ii

�3� is reduced to the following:

Ii = �
V

�ijhxj
�

�t
��khlDlBk�dV = �

V
�r �

�

�t
�D � B��

i
dV .

�A2�

This expression �which is a part of the electromagnetic
torque due the so-called Abraham force �13�, which is com-
pleted if one considers also the effect of the neglected elec-
tromagnetic force mentioned in �16�� corresponds to a true
residual electromagnetic torque which does not vanish in
general. However, after optical-cycle averaging, its order of
magnitude can be estimated as follows:

Ii � �D��E�Vd�
t

�
� � Ti

em�
t

�
� , �A3�

where � is a characteristic time of the droplet dynamics and

t�R /c is the droplet crossing time of light. In our case

t /��10−13, making this contribution totally negligible with
respect to Ti

em and therefore the identity �30� valid to high
accuracy.
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