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Circularly polarized light exerts torque on birefringent objects. In the case of axially 

symmetric particles, however, the moment of radiation force balances the direct optical 

torque. This explains the observation that radial liquid crystal droplets, in contrast to planar 

droplets, do not spin in circularly polarized light. The conclusion is in agreement with 

considerations based on the angular momentum conservation of light (Marrucci et al. Phys. 

Rev. 96, 163905, 2006).  
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It is well known that light can carry angular momentum [1]. One part of the angular momentum 

is associated with the ellipticity of the polarization state of the light beam (“spin” angular 

momentum), while the second part is the orbital angular momentum. Circularly polarized waves 

carry a spin angular momentum of h±   per photon. This part of the angular momentum was first 

demonstrated experimentally by Beth [2], who exposed a suspended birefringent object to 

polarized light and detected the torque on it.  A more direct evidence of the transfer of angular 

momentum to matter is found in droplets of anisotropic materials, like liquid crystals, immersed 

in liquids. When such droplets are irradiated with circularly polarized light, they are set into 
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continuous rotation [3-5]. There are two ways to describe the latter phenomenon. The first 

method is to analyze the optical torque exerted by the electromagnetic field on the material; the 

second one is to compare the polarization state of the incoming light beam with that of the 

exiting beam. 

In order to illustrate the two methods, we consider a plan-parallel slab of a liquid crystal 

with thickness d and area A, illuminated by a homogenous beam. For uniaxial media, such as 

nematic or smectic A phases the optical torque density, Γ, can be written as [6]   

 ))(()( ||0 EnEnEPΓ ×⋅−=×= ⊥εεε   (1)  

where P is the dielectric polarization, induced in the substance by the electric field, E; ε⊥ = no
2 ,  

ε|| = ne
2 are the perpendicular and parallel components of the optical dielectric tensor; no and ne 

are the ordinary and extraordinary refractive indices respectively, n is the liquid crystal director, 

the bracket < > denotes time averaging. In a planar droplet (n homogenous and perpendicular to 

the light propagation direction, z) the optical torque has only a z component, which is given as  

 ϕεεε ∆−=Γ ⊥⊥ cos)(
2
1

||||0 EEz .   (2)  

Here E|| and E⊥ are the amplitudes of the electric field components parallel and perpendicular to 

the director respectively; ∆ϕ is the phase difference between them. In the geometrical optics 

approximation [7] 00 )()( ϕϕ ∆+−=∆ znnkz oe , where k0 is the wave vector in vacuum and ∆ϕ0 

is the phase difference between the two polarization components at the entrance face of the slab 

(z = 0). The total optical torque, M, acting on the slab has also only a z component:  
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On the other hand, as shown in [7], in the geometrical optics limit inside a birefringent medium, 

the quantity )(sin
2

)( ||
0

0 zEE
k

nn
zL oe

z ϕε ∆
+

= ⊥  can be regarded as the spin angular momentum 

density of the beam. Therefore the total torque can be written as )]0()([ zzz LdLAM −= , i.e. the 

torque is equal to the change of the angular momentum of the light beam across the sample.  

In this letter we investigate the case of axially symmetric droplets. It was pointed out by 

Marrucci et al. [8] that a slab of nematic liquid crystal oriented radial around the symmetry axis 

of the slab, converts the spin angular momentum of light into orbital angular momentum.  They 

demonstrated this by considering the example of a half-wave plate. When a (say) left circularly 

polarized beam passes through the slab, beside becoming right circularly polarized, it becomes 

also helical, i.e. the phase of the exiting beam changes by 2πm going around the optical axis. m is 

an integer; in the case considered 2=m  [8]. The change of the spin angular momentum ( hh 2=m   

per photon) is compensated by the change in orbital angular momentum, associated with the 

helicity of the beam ( h2−  per photon).  The net change of the angular momentum of the light 

beam is therefore zero. From this fact it follows that the net electromagnetic torque, exerted by 

the optical field on the sample should vanish too. However, the direct optical torque, as 

determined above for planar cells, does not vanish in general for radial droplets. In fact, in the 

geometrical optics approximation, the torque is the same for the radial director configuration as 

for the uniform one.  
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In this letter we prove that the apparent contradiction between the two approaches of 

deriving the total torque can be resolved by taking into account the electromagnetic force acting 

on the droplet. As it will be shown, for axially symmetric droplets the z component of the 

moment of this force balances the direct optical torque. The total torque is zero hence axially 

symmetric droplets are not set into rotation by light beams. 

 There are different methods to calculate the radiation force. We first apply the method 

developed by Gordon [9] for “gaseous” medium, i.e. a medium, where the difference between 

the macroscopic and local field strengths can be neglected. In this limit, the force density, f, can 

be written as  

 BPfEPffff ×=∇⋅=+=
c

BEBE
&

)()()()(     and   )(   with   (4) 

where B is the magnetic field strength. The first term on the right-hand-side of the equation 

represents the force acting on dipoles in an electric field gradient, while the second one gives the 

Lorentz force exerted by the magnetic field on oscillating dipoles. Introducing cylindrical 

coordinates ρ, ψ and z, the electric field strength can be written as zzEEE eeeE ++= ψψρρ , 

where eρ, eψ and ez are unit vectors in the radial, azimuthal and z directions, respectively. Similar 

expressions hold for P, f and ∇. The azimuthal component of the force is 
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In deriving the first relation, the identity ψρψ
ee =

∂
∂  was used. For the second relation the 

Maxwell equation BE &
c
1

−=×∇  was applied; ∫ +=
t
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, where C is independent from 

time (although it depends on spatial coordinates). For a monochromatic wave jiji EPEP −=
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average of the azimuthal force is therefore 
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Let us consider a circularly polarized beam with an axially symmetric intensity 

distribution.  Before penetrating into the droplet, the electric field components can be written as   

tzAEtzAE yx ωρωρ sin),(  ,cos),( == . Performing a transformation from rectangular 

coordinates to cylindrical ones, we obtain ( ) )sin(),(  ),cos(, ψωρψωρ ψρ −=−= tzAEtzAE .  

Within the droplet zitAE iii ,,   , )cos( ψρψϕω =−+= , where the amplitude Ai and the phase ϕi 

depend on the details of light propagation. However, as a consequence of the axial symmetry of 

the droplet and the intensity distribution of the incoming beam, Ai and ϕi are only a function of  ρ 

and z, but not of ψ.  Taking into account this fact and using the linear relation between P and E, 

one obtains 
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Therefore the z component of the moment of electromagnetic force density, mz, is 

 zz EPEPfm Γ−=−== ψρρψψρ . (8) 

As it can be seen, the moment of the force density compensates the direct optical torque, even 

locally.   

In the general case the electromagnetic force is usually calculated from the Maxwell 

stress tensor and the Abraham force [9, 10]. In this approach the force density, fEM, is given as  

 BETf ×
∂
∂

+=
tcEM

1 Div  (9) 

where the Maxwell stress tensor is, for non-magnetic materials,   
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density of the medium. It is shown by Gordon for isotropic dielectrics [9] that f and fEM differ by 

the gradient of a scalar function of the field strengths.  To prove that the same holds for 

anisotropic media, we use the Maxwell equations (assuming no static charges or currents): 

,1 ;1 ;0 div  div DBBEBD &&
cc

=×∇−=×∇==  with PED += 0ε . Taking into account the 

mathematical identities )()()()()(grad EDDEEDDEDE ×∇×+×∇×+∇⋅+∇⋅=⋅  and 

)()( grad
2
1 2 BBBB ×∇×+∇⋅=B  one finds from Eqs (4) and (9):  
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 As the difference between the forces can be expressed as a gradient of a scalar function, it 

follows that ∫ =−
S

EM dsff 0, ψψ . The integral is taken along a circle in the ρ, ψ  plane with the 

center at the z axis.  As a consequence of the axial symmetry, along this path ψψ ff EM −,  must 

be independent of ψ.  For this reason not only the integral, but its argument should vanish as 

well, i.e. ψψ ff EM =, .  It is thus shown that Eq. (8) holds in the general case too.  

 From the above considerations it follows that in circularly polarized light the total torque 

acting on radial liquid crystal droplets vanishes. As a result, these droplets, in contrast to planar 

ones, do not spin in circularly polarized light. This conclusion is in agreement with experimental 

observations [11, 12].   

The direct optical torque by itself causes director deformation, while the electromagnetic 

force induces flow. The question arises that how can they compensate each other? To find the 

answer we note that the initial director configuration is indeed distorted by the optical torque 

exerted by the light beam. This distortion was directly observed in laser tweezers experiments 

[11, 12]. Associated with the director deformation, a non-uniform stress field develops in the 

droplet [13]. In planar configuration, where the moment of radiation force is zero [5], the force 

arising from the director stress spins the droplet. In radial droplets the two forces are equal in 

magnitude, but opposite in direction, therefore the droplet is not rotated.  This is true regardless 

form the light-induced deformation of the director, provided that the director distribution remains 

axially symmetric. It should be noted that this conclusion is not based on the geometrical optics 

approximation; it is valid for plane waves as well as for tightly focused beams. It also holds for 

any rheology between the liquid and liquid crystal. It is possible, nevertheless, that above a 

threshold intensity symmetry-breaking deformation occurs in the director configuration of a 
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radial droplet. Above the threshold the axial symmetry is lost therefore the moment of the 

radiation force does not compensate exactly the direct optical torque. In this case droplet rotation 

takes place. Such observations in radial droplets were reported by Murazawa et al. [11, 12]. 

Finally, we discuss two aspects of the above phenomenon, both connected with absorption. 

First, in the presence of absorption the dielectric polarization, P, is phase-shifted with respect to 

the electric filed, E; therefore Eq. (7) is not valid any longer. The exact compensation between 

the torques does not hold, so droplet rotation can occur. The second consequence of the presence 

of absorbing dyes is that the optical torque is greatly enhanced [14,15]. However, as shown in 

[5], in order to fulfill the law of conservation of angular momentum, the total torque acting on 

the droplet, associated with the enhancement, must be zero. Indeed, it was found that dye-doping 

has no influence on the spinning speed of planar droplets [5, 16]. In the case of radial droplets, 

dye-induced enhancement of the optical torque can not induce droplet rotation. On the other 

hand, it can lower the symmetry-breaking threshold, just like in the case of optical Freedericksz 

transition in dye-doped homeotropic nematic liquid crystal cells [14].          
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