Topological coordinates for nanotubes

István László *

Department of Theoretical Physics, Institute of Physics and Center for Applied Mathematics, Budapest University of Technology and Economics, H-1521 Budapest, Hungary

Available online 3 February 2004

Abstract

The topological coordinate method is a simple and effective approach for generating good initial coordinates for fullerene and nanotube carbon structures in molecular mechanics calculations. In this method some special eigenfunctions, the bi-lobal eigenfunctions of the Hückel Hamiltonian, or the adjacency matrix are used. It is based on a special connection between the electronic and geometric structure of fullerenes and nanotubes. We have found that the most efficient nanotube initial coordinates can be obtained with the four bi-lobal eigenvector method. The three bi-lobal eigenvector method gave relative good initial coordinates only if the two ends of the tube were closed. In both cases the scaling factors based on the Schrödinger equation of a particle in a rectangular box gave the best result.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: A. Carbon nanotubes; A. Fullerene

1. Introduction

The electronic structure of a polyhex single-walled carbon nanotube is governed by the diameter and chirality [1–5]. If the tube contains pentagonal and heptagonal faces too, its physical behavior depends on the topological properties as well [6–27], and the final geometrical structure can be determined only by some molecular mechanics calculation. For the relaxation process we need some good initial coordinates and various methods can be used in generating the input positions of the carbon atoms. One of them is the NiceGraph algorithm [20] and the other is the topological coordinate method [21,23]. In the NiceGraph algorithm a spring-embedder routine is used for optimizing the 3D drawing, and the topological coordinate method is based on the bi-lobal eigenvectors of the adjacency matrix of the graph.

Here we shall study the application of the topological coordinate method for nanotubes. In Ref. [25] we presented a version where the nanotube coordinates are obtained from those of the corresponding torus. Why do not we use algorithm developed for the fullerenes? What are the influences of various scaling factors? These questions will be examined in this paper.

2. The topological coordinate method

Let \(A \) be the adjacency matrix with elements \(A_{ij} = 1 \), if atoms \(i \) and \(j \) are adjacent and \(A_{ij} = 0 \) otherwise. From this definition follows that \(H = -A \), where \(H \) is the Hückel Hamiltonian matrix with \(\alpha = 0 \) and \(\beta = -1 \), where \(a \) is the diagonal matrix element and \(\beta \) is the non-zero non-diagonal matrix element of \(H \). It is assumed further that

\[
\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_n,
\]

if \(\lambda_k \) is the \(k \)th eigenvalue of \(A \) and \(e^k \) is the corresponding eigenvector.

First we define the bi-lobal eigenvectors [21,22]. Vectors having this bi-lobal property can be identified by the graph-disconnection test: for a candidate vector, color all vertices bearing positive coefficients black, all bearing negative coefficients white, and all bearing a zero coefficient gray; now delete all gray vertices, all edges incident on gray vertices, and all edges connecting a black to a white vertex; if the graph now consists of exactly two connected components, one of black and one of white vertices, then the eigenvector is bi-lobal type [21,22,24].
If c^1, c^2, and c^3 are the first three bi-lobal eigenvectors of A, then the x_i, y_i and z_i topological coordinates of the carbon atoms in a spherical carbon structure (fullerene) are:

\begin{align}
 x_i &= S_1 c_i^1, \\
 y_i &= S_2 c_i^2, \\
 z_i &= S_3 c_i^3,
\end{align}

and

\begin{align}
 y_i &= S_4 c_i^4,
\end{align}

where S_1, S_2, S_3 and S_4 are scaling factors as before. In the construction of this formula we supposed that the position of an atom i on the toroidal surface is the sum of vectors R_i and r_i. The vector R_i points from the center of gravity of the torus to a point on the circular spine, and vector r_i points from there to the surface point i [24].

The topological coordinates of the nanotube are obtained from the corresponding torus by supposing periodicity at the ends of the nanotube [25]:

\begin{align}
 x_i &= S_1 C_i^0, \\
 y_i &= S_4 C_i^4, \\
 z_i &= R \arccos(S_1 C_i^0 / R) \quad \text{if } C_i^0 \geq 0 \\
 z_i &= R(2\pi - \arccos(S_1 C_i^0 / R)) \quad \text{if } C_i^0 < 0.
\end{align}

Here the radius R is the average value of R_i with the scaling of Ref. [25].

3. Applications for nanotubes

The two-dimensional periodic lattice structure can be generated by the translations, $t = n_1 a_1 + n_2 a_2$, where n_1 and n_2 are integers and a_1 and a_2 are unit vectors of the direct lattice. The unit vectors of the super cell are $e_1 = m_{11} a_1 + m_{12} a_2$ and $e_2 = m_{21} a_1 + m_{22} a_2$ with integers $m_{11}, m_{12}, m_{21}, m_{22}$. For the construction of the topological coordinates of a two-dimensional periodic system we need the number of atoms in the unit cell $(0,0)$ and the neighbors each of them. Using then the integers m_{11}, m_{12}, m_{21}, m_{22} the matrix A of the corresponding torus can be constructed by identifying the opposite edges of the super cell, and finally the topological coordinates are calculated by the Eqs. (8)–(11). Here we suppose that the tube axis is parallel with the super cell unit vector e_2 and each nanotube can be characterized by the vector $(m_{11}, m_{12}, m_{21}, m_{22})$. Thus the topological coordinates can be obtained without knowing the unit vectors a_1 and a_2 and without knowing the coordinates of the atoms in the unit cell.

In Figs. 1–6 we have presented the topological coordinates of the nanotube $(3,2,12,30)$ using various methods and S_t scaling factors. The best initial guess for nanotube geometry was obtained by Eqs. (8)–(11) and $S_t = 1/\sqrt{(a_1 - a_k)}$ with $k_1 = 2$, $k_2 = 3$, $k_3 = 12$ and $k_4 = 13$ in Fig. 1. In each cases of Figs. 1–6 the scaling factors $S_t = 1/\sqrt{(a_1 - a_k)}$ were better than those of $S_c = 1$.

![Fig. 1. Topological coordinates obtained by Eqs. (8)–(11) with $S_t = 1/\sqrt{(a_1 - a_k)}$. $k_1 = 2$, $k_2 = 3$, $k_3 = 12$ and $k_4 = 13$ for the nanotube $(3,2,-12,30)$. Both ends are open.](attachment:image.png)
These results can be explained by the fact that the scaling factors \(S_a = 1/\sqrt{(a_1 - a_k)} \) are based on the solutions of the Schrödinger equation for a particle in a rectangular box [21]. That is

\[
\psi_{n_x, n_y, n_z} = \sin \left(\frac{n_x \pi}{L_x} \right) \sin \left(\frac{n_y \pi}{L_y} \right) \sin \left(\frac{n_z \pi}{L_z} \right)
\]

and

\[
E_{n_x, n_y, n_z} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right)
\]

are the solutions, where \(L_x, L_y, L_z \) are the sides of the box and \(n_x, n_y, n_z \) are integers. Thus:

\[
a_1 = E_{1,1,1} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{1^2}{L_x^2} + \frac{1^2}{L_y^2} + \frac{1^2}{L_z^2} \right)
\]

\[
a_2 = E_{2,1,1} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{2^2}{L_x^2} + \frac{1^2}{L_y^2} + \frac{1^2}{L_z^2} \right)
\]

\[
a_3 = E_{1,2,1} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{1^2}{L_x^2} + \frac{2^2}{L_y^2} + \frac{1^2}{L_z^2} \right)
\]

and

\[
a_4 = E_{1,1,2} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{1^2}{L_x^2} + \frac{1^2}{L_y^2} + \frac{2^2}{L_z^2} \right)
\]

give the scaling \(S_a = 1/\sqrt{(a_1 - a_k)} \).
Figs. 3 and 4 show that the topological coordinates obtained by Eqs. (2)–(4) cannot be used directly for a tube, as the eigenvectors $k_1 = 2$, $k_2 = 11$, $k_3 = 12$ “remember” to the eigenvectors $k_1 = 2$, $k_3 = 12$, $k_4 = 13$ of the corresponding torus. This is why the two ends of the tube turn back using Eqs. (2)–(4). At the ends of the tube there are ten two-connected atoms and in the Theorem of Lovász and Schrijver [28] the condition that the graph be three-connected is essential for a proper embedding on a sphere. For the connection between the topological coordinate methods and the null space embedding of graphs see for example [25]. We did not obtain the turning back after eliminating the two-connected atoms with addition of two pentagons at the two ends of the tube. See Figs. 5 and 6.

4. Conclusions

With the help of the bi-lobal eigenvectors of the A adjacency matrix good initial Descartes coordinates can be generated for fullerenes and nanotubes. In appropriate energy units the A is the negative Hückel Hamiltonian ($A = -H$) and one can say, that in this method some electronic eigenfunctions are used in the construction of the atomic positions. Here we examined the three and four bi-lobal methods, and it was found that the best coordinates were obtained using four bi-lobal eigenvectors and scaling coefficients based on the solutions of the Schrödinger equation for a particle in a rectangular box. The three bi-lobal eigenvector method gave relative good initial coordinates only if the two ends of the nanotube were closed.

Acknowledgements

The author is grateful for grants from OTKA (T038191, T043231).

References