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1. I investigated the coupled cluster method tailored by density matrix renormalization group

algorithm (DMRG-TCC) theoretically and exemplified numerically by the nitrogen dimer for

different geometries. I performed a systematic study on the error of the method, in particular

when the system becomes strongly correlated. I showed the strong dependence of the DMRG-

TCC solution on the basis splitting. I showed the robustness of the entropic quantities, which

are the guides in determining the optimal basis splitting, with respect to the DMRG accuracy.

In order to minimize the energy error and carry out large-scale DMRG-TCCSD calculations,

I developed a rigorous routine procedure to determine the optimal basis splitting.

The publication belonging to this thesis statement is [Fau19b], which is [1] in the list on

page v.

2. I studied the orbital optimization based on entanglement minimization within the framework

of the two-site DMRG and exemplified numerically by the nitrogen dimer for different geome-

tries. My analysis, based on the tomography of the state, occupation numbers and entropic

quantities, showed that the developed joint optimization procedure has the potential to com-

press the multireference character of the wave function. The orbital optimization provides

significantly more optimal orbitals for tensor network state methods.

The publication belonging to this thesis statement is [Mát23], which is [2] in the list on

page v.

3. I investigated the Hubbard wheel lattice model of hard-core bosons theoretically and nu-

merically. The tuning of just a single control parameter allows a crossover from one- to

“infinite”-dimensionality, which also drives a transition from quasi-condensation to complete

Bose–Einstein condensation. I showed that the mutual information possesses the qualitatively

similar dependence on the control parameter as the number of the condensed bosons. I showed

the existence of an excitation gap, which is usually highly demanding, and also proposed a

possible experimental realization.

The publication belonging to this thesis statement is [Mát21], which is [3] in the list on

page v.

iv



Publications belonging to thesis statements
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1. CHAPTER

Introduction

Elementary particles in physics are indistinguishable in principle, and they have either

fermionic or bosonic nature. They arrange to different structures according to the environment.

In this work special problems are studied in the field of the quantum chemistry and ultracold

physics. Although their characteristic energies are of different orders of magnitude, moreover, in

the former case we deal with interacting electrons in the external potential of the nuclei, and in

the latter case we study interacting trapped bosons, they still require similar treatment because

of the emerging strong correlations in the systems.

Composite systems, for example, systems of identical particles, are described by tensor prod-

uct structure. The dimension of the composite system scales exponentially with the number

of parts, therefore, there is a need for lossy compression. The tensor network state (TNS)

methods [Hac12, Cir21] are based on the subsequent optimization of the tensor factors cor-

responding to the local factor spaces. There are three main approaches of simulating phys-

ical systems by tensor networks: tree tensor network state (TTNS) [Shi06, Mur10], ten-

sor networks with loops [Ver04, Pip10], especially projected entangled pair states [Nis01,

Ver06b, Ver08, Sch07, Mur07, Bau11]), and the multiscale entanglement renormalization

ansatz [Vid07, Eve09]. Although the density matrix renormalization group (DMRG) method

[Whi92, Whi93] was developed to simulate low dimensional strongly correlated systems appear-

ing in the field of solid-state physics, it also shows its potential in strongly correlated many-body

problems. This algorithm inherently provides the matrix product state (MPS) representation

of the wave function [Ö95, Rom97, Sch11], which is a simple case of the TNSs. Also, MPS

is a tree tensor network state, so, by the Schmidt decomposition (or, in a numerical point of

view, singular value decomposition), we have access to the entanglement in the system for the

given bipartition. In the past two decades TNS methods have become vital alternative ap-

proaches to treat strongly correlated, that is, multireference problems in quantum chemistry

[Whi99, Leg08, Cha08, Yan09, Mar10, Wou14, Leg14, Sza15, Cha16, Bai20, Che22].

Here we investigate systems in quantum chemistry and ultracold physics that are treated by

DMRG or methods that are supported by DMRG.

In quantum chemistry, from the exact solution of the hydrogen atom [Sch26], one may

infer to the properties of the hydrogen-like atoms and ions, since they can be approximated by

a simple system, that is, the problem of the valence electron and the positive core. From the

analytic solution of the hydrogen molecule ion, H+
2 , that is, the problem of two fixed protons

and a single electron [Bur27], the notion of the covalent bond can be grasped [Lew16, Hei27].

The two analytic solutions give us deeper insight into the characteristics of molecular systems,

1



1. INTRODUCTION 2

however, the many-body problem of the interacting electrons are intractable both analytically

and numerically. Both in theoretical and experimental chemistry, it is of central importance to

explore the shape of the potential energy surface, since this shows the fundamental properties of a

molecule, such as the equilibrium geometry and the corresponding energy, spectroscopic constants

and dissociation energy. For this, numerous approximation techniques have been developed

[Hel00] to find the ground-state energy of the electronic system within chemical accuracy for a

fixed nucleus configuration, that is, in the Born–Oppenheimer approximation. For a given orbital

set, the problem is to solve the eigenvalue problem of the Hamiltonian in the full configuration

interaction (FCI) space, which dimension scales exponentially with the number of orbitals. To

tackle this, iterative algorithms were developed to find the lowest eigenvalues [Bai00], however,

these exact diagonalization approaches only tractable for small molecules even in the restriction

on symmetry subspaces. Nevertheless, they can serve as a reference for benchmarking other

numerical methods. On the contrary, one of the simplest approximate solution can be obtained

by the Hartree–Fock method, which gives the best Slater determinant approximation, or one

can say that it is an orbital optimization with respect to the energy expectation value with

Slater determinants. Or from another point of view, the Hartree–Fock method replaces the

Coulomb repulsion of electrons by an effective one-body term, therefore it is a member of a

broader family, the mean-field methods. To go beyond the independent particle picture, but still

addressing the curse of dimensionality, kind of standard computational approaches are the coupled

cluster (CC) methods, especially the CC up to single and double excitations with perturbative

triples [Rag89, Bar90, Bar07]. These are based on the choice of a reference determinant,

which is the Hartree–Fock solution in most of the cases, therefore there is a bias in the method

[Hel00]. Also there are situations, for example, strongly open-shell systems, where the choice

of the reference determinant becomes ambiguous. Moreover, in these cases it is often observed

that the CC energy goes below the exact FCI energy, which is the major drawback of the

CC approach, namely being non-variational [Kow00]. In these cases the TTNS methods are

powerful alternatives, however, the computational demands are governed by the bond dimensions,

which are the sizes of the tensors in the approximate wave function representation. However,

the TTNS methods are variational, and the number of the variational parameters, which are the

(entries of the) tensors, can be controlled efficiently. Other broad fields, not considered in this

work, are the density functional theory based methods [DSS09] and the quantum Monte Carlo

methods [Boo09, Poz13, Vei18]. The former circumvents the curse of dimensionality, it can

be applied moderately correlated system, but the form of the functional used is rather based on

numerical experience. The latter is based on sampling, it can treat strongly correlated systems,

however, suffers from the sign problem. In general, it can be said that there is no universal

method applicable to quantum chemistry systems being superior both in numerical cost and

accuracy. Moreover, it is often observed that the correlation in the system changes when going

along a path in the potential energy surface. For example, describing the bond breaking of a

molecule requires careful treatment, since the system is dominated by dynamical correlation at

equilibrium geometry and static correlation close to dissociation. The coupled cluster method

performs well in the first case but fails in the latter [Kow00, Lya12]. From this, two remarks
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can be drawn that we elaborate. First, hybrid numerical approaches may be developed to capture

both dynamic and static correlation in the system. Second, since the correlation in the system

is basis dependent, the optimization of the underlying basis may yield a favourable problem

setting for the numerical treatment. The corresponding methods, investigated and discussed

in this work, are the CC tailored by DMRG (DMRG-TCC) and the mode transformation and

-optimization, respectively.

Concerning ultracold gases, the Bose–Einstein condensation (BEC) is one of the most striking

quantum phenomena in nature [Gri95, Pet02, Leg06, Pit16]. While its theoretical prediction

dates back almost one hundred years ago, it has more recently seen a revival of interest due to its

realization in trapped gases [And95, Bra95, Dav95]. The accurate study of BEC by theoretical

and computational approaches, particularly for systems with strong quantum correlations is

rather challenging. This has been the reason why most studies of BEC so far were concerned with

weakly interacting bosons (corresponding to the experimental situation for ultracold gases) or

even ideal Bose gases, eventually allowing for feasible mean-field approaches. Prime examples are

the Bogoliubov theory [Bog47] for uniform systems, Gross–Pitaevskii theory [Gro61, Gro63,

Pit61] for general inhomogeneous systems, and perturbation theoretical approaches [Lee57b,

Lee57a, Bru57a, Bru57b, Bel58, Hug59, Lie63b]. Although these widely used approaches

have led to a deeper understanding of BEC, their range of validity is limited. To go beyond that

limitation, various methods were developed [Dal99, And04, Caz11, Lod20]. The occurrence

of the BEC also depends on the temperature and on the possible inhomogeneities or disorders,

for example, due to the presence of an external field [Sac11]. In this work, however, we restrict

our discussion to the interaction strength and the spatial dimensionality affecting the presence

of the BEC, which leads us the Hubbard wheel of hard-core bosons.

The structure of the thesis is the following. In chapter 2, we recall the description of quan-

tum systems, the tensor network methods (particularly the two-site DMRG) and the formalism

of identical particles. In section 3, the recently developed DMRG-TCC method is analysed

theoretically and numerically. In chapter 4, orbital optimization based on entanglement mini-

mization is detailed and demonstrated. In chapter 5, the Hubbard wheel of hard-core bosons

is studied. Finally, in chapter 6, we conclude with an outlook. Some further background is

given in the appendices. Some technical details of the DMRG are presented in appendices A and

B, regarding order optimization and initialization, respectively. In appendix C, the conventional

single-reference approaches in computational chemistry are recalled, particularly the CC method.



2. CHAPTER

Description of many-body quantum systems

In this chapter, first, in section 2.1, we recall the basic notions for describing quantum sys-

tems. One of the most distinctive features of quantum nature is revealed in composite systems,

where a special type of correlation occurs, called entanglement. In the classification of quantum

states (see section 2.2), and the quantification of correlation and entanglement (see section 2.3),

the Schmidt decomposition naturally appears, which is a simultaneous unitary basis transforma-

tion resulting diagonal coefficient tensor. This, however, works only for bipartition, and cannot

be generalized for more than two parts. Moreover, since the dimension of the composite system

scales exponentially with the number of parts, there is a need for lossy compression. These two

facts together lead us to the field of tensor decomposition and tensor network methods, detailed

in sections 2.4-2.5. The density matrix renormalization group (DMRG) method approximates

the state vector of the system in a special tensor network form, the matrix product state (MPS)

form (see sections 2.6-2.7). After the description of quantum states built up from general ele-

mentary subsystems (for example, spins, modes, (spatial) orbitals), we turn to the formalism of

identical particles (bosons and fermions) in sections 2.8-2.9. In the first quantization (or parti-

cle picture), we have particles, which are indistinguishable and can occupy some modes, in the

second quantization (or mode picture), we have modes, which are distinguishable and can be

occupied by some particles. Unitary basis transformation and operators (especially the Hamil-

ton operator, by which the physical models are formulated), are discussed in the two pictures in

sections 2.10-2.13.

2.1. Description of quantum systems

Quantum mechanics gives a statistical description of a system in terms of linear operators

represented on Hilbert spaces [Neu32, Nie00, Ben06, Pet08]. In this thesis we consider

discrete, finite quantum systems, which are represented on finite dimensional complex Hilbert

spaces H, and we omit the trivial cases, so 1 < dim(H) < ∞. Observables (physical quantities

treated by quantum mechanics) are represented by self-adjoint operators O ∈ LinSA(H), and

states are linear functionals giving the expectation values ⟨O⟩ of the observables O. The quantum

states can be given by density operators, which are positive semidefinite, normalized operators,

the space of which is

D(H) :=
{
ϱ ∈ Lin(H)

∣∣∣ ϱ = ϱ† ≥ 0,Tr(ϱ) = 1
}
. (2.1)

Then ⟨O⟩ = Tr(ϱO) for ϱ ∈ D(H). The state space D(H) is a convex set, that is, the convex

combination (statistical mixture)
∑

i piϱi of states ϱi with weights pi ≥ 0,
∑

i pi = 1, is also a

4
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{1, 2, 3}

{2, 3} {1, 3} {1, 2}

{1} {2} {3}

∅

Figure 2.1. The subsystem labels of the tripartite system L = {1, 2, 3}. The
lattice of power set 2{1,2,3} (left) and its graphical illustration (right). The

arrows denote the relation between the labels, the set inclusion.

state. The extremal points of the state space are the pure states, which turn out to be rank-one

projections, the space of which is

P(H) := ExtrD(H) =
{
|ψ⟩⟨ψ|

∣∣∣ |ψ⟩ ∈ H,Tr
(
|ψ⟩⟨ψ|

)
= ∥ψ∥2 = 1

}
. (2.2)

Then ⟨O⟩ = Tr(πO) = ⟨ψ|Oψ⟩ for π ∈ P(H). The normalized vector |ψ⟩ ∈ H, by which the pure

state is given, is called state vector. We also have that the state space is the convex hull of the

rank-one projections,

D(H) = ConvP(H) =
{∑

i

piπi

∣∣∣ πi ∈ P(H), pi ≥ 0,
∑
i

pi = 1
}
. (2.3)

Then

⟨O⟩ = Tr(ϱO) =
∑
i

pi Tr(πiO) =
∑
i

pi⟨ψi|O|ψi⟩ (2.4)

for ϱ =
∑

i piπi ∈ D(H). Note that the convex decomposition of a density operator in (2.3) is

highly non-unique, contrary to the classical case [Sch36, Gis89, Hug93, Ben06].

We deal with composite, ormultipartite systems, where the observables of disjoint subsystems

can be measured simultaneously. These quantities are represented by operators of subalgebras

commuting with one another, leading to a tensor product structure in the Hilbert space and its

operator algebra. For composite systems let the labels of the elementary subsystems be denoted

by i ∈ L, with |L| < ∞ and the associated Hilbert spaces by Hi. A subsystem (not elementary

in general) is labelled by X ⊆ L, so we have the Hilbert space HX =
⊗

i∈X Hi, and similarly to

(2.2) and (2.1), the set of pure states PX := P(HX), and the set of mixed states DX := D(HX)

are understood. For simplicity, the labels of the whole system is omitted, PL =: P and DL =: D.

Every subsystem label X is an element of 2L, the power set of L, which is a basic example for

a lattice structure [Bir73, Dav02] with respect to set inclusion, intersection and union. For

illustration, see figure 2.1.
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Figure 2.2. The partition labels of the tripartite system L = {1, 2, 3}. Graph-

ical illustration of the lattice structure of the partitions of a tripartite system

Π{1,2,3}. The arrows denote the partial order of the lattice, the refinement.

Let us have the nested subsystems Y ⊆ X ⊆ L. The observables OY of subsystem Y among

the observables of subsystem X are given by the operator extension

ιY,X : Lin(HY ) −→ Lin(HX),

OY 7−→ OY ⊗ IX\Y .
(2.5)

If the state of subsystem X is given by ϱX ∈ DX , then the reduced state ϱY := rX,Y (ϱX) ∈ DY

of subsystem Y is the state that gives back the expectation values of observables of subsystem Y ,

that is, Tr
(
rX,Y (ϱX)OY

)
= Tr

(
ϱXιY,X(OY )

)
for all OY . This means that the operation of the

state reduction rX,Y is just the adjoint map (with respect to the Hilbert–Schmidt inner product)

of the operator extension ιY,X . It turns out that this holds if and only if the state reduction is

done by the partial trace operation

rX,Y : DX −→ DY ,

ϱX 7−→ TrX\Y (ϱX),
(2.6)

where TrX\Y is linear, and given as TrX\Y (AY ⊗BX\Y ) = AY Tr(BX\Y ) for elementary tensors

AY ⊗BX\Y [Nie00, Pet08].

2.2. Correlation and entanglement of quantum systems

A partition of the system is a set ξ = {X1, X2, . . . , X|ξ|} (with the shorthand notation

ξ = X1|X2| . . . |X|ξ|) having parts X ⊆ L that are non-empty, X ∈ 2L \ {∅}, disjoint, X ∩X ′ = ∅
if X ̸= X ′, cover the whole system,

⋃
X∈ξX = L. The set of all possible partitions of the system

is ΠL. For two partitions ξ, υ ∈ ΠL, one can say that υ is the refinement of ξ (or “υ is finer than

or equal to ξ” or “ξ is coarser than or equal to υ”), if the parts of ξ can be obtained by joining

some parts of υ. This is given by the relation

υ ⪯ ξ
def⇐⇒ ∀Y ∈ υ,∃X ∈ ξ : Y ⊆ X, (2.7)

which turns out to be a partial order, moreover, for all pairs of partitions there exist greatest

lower bound and least upper bound with respect to ⪯, so the poset (partially ordered set) ΠL

is a lattice [Bir73, Dav02]. We have the finest and coarsest partitions, ⊥ =
{
{i}, i ∈ L

}
and

⊤ =
{
L
}
, respectively. For illustration, see figure 2.2.
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With respect to a partition ξ ∈ ΠL, let us introduce the correlation of observables OX for

X ∈ ξ, defined as

Cξ(ϱ; {OX}X∈ξ) =
〈⊗

X∈ξ

OX

〉
−
∏
X∈ξ

〈
OX

〉
= Tr

((
ϱ−

⊗
X∈ξ

ϱX
)⊗
X∈ξ

OX

)
. (2.8)

In mathematical statistics this is called covariance, and the normalized covariance is the corre-

lation. In physics we omit that normalization, which would make the quantity highly nonlinear

also in the observables. The state itself is called uncorrelated with respect to a partition ξ ∈ ΠL

if the correlation (2.8) vanishes for all {OX}X∈ξ set of observables. The space of ξ-uncorrelated

states is

Dξ-unc :=
{⊗
X∈ξ

ϱX

∣∣∣ ϱX ∈ DX ,∀X ∈ ξ
}
. (2.9)

The rest of the state space contains the ξ-correlated states, D \Dξ-unc, these cannot be prepared

without communication (interaction). With respect to a partition ξ ∈ ΠL, the ξ-separable states

arise when only classical communication is allowed among ξ-uncorrelated subsystems [Wer89],

the space of which is

Dξ-sep := ConvDξ-unc. (2.10)

The rest of the state space contains the ξ-entangled states, D \Dξ-sep, these cannot be prepared

by classical communication (classical interaction), genuine quantum interaction is needed for

that. This is the “local operation and classical communication” (LOCC ) paradigm, also called

distant laboratory paradigm [Wer89], grabbing an important non-classical feature of quantum

correlations. In the special case of pure states, correlation and entanglement in the whole system

coincide, P ∩ Dξ-unc = P ∩ Dξ-sep, that is,

Pξ-sep ≡ Pξ-unc =
{⊗
X∈ξ

πX

∣∣∣ πX ∈ PX ,∀X ∈ ξ
}
, (2.11)

and the other pure states are ξ-correlated, or equivalently ξ-entangled, P \ Pξ-unc ≡ P \ Pξ-sep

[Dür99, Dür00, Aćı00, See08, Szal12, Szal13]. Correlation in pure states is a non-classical

feature of quantum theory. Note that by construction ExtrDξ-sep = Pξ-sep. Note that the

correlation and entanglement do not coincide inside the subsystems, even if the whole system is

described by a pure state, since the state describing the subsystem is mixed in general, see (2.19)

later.

If a state is uncorrelated with respect to a partition, then it is uncorrelated with respect to

every coarser partition, that is,

υ ⪯ ξ ⇐⇒ Dυ-unc ⊆ Dξ-unc. (2.12a)

Because of (2.10), similar expression follows for ξ-separable states [Szal15, Szal17],

υ ⪯ ξ ⇐⇒ Dυ-sep ⊆ Dξ-sep. (2.12b)

That is, the inclusion hierarchy of state sets Dξ-unc and Dξ-sep is described by the poset ΠL.
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To sum up, we have the structure of the state spaces

ExtrD = P ⊂ D = ConvP

⊃

⊂ ⊃ ⊂ ⊃ ⊃
ExtrDξ-unc = Pξ-unc ≡ Pξ-sep ⊂ Dξ-unc ⊂ Dξ-sep = ConvPξ-sep

⊇ ⊇ ⊇ ⊇ ⊇ ⊇

ExtrDυ-unc = Pυ-unc ≡ Pυ-sep ⊂ Dυ-unc ⊂ Dυ-sep = ConvPυ-sep,

(2.13)

for υ ⪯ ξ. Note that for the trivial (coarsest) partition ⊤ =
{
L
}
, we have D⊤-unc = D⊤-sep = D

and P⊤-unc = P⊤-sep = P.

Let us write out the special features of the pure states |ψ⟩⟨ψ| ∈ P(HX ⊗HX̄) with respect to

bipartitions ξ = X|X̄, where X̄ = L \X. Without the loss of generality, let DX = dim(HX) ≤
dim(HX̄) = DX̄ , and consider the spectral decomposition of the reduced state,

ϱX =

DX∑
α=1

ωα|χ′
X,α⟩⟨χ′

X,α| ∈ DX , (2.14)

where the eigenvalues are ordered decreasingly, ω1 ≥ . . . ≥ ωDX
≥ 0. The number of non-

zero eigenvalues are the rank of the state, rk(ϱX). The state vector can be written with this

{|χ′
X,α⟩}

DX
α=1 ⊂ HX orthonormal basis and an arbitrary {|χX̄,α⟩}

DX̄
α=1 ⊂ HX̄ orthonormal basis as

|ψ⟩ =
DX∑
α=1

DX̄∑
β=1

cα,β |χ′
X,α⟩ ⊗ |χX̄,β⟩ =

DX∑
α=1

|χ′
X,α⟩ ⊗ |ψX̄,α⟩, (2.15)

where |ψX̄,α⟩ :=
∑DX̄

β=1 cα,β |χX̄,β⟩. (We note that in the whole work, the term basis is used for a

linearly independent complete set of vectors. In the quantum-chemistry community the similar

word is used for an orbital set, hence we use orbital set in those cases.) Applying the partial

trace (2.6) to the bipartite pure state given by the state vector (2.15), and comparing with (2.14)

yields

0 = ϱX − TrX̄(|ψ⟩⟨ψ|) =
DX∑

α,α′=1

(
ωαδα,α′ − ⟨ψX̄,α′ |ψX̄,α⟩

)
|χ′

X,α⟩⟨χ′
X,α′ |. (2.16)

Since the dyads in (2.16) are linearly independent (form a basis in Lin(HX)), the expression in

the parentheses must vanish for all α, α′ = 1, . . . , DX . This leads to that the vectors |χ′
X̄,α

⟩ :=
1√
ωα

|ψX̄,α⟩ for all the non-zero ωα eigenvalues, α = 1, . . . , rk(ϱX), form an orthonormal set, and

we have

|ψ⟩ =
rk(ϱX)∑
α=1

√
ωα|χ′

X,α⟩ ⊗ |χ′
X̄,α⟩, (2.17a)

ϱX =

rk(ϱX)∑
α=1

ωα|χ′
X,α⟩⟨χ′

X,α|, ϱX̄ =

rk(ϱX)∑
α=1

ωα|χ′
X̄,α⟩⟨χ

′
X̄,α|. (2.17b)

The Schmidt rank of |ψ⟩ ∈ H with respect to the bipartition X|X̄ is the number of the terms

in the above sums, which equals the rank of the reduced states, rk(|ψ⟩) := rk(ϱX) = rk(ϱX̄).
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The DX orthonormal vectors {|χ′
X,α⟩}

DX
α=1 in HX were fixed by the spectral decomposition of ϱX

(non-uniquely, if there are degenerate eigenvalues), but only rk(ϱX) orthonormal vector is fixed

so far in HX̄ , however, the remaining DX̄ − rk(ϱX) vectors can be chosen to be orthonormal on

HX̄ , resulting an orthonormal basis {|χ′
X̄,α

⟩}DX̄
α=1 on HX̄ . By the use of these two bases we can

also write

|ψ⟩ =
DX∑
α=1

√
ωα|χ′

X,α⟩ ⊗ |χ′
X̄,α⟩, (2.18a)

ϱX =

DX∑
α=1

ωα|χ′
X,α⟩⟨χ′

X,α|, ϱX̄ =

DX̄∑
α=1

ωα|χ′
X̄,α⟩⟨χ

′
X̄,α|, (2.18b)

where ωα = 0 for DX < α ≤ DX̄ . The two bases are called Schmidt bases (which are also the

eigenvectors of the reduced states), the coefficients
√
ωα Schmidt coefficients (which are also the

square roots of the eigenvalues of the reduced states), the procedure Schmidt decomposition and

the form (2.17) Schmidt canonical form [Sch07, Sch36]. Note that the sum of the square of

the Schmidt coefficients is one, being the norm square of the state vector, ∥ψ∥2 = Tr(ϱX) =

Tr(ϱX̄) =
∑

α ωα = 1. It is also easy to see that the X|X̄-separable pure states (2.11) are given

by state vectors of Schmidt rank one, or equivalently having pure marginals, rk(|ψ⟩) = rk(ϱX) =

rk(ϱX̄) = 1, that is,

|ψ⟩⟨ψ| ∈ PX|X̄-sep ⇐⇒ TrX̄(|ψ⟩⟨ψ|) ∈ PX ⇐⇒ TrX(|ψ⟩⟨ψ|) ∈ PX̄ . (2.19)

Note that, with respect to partition of more than two parts, there is no (2.17)-like decompo-

sition with orthogonal vectors in the subsystems. This leads to the field of tensor decomposition,

the main concern of this work. Before turning to this, we recall the quantification of correlation

and entanglement, which also plays an important role in approaches based on tensor decompo-

sitions.

2.3. Measures of correlation and entanglement

Having introduced the notions of uncorrelated (2.9) and separable states (2.10), and corre-

lation of observables (2.8), our aim is to quantify the correlation and the entanglement of the

states themselves. We use some important functions over the state space D. The von Neumann

entropy of a state ϱ ∈ D,

S(ϱ) = −Tr(ϱ ln(ϱ)), (2.20)

quantifies the information content of the state by means of encoding (convertibility) task. It

shows important properties, it is non-negative, continuous, concave (that is, S(
∑

i piϱi) ≥∑
i piS(ϱi) for all decompositions), additive for uncorrelated states, faithful (zero if and only

if the state is pure), non-decreasing in bistochastic quantum channels and recursive [Neu27,

Ohy93, Sch95, Wil13]. The recursive property means that S(
∑

i piϱi) =
∑

i piS(ϱi) + S(p)

for decompositions of states with mutually orthogonal support, where S(p) is the Shannon en-

tropy of the weights. The main point is that the recursive property together with some fur-

ther natural ones uniquely determines the von Neumann entropy in an axiomatic treatment
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[Sha49, Khi57, Ohy93]. The Rényi entropies

SR
α (ϱX′) =

1

1− α
ln
(
Tr(ϱαX′)

)
(2.21)

with parameter α ≥ 0 show slightly less nice properties than the von Neumann entropy. They are

non-negative, continuous, concave if 0 < α ≤ 1, additive for uncorrelated states, faithful (zero

if and only if the state is pure) and non-decreasing in bistochastic quantum channels, however,

not recursive [Rén61, Ohy93]. In the α = 0 case it is the Hartley entropy and α → 1 the von

Neumann entropy. The Umegaki relative entropy of the states ϱ, σ ∈ D,

D(ϱ||σ) = Tr
(
ϱ(ln(ϱ)− ln(σ))

)
, (2.22)

quantifies the distinguishability of the states as being the exponent of the error probability in

hypothesis testing tasks. It has important properties, it is non-negative, continuous, jointly

convex, additive for uncorrelated states, zero if and only if ϱ = σ and non-increasing in all

quantum channels [Ume62, Hia91, Ohy93, Wil13].

The correlation of observables was defined previously (2.8), however, our aim is to give to

how much extent the state ϱ itself is correlated with respect to a partition. The correlation of

a state ϱ ∈ D with respect to a partition ξ can be quantified by its distinguishability from the

ξ-uncorrelated states (2.9) using the relative entropy (2.22). This is called the relative entropy

of ξ-correlation, which turns out to be the same as the ξ-mutual information [Her04, Pet08,

Mod10, Szal15, Szal17],

Iξ(ϱ) := min
σ∈Dξ-unc

D(ϱ||σ) =
∑
X∈ξ

S(ϱX)− S(ϱ), (2.23a)

where ϱX = TrX̄(ϱ). This is because the minimal value is attained when σ =
⊗

X∈ξ ϱX [Mod10].

The relative entropy of ξ-correlation is a proper correlation measure, since it is faithful, that is,

it vanishes if and only if the state is ξ-uncorrelated, and non-increasing with respect to local

operations (LO). The entanglement of a state ϱ ∈ D with respect to a partition ξ can also be

quantified by its distinguishability from the ξ-separable states (2.10) using the relative entropy

(2.22). This is called the relative entropy of ξ-entanglement [Ved98, Mod10],

Eξ(ϱ) := min
σ∈Dξ-sep

D(ϱ||σ). (2.23b)

Similarly to other motivated entanglement measures [Hor01, Hor09], this cannot be expressed

with a (2.23a)-like, closed formula. The relative entropy of ξ-entanglement is a proper entan-

glement measure, since it is faithful, that is, it vanishes if and only if the state is ξ-separable,

and non-increasing with respect to local operations and classical communication (LOCC). The

quantities defined above by the relative entropy obeys the inequality Eξ ≤ Iξ by construction,

which is the manifestation of that entanglement is a “part” of the “whole” correlation, the “part”

which cannot be addressed classically, by means of LOCC [Mod10].
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A simple consequence of the isomorphisms (2.12) is the multipartite monotonicity of the

relative entropy of ξ-correlation and ξ-entanglement [Szal15, Szal17],

υ ⪯ ξ ⇐⇒ Iυ ≥ Iξ, (2.24a)

υ ⪯ ξ ⇐⇒ Eυ ≥ Eξ. (2.24b)

That is, for finer partitions the states are more correlated and entangled, so the sets of these

functions describing correlation and entanglement inherit the structure of the poset ΠL. The

smallest functions correspond to the top element ξ = ⊤, which vanish for all ϱ ∈ D states,

I⊤(ϱ) = 0, E⊤(ϱ) = 0. The largest functions correspond to the bottom element ξ = ⊥, these are

also called total correlation and total entanglement. The total correlation can be expressed with

the entropies (2.23a),

Itot(ϱ) := I⊥(ϱ) =
∑
i∈L

S(ϱi)− S(ϱ), (2.25)

where ϱi = Tr{i}(ϱ). For pure states this reduces to the sum of the entropies of the elementary

subsystems.

Let us write out the special features of a pure state of the bipartite case, |ψ⟩⟨ψ| ∈ P(HX ⊗
HX̄). Due to the Schmidt decomposition (2.17), the (non-zero part of the) spectra of the

marginals of pure states are equal, counting multiplicities, so

S
(
TrX̄(|ψ⟩⟨ψ|)

)
= S

(
TrX(|ψ⟩⟨ψ|)

)
= −

rk(ϱX)∑
α=1

ωα lnωα, (2.26)

which is the Shannon entropy of the square of the Schmidt coefficients. Therefore the X|X̄-

mutual information (2.23a) is

IX|X̄(|ψ⟩⟨ψ|) = 2S
(
TrX̄(|ψ⟩⟨ψ|)

)
= 2S

(
TrX(|ψ⟩⟨ψ|)

)
. (2.27a)

The X|X̄-entanglement (2.23b) can also be calculated in this case, which is a far more difficult

task [Ved98],

EX|X̄(|ψ⟩⟨ψ|) = S
(
TrX̄(|ψ⟩⟨ψ|)

)
= S

(
TrX(|ψ⟩⟨ψ|)

)
. (2.27b)

This is just the usual entanglement entropy for pure states of bipartite systems, quantifying the

entanglement of the state by means of LOCC convertibility task [Ben96a, Ben96b].

2.4. Tensor decompositions

An arbitrary state vector of the composite system of n = |L| elementary subsystems can be

written with respect to tensor product basis formed by local orthonormal bases {|χi,α⟩}Di
α=1 as

|ψ⟩ =
D1,...,Dn∑

α1,...,αn=1

ψα1,...,αn |χ1,α1⟩ ⊗ . . .⊗ |χn,αn⟩ ∈
n⊗

i=1

Hi = HL. (2.28)

The number of the entries of the coefficient tensor ψ ∈ CD1 ⊗ . . .⊗CDn scales exponentially with

the n number of elementary subsystems, thus the numerical treatment is unfeasible even for not

too large systems. To handle this, we consider methods of tensor decompositions. The idea of

tensor decompositions is the separation of variables, that is, write a multi-variable function as

a sum of product of single-variable functions. Note that, although normalization is not really
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an important point here, we consider only state vectors, that is, normalized vectors, ∥ψ∥ = 1,

for convenience. For the easier understanding, tensor diagrams are used consisting of boxes and

lines. The boxes represent the tensors, lines represent the indices, and the connected lines are

the summation indices. In the sequel we consider the decompositions of the coefficient tensor ψ,

and also illustrate in figure 2.3.

In section 2.2 we have already seen the most basic tensor decomposition method, the Schmidt

decomposition (2.18), discussed from the point of view of bipartite quantum state vectors and

their entanglement. Now we give a more general discussion from the point of view of basis

transformations, which is in general called singular value decomposition (SVD) being applicable

to arbitrary tensors. For example, in case of HX ⊗ H∗
X′ this is operator SVD, while in case of

HX ⊗HX̄ this is vector SVD, which is the Schmidt decomposition.

Let us have two finite dimensional Hilbert spaces HX and HX′ , for which, without the loss

of generality, DX = dim(HX) ≤ dim(HX′) = DX′ . For any operator A ∈ Lin(HX′ ,HX) ∼=
HX ⊗H∗

X′ there exist non-negative numbers
√
ωα, called singular values, and orthonormal bases

{|χ′
X,α⟩}

DX
α=1 ⊂ HX and {|χ′

X′,α⟩}
DX′
α=1 ⊂ HX′ such that

A =

DX∑
α=1

√
ωα|χ′

X,α⟩⟨χ′
X′,α|, (2.29a)

which is the singular value decomposition of operator A. This fundamental result in linear al-

gebra, which provides a canonical form [Ree80], follows from that all compact operators have

polar decomposition, resulting a unitary and a positive semidefinite (that is, normal) opera-

tor, and all normal operators have spectral decomposition. We can formulate this equivalently

with matrices. Let us write A =
∑DX ,DX′

α,β=1 Aα,β |χX,α⟩⟨χX′,β | with arbitrary orthonormal bases

{|χX,α⟩}DX
α=1 ⊂ HX and {|χX′,α⟩}DX′

α=1 ⊂ HX′ . Then there exist a diagonal matrix S having non-

negative entries, and unitary matrices U ∈ U(DX) and V ∈ U(DX′), such that A = USV †,

that is,

A =

DX ,DX′∑
α,β=1

DX∑
γ=1

Uα,γSγ,γV
∗
β,γ |χX,α⟩⟨χX′,β |. (2.29b)

The connection between the two formulations is that the diagonal matrix contains the sin-

gular values, Sα,β = δα,β
√
ωα, and the basis transformations are performed by unitaries U =∑DX

α=1 |χ′
X,α⟩⟨χX,α| and V =

∑DX′
α=1 |χ′

X′,α⟩⟨χX′,α|, which have matrix entries Uα,β = ⟨χX,α|χ′
X,β⟩

and Vα,β = ⟨χX′,α|χ′
X′,β⟩ (in both bases). This decomposition is essentially unique, that is,

up to reordering and unitary transformation on subspaces corresponding to the same singular

value (phases in case of non-degenerate singular values). The Frobenius norm, which is induced

by the Hilbert–Schmidt inner product, is the Euclidean norm of the singular values, that is,

∥A∥2F := Tr(A†A) =
∑

α ωα.

As we saw in section 2.2, the Schmidt decomposition (2.18) states that for any bipartite state

vector |ψ⟩ ∈ HX ⊗HX̄ there exist non-negative numbers,
√
ωβ , called Schmidt coefficients, and
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orthonormal bases {|χ′
X,β⟩}

DX

β=1 ⊂ HX and {|χ′
X̄,β̄

⟩}DX̄

β̄=1
⊂ HX̄ , such that

|ψ⟩ =
DX∑
β=1

√
ωβ |χ′

X,β⟩ ⊗ |χ′
X̄,β⟩. (2.30a)

We can formulate this equivalently with matrices. The Schmidt decomposition (2.18) states that

if we write |ψ⟩ =
∑DX ,DX̄

α,ᾱ=1 ψα,ᾱ|χX,α⟩⊗ |χX̄,ᾱ⟩ with arbitrary orthonormal bases {|χX,α⟩}DX
α=1 ⊂

HX and {|χX̄,ᾱ⟩}
DX̄
ᾱ=1 ⊂ HX̄ , then, there exist a “diagonal” vector S having non-negative entries,

and unitary matrices U ∈ U(DX) and V ∈ U(DX̄), such that the column vector is ψ = (U⊗V )S

(or ψ = USV t if we consider S as a matrix), that is,

|ψ⟩ =
DX ,DX̄∑
α,ᾱ=1

DX∑
β=1

Uα,βSβ,βVᾱ,β |χX,α⟩ ⊗ |χX̄,ᾱ⟩. (2.30b)

The connection between the two formulations is that the vector S contains the Schmidt co-

efficients, Sα,ᾱ = δα,ᾱ
√
ωα, and the basis transformations are performed by unitaries U =∑DX

α=1 |χ′
X,α⟩⟨χX,α| and V =

∑DX̄

ᾱ=1 |χ′
X̄,ᾱ

⟩⟨χX̄,ᾱ|, which have matrix entries Uα,ᾱ = ⟨χX,α|χ′
X,ᾱ⟩

and Vα,ᾱ = ⟨χX̄,α|χ′
X̄,ᾱ

⟩ (in both bases). The norm is the Euclidean norm of the singular values,

that is, ∥ψ∥2 = ⟨ψ|ψ⟩ =
∑

α ωα. The Schmidt decomposition is illustrated in figure 2.3 (b).

We note that the SVD of the operator A is sometimes given as a triple (U, S, V ) in the

literature, where the entries are the array of orthonormal vectors |χ′
X,α⟩ ∈ HX , the array of

singular values
√
ωα and the array of orthonormal vectors |χ′

X′,α⟩ ∈ HX′ , respectively, such that

(2.29a) is fulfilled. When we turn to numerics, instead of abstract tensors, we want to deal with

arrays, which can be manipulated, decomposed or approximated, therefore we fix a basis. So

we say, equivalently, that we have the SVD of A with respect to orthonormal bases {|χX,α⟩}DX
α=1

and {|χX′,α⟩}DX′
α=1 , such that (2.29b) is fulfilled. Similary, we say that we have the Schmidt

decomposition of |ψ⟩ with respect to orthonormal bases {|χX,α⟩}DX
α=1 and {|χX̄,ᾱ⟩}

DX̄
ᾱ=1, such

that (2.30b) is fulfilled. From the numerical analysis point of view, the Schmidt decomposition

(2.18) can be considered as a direct consequence of the singular value decomposition of the

coefficient tensor ψα,ᾱ. With this simultaneous basis transformation, having numerical cost

scaling O(D2
XDX̄), the coefficient tensor becomes diagonal, yielding reduction of entries to DX ,

assuming DX < DX̄ [Hac12]. The main features of the Schmidt decomposition (or the SVD) are

that, on the one hand, there is only one summation, on the other hand, the transformation to the

new bases is unitary, that is, orthonormalization is preserved. For more than two tensor factors,

these cannot be fulfilled simultanously. Keeping the orthogonality we end up with the Tucker

decomposition, while keeping the single summation we end up with the canonical decomposition.

The tensor product spaceH1⊗. . .⊗Hn is spanned by the tensor products of n (not necessarily

basis) vectors |χ′
i⟩ ∈ Hi, called elementary tensors |χ′

1⟩ ⊗ . . . ⊗ |χ′
n⟩. Then one can write the

highly non-unique canonical decomposition or m-term representation [Hac12] of the state vector

(2.28),

|ψ⟩ =
m∑

β=1

|χ′
1,β⟩ ⊗ . . .⊗ |χ′

n,β⟩. (2.31a)
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We can formulate this equivalently with matrices. If we have (2.28), we can separate the variables

of the coefficient tensor as ψα1,...,αn =
∑m

β=1 c
(1)
α1,β

· . . . · c(n)αn,β
, then

|ψ⟩ =
D1,...,Dn∑

α1,...,αn=1

m∑
β=1

c
(1)
α1,β

. . . c
(n)
αn,β

|χ1,α1⟩ ⊗ . . .⊗ |χn,αn⟩. (2.31b)

(Here we moved the subsystem indices to superscript for brevity.) The connection between

the two formulations is that the basis transformations are performed by linear transformation

c(i) =
∑m

α=1 |χ′
i,α⟩⟨χi,α|, which have matrix entries c

(i)
α,β = ⟨χi,α|χ′

i,β⟩ (in the not-primed basis).

This is, however, not a unitary transformation, so |χ′
i,α⟩ vectors are neither orthogonal nor

normalized in general. Finding this factorization with lowest rank m is NP-hard [Hil13], and

also finding the best m = 1 approximation (n > 2) is NP-hard. Moreover, this decomposition

results a form that suffers from the border rank problem [Hac12], that is, sequence of vectors

with fixed rank m can converge to one with higher m for n > 2. The canonical decomposition

is illustrated in figure 2.3 (c), where the single summation index is highlighted on the horizontal

legs.

Let us have the state vector (2.28) but now written with respect to another orthonormal

tensor product basis indicated by prime. We say that the Tucker decomposition with core tensor

ψ̃ is

|ψ⟩ =
m1,...,mn∑
β1,...,βn=1

ψ̃β1,...,βn
|χ′

1,β1
⟩ ⊗ . . .⊗ |χ′

n,βn
⟩, (2.32a)

where mi ≤ Di for i ∈ [n]. We can formulate this equivalently with matrices. Consider the

Schmidt decompositions with respect to each tensor factor versus the rest, that is, for bipartitions

{i}|{i} for all i ∈ [n] with basis {|χ1,α1
⟩⊗ . . .⊗|χn,αn

⟩}. By the obtained unitaries U (i) ∈ U(Di)

we have ψ = (U (1) ⊗ . . .⊗U (n))ψ̃, that is,

|ψ⟩ =
D1,...,Dn∑

α1,...,αn=1

m1,...,mn∑
β1,...,βn=1

ψ̃β1,...,βnU
(1)
α1,β1

. . . U
(n)
αn,βn

|χ1,α1⟩ ⊗ . . .⊗ |χn,αn⟩. (2.32b)

The connection between the two formulations is that the basis transformations are performed by

partial isometries U (i) =
∑mi

α=1 |χ′
i,α⟩⟨χi,α|, which have matrix entries U

(i)
α,β = ⟨χi,α|χ′

i,β⟩. If the
local rank mi = Di, the operator U (i) is unitary. If the local ranks mi are less than the local

dimensions Di, this decomposition yields the reduction of entries of ψ̃ compared to the original

tensor ψ. However, the core tensor ψ̃ has still exponentially many entries in terms of the number

of subsystems, even by truncation to m Schmidt coefficients, scaling as O(mn). Moreover, one

can easily overshoot with a truncation m < Di since in applications for physical systems the

dimensions of the elementary subsystems are Di = O(1). In numerics this decomposition is

usually called higher order SVD, and illustrated in figure 2.3 (d).

As we begin section 2.1, we have elementary subsystems i ∈ {1, . . . , n} and the associated

Hilbert spacesH1, . . . ,Hn, on which observables (that is, physical quantities, for example, projec-

tion of angular momentum or the occupation number of orbitals) are represented by self-adjoint

operators. When we turn to numerics, we consider some fixed bases (for example, the eigenbases

of some distinguished observables) {|χi,αi
⟩}Di

αi=1 in Hi for all i ∈ [n]. That is, the coefficient
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Figure 2.3. Graphical illustration of the coefficient tensor (a), its singular value

decomposition (b), its canonical decomposition (c), its Tucker decomposition (d)

and its matrix product (tensor train) decomposition (e).

tensor ψα1,...,αn in (2.28) determines the state vector |ψ⟩, so the αi indices are called physical

indices. While, for example in the (2.32b), indices βi appear in the given decomposition, that

is, performing the summation over them recovers the coefficient tensor ψα1,...,αn
. On the Hilbert

spaces associated to the indices βi, we do not represent observables hence they are called virtual

indices. We do not even introduce those Hilbert spaces here, although, from the entanglement

point of view, the Schmidt decomposition in section 2.2 shows how to do that. In the graphical

illustration, see figure 2.3, they are called physical and virtual legs, respectively.

2.5. Matrix product states

Another way to factorize the coefficient tensor, which is of central importance in this work,

is the matrix product state (MPS) or tensor train decomposition. To see the construction of the
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MPS let us have the state vector (2.28) but now written with respect to another orthonormal

tensor product basis. We say that the left block decimation of the first i subsystem is [Sch11]

|ψ⟩ =
∑

βi,αi+1,...αn=1

C
(i+1)
βi,(αi+1,...αn)

|χ̃[i],βi
⟩ ⊗ |χi+1,αi+1

⟩ ⊗ . . .⊗ |χn,αn
⟩, (2.33a)

where, besides the orthonormal bases of the i + 1, . . . , n elementary subsystems, we have the

orthonormal basis |χ̃[i],βi
⟩ ∈ H̃[i] = H[i] = H1 ⊗ . . .⊗Hi, which groups together the elementary

subsystems 1, . . . , i. The ranges of the indices of the elementary subsystems are αi ∈ [Di] and

that of the composite system is βi ∈ [D[i]], where D[i] = D1 · . . . ·Di. (Here tilde is used for the

transformed vectors because these will be truncated later.) We can formulate this equivalently

with matrices. We have the tensor train decomposition from the first to the i-th site,

|ψ⟩ =
∑

α1,α2,...,αn
β1,β2,...,βi

U
(1)
(α1),β1

U
(2)
(β1,α2),β2

. . . U
(i)
(βi−1,αi),βi

C
(i+1)
βi,(αi+1,...αn)

|χ1,α1
⟩ ⊗ |χ2,α2

⟩ ⊗ . . .⊗ |χn,αn
⟩.

(2.33b)

The connection between the two formulations can be shown with successive Schmidt decompo-

sitions from the first to the i-th site. So let us consider (2.28) and the Schmidt decomposition

with respect to bipartition {1}|{2, 3, . . . , n} and basis {|χ1,α1⟩ ⊗ . . . ⊗ |χn,αn⟩}. That is, the

decomposition of the reshaped ψα1,α2,α3,...,αn
= C

(1)
(α1),(α2,α3,...,αn)

matrix is

C
(1)
(α1),(α2,α3,...,αn)

=
∑
β1

U
(1)
(α1),β1

S
(1)
β1,β1

V ′
(α2,α3,...,αn),β1

≡
∑
β1

(A(1)
α1

)β1
C

(2)
(β1,α2),(α3,...,αn)

. (2.34a)

In the second equation we merge the Schmidt coefficients S
(1)
β1,β′

1
= δβ1,β′

1

√
ω
(1)
β1

into V ′ to

get C(2) and U (1) should be considered as the collection of vectors A
(1)
α1 . In the next step,

Schmidt decomposition is performed with respect to bipartition {1, 2}|{3, 4, . . . , n} and basis

{U (1)|χ1,α1
⟩ ⊗ . . .⊗ |χn,αn

⟩},

C
(2)
(β1,α2),(α3,...,αn)

=
∑
β2

U
(2)
(β1,α2),β2

S
(2)
β2,β2

V ′′
(α3,...,αn),β2

≡
∑
β2

(A(2)
α2

)β1,β2
C

(3)
(β2,α3),(α4,...,αn)

,

(2.34b)

where U (2) is considered as the collection of matrices A
(2)
α2 . Continuing the decomposition until

the i-th subsystem, we get (2.33b), and by setting i = n we have ψα1,α2,...,αn
= A

(1)
α1A

(2)
α2 . . .A

(n)
αn .

That is, we can write the state vector in a matrix product state (MPS) form corresponding to

the tensor product space
⊗n

i=1 Hi and bases {|χi,αi
⟩} as

|ψ⟩ =
∑

α1,α2,...,αn

A(1)
α1
A(2)

α2
. . .A(n)

αn
|χ1,α1⟩ ⊗ |χ2,α2⟩ ⊗ . . .⊗ |χn,αn⟩ ∈

n⊗
i=1

Hi, (2.35a)

where theMPS matrices are (A
(i)
αi )βi−1,βi := U

(i)
(βi−1,αi),βi

. Writing out the matrix multiplications,

we have

ψα1,α2,...,αn
=

D̃[1],D̃[2],...,D̃[n−1]∑
β1,β2,...,βn−1=1

(A(1)
α1

)β0,β1
(A(2)

α2
)β1,β2

. . . (A(n)
αn

)βn−1,βn
, (2.35b)
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so in this decomposition the number of factor tensors are n, and each has one physical index,

and two virtual indices, except for the first and n-th which have one (β0 and βn are dummy

indices). This can be illustrated well with boxes and lines in figure 2.3 (e). Note that although

the illustration of the canonical decomposition looks similar, in that case the tensor factors were

not coming form a unitary transformation, and there was only a single summation index.

If the state vector is of maximal rank, then the size of MPS matrices grow exponentially,

that is, the range of the indices in (2.35b) are D̃[i] = min{D[i], D[i]
}. One of the main reasons for

using MPS is that the approximation of the exact tensor ψα1,α2,...,αn can be made easily by the

controlling the D̃[i] numbers. Also, in TNS methods we want to build a procedure in which the

approximation is performed iteratively, that is, performing local updates on the factor spaces.

In case of MPS, this means sweeping through the tensor network from the left to right and from

right to left. To elucidate this let us write the recursion of the basis transformation from the left

U (i+1) =

D̃X ,Di+1∑
αX ,αi+1=1

|χ̃X′,(αX ,αi+1)⟩(⟨χ̃X,αX
| ⊗ ⟨χi+1,αi+1

|). (2.36a)

This shows how the composite left block X = {1, . . . , i} and the elementary subsystems i+1 are

folded into the new left block X ′ = X ∪ {i + 1}. The recursion continues with the relabelling

X ′ 7→ X and the mapping of the composite index αX′ = (αX , αi+1) 7→ αX . The same successive

Schmidt decompositions can be done as before in (2.34), but performing decimation from the

right, which yields the recursion of the basis transformation from the right

V (i−1) =

Di−1,D̃Z∑
αi−1,αZ=1

|χ̃Z′,(αi−1,αZ)⟩(⟨χi−1,αi−1
| ⊗ ⟨χ̃Z,αZ

|). (2.36b)

This shows how the elementary subsystems i − 1 and the composite right block Z = {i, . . . , n}
are folded into the new right block Z ′ = {i−1}∪Z. The recursion continues with the relabelling

Z ′ 7→ Z and the mapping of the composite index αZ′ = (αi−1, αZ) 7→ αZ . We obtain a subspace

approximation by applying truncation on the D̃X′ ≤ D̃XDi+1 ≤ DX′ number of the new basis

vectors of the left block,

Span
{
|χ̃X′,αX′ ⟩

∣∣ αX′ = 1, . . . , D̃X′
}
=: H̃X′ ⊆ H̃X ⊗Hi+1 ⊆ HX′ = H1 ⊗ . . .⊗Hi+1, (2.37a)

and similarly, by applying truncation on the D̃Z′ ≤ Di−1D̃Z ≤ DZ′ number of the new basis

vectors of the right block,

Span
{
|χ̃Z′,αZ′ ⟩

∣∣ αZ′ = 1, . . . , D̃Z′
}
=: H̃Z′ ⊆ Hi−1 ⊗ H̃Z ⊆ HZ′ = Hi−1 ⊗ . . .⊗Hn. (2.37b)

This reveals why we call (2.33a) decimation. This subspace approximation method will be further

motivated by the density matrix renormalization group method, discussed in the next section.

The truncation in the number of basis vectors, that is, restricting the sum in (2.36), yields not

unitaries but partial isometries on H̃X ⊗Hi+1 and Hi−1 ⊗ H̃Z , respectively. The corresponding

MPS matrices are

(A(i+1)
αi+1

)αX ,αX′ := U
(i+1)
(αX ,αi+1),αX′

, (A(i−1)
αi−1

)αZ′ ,αZ
:= V

(i−1)∗
(αi−1,αZ),αZ′

, (2.38)
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which are of sizes D̃X × D̃X′ and D̃Z′ × D̃Z , respectively. This makes the range of vir-

tual indices (horizontal legs in figure 2.3) truncated to the D̃X′ and D̃Z′ numbers, which are

called bond dimensions. Sweeping from the left (2.36a), the MPS matrices are left-canonical,∑
αA

(i+1)†
α A

(i+1)
α = ID̃X′ , which is the consequence of the decomposition into unitary matri-

ces. After truncation to partial isometries we do not have the resolution of identity in X, that

is,
∑

αA
(i+1)
α A

(i+1)†
α ̸= ID̃X

. Sweeping from the right (2.36b), the MPS matrices are right-

canonical,
∑

αA
(i−1)
α A

(i−1)†
α = ID̃Z′ , which is the consequence of the decomposition into unitary

matrices. After truncation to partial isometries we do not have the resolution of identity in

Z, that is,
∑

αA
(i−1)†
α A

(i−1)
α ̸= ID̃Z

. As a consequence, the MPS decomposition in the form

of (2.35) is non-unique, moreover, arbitrary invertible D̃X × D̃X matrix and its inverse can be

inserted between the MPS matrices. As we will see in the DMRG algorithm, the state vector

appears in the mixed-canonical MPS form, that is, there are left-canonical matrices on the left,

right-canonical ones on the right and some remaining tensors between them.

We consider the set of (normalized) state vectors which have MPS form (2.35) corresponding

to the tensor product space
⊗n

i=1 Hi and bases {|χi,αi
⟩} with fixed bond dimensions D̃,

MD̃

( n⊗
i=1

Hi

)
:=
{
|ψ⟩ ∈

n⊗
i=1

Hi

∣∣∣ D̃ = (D̃[1], . . . , D̃[n−1]),A
(i)
α ∈ CD̃[i−1]×D̃[i] in (2.35)

}
. (2.39)

In the sequel we consider the tensor product space and the bases to be fixed in (2.39), therefore, for

simplicity, the argument of MD̃ is dropped in (2.39). If we happen to write MPS corresponding

to a different bases, and we will do so in chapter 4, we can express it in terms of a unitary basis

transformation U ∈ U(HL), that is, MD̃(U). This will be important when applying fermionic

mode transformation in chapter 4. Taking the sum of two vectors in MD̃ will result in general an

MPS with bond dimensions (2D̃[1], 2D̃[2], . . . , 2D̃[n−1]), therefore MD̃ is not a vector subspace

rather a manifold in HL [Hae14]. This sum can be compressed back to a vector in MD̃ by SVD

or by a variational method [Sch11]. We write MD̃max
if the bond dimension on each virtual

index is maximized to D̃max. One can also think of these MPSs that the matrices are of the

same size D̃max × D̃max but some are padded with zeros since we do not force full rank matrices

in the definition (2.39). We note that, contrary to the canonical decomposition, the MPS form

does not suffer from the border rank problem [Hac12]. For more about the geometry of MPS

see [Hac12, Hol12b, Hae14].

Now the question is, which basis vectors should be kept and which thrown, and what error is

made by this truncation. For this, assume we had generated the exact left-canonical MPS form

of the state vector |ψ⟩, that is, we have access to the Schmidt coefficients and the MPS matrices

(2.38) (or equivalently to the unitary (2.36a)), which have bond dimensions min{D[i], D[i]
} if the

rank is maximal. Then, according to (2.37a), the projection IH̃[i]
=
∑D̃[i]

α=1 |χ̃[i],α⟩⟨χ̃[i],α| maps

onto the truncated subspace H̃[i], and let us choose the basis vectors in (2.37a) such that they

correspond to the D̃[i] largest Schmidt coefficients. It is easy to see that by the application of the

series of projections Pi = IH̃[i]
⊗ IH

[i]
, the truncated vector Pn−1 . . . P2P1|ψ⟩ is a non-normalised

MPS (2.39) with bond dimensions D̃ = (D̃[1], . . . , D̃[n−1]). The emerging error can be bounded
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[Ver06a] as

∥|ψ⟩ − Pn−1 . . . P2P1|ψ⟩∥2 ≤
n−1∑
i=1

ϵi(D̃[i]), (2.40)

where the truncation error at the i-th cut is the sum of the discarded squared Schmidt coefficients,

ϵi(D) := 1−
D∑

α=1

ω(i)
α . (2.41)

Note that we use again the convention of decreasingly ordered Schmidt coefficients. That is,

the accumulated truncation error from the exact successive Schmidt decompositions gives an

upper bound for the error of the state vector. In practice, of course, we have only access to the

truncation error (2.41) made on the current state vector, which can be used in applications as

an error estimator [Leg96, Leg03a].

In practice one can predefine a D̃max maximal bond dimension, however, a more sophisticated

treatment is to control the bond dimension such that the Schmidt coefficients below the fixed

truncation error threshold ωTr are discarded. By this the bond dimensions

D̃[i](ωTr) = max
{
α
∣∣ ω(i)

α ≥ ωTr

}
(2.42)

are set dynamically for all i-th cut. If the decay of the Schmidt spectrum is exponential, which

is often observed in physical systems, then the truncation error (2.41) is of the same order of

magnitude as ωTr [Ver06a].

The pure state of the system given by the MPS (2.35) is

|ψ⟩⟨ψ| =
∑

α1,α2,...,αn

α′
1,α

′
2,...,α

′
n

A(1)
α1
A(2)

α2
. . .A(n)

αn
A

(n)†
α′

n
. . .A

(2)†
α′

2
A

(1)†
α′

1
×

×|χ1,α1
⟩⟨χ1,α′

1
| ⊗ |χ2,α2

⟩⟨χ2,α′
2
| ⊗ . . .⊗ |χn,αn

⟩⟨χn,α′
n
|.

(2.43)

The reduced density matrix can be obtained by the contraction on the legs on which the partial

trace is applied. The expectation value of a product observable O = O(1) ⊗O(2) ⊗ . . .⊗O(n) in

the pure state |ψ⟩⟨ψ| is

⟨ψ|O|ψ⟩ =

∑
αn,
α′

n

O
(n)
n,α′

n,αn
A

(n)†
n,α′

n

. . .
(∑

α2,
α′

2

O
(2)
α′

2,α2
A

(2)†
α′

2

(∑
α1,
α′

1

O
(1)
α′

1,α1
A

(1)†
α′

1
A(1)

α1

)
A(2)

α2

)
. . .

A(n)
αn
,

(2.44)

where O(i) ∈ Lin(Hi) and its matrix elements are O
(i)
α′

i,αi
= ⟨χi,α′

i
|O(i)|χi,αi⟩. For graphical

illustrations see figure 2.4.

If we consider the Hamiltonian H ∈ LinSA(HL) of the system, we can put the MPS approx-

imation into a different, variational perspective, which will be argued in the following sections.

The q-th lowest energy eigenvalue of H, for q = 0, . . . , DL − 1, can be expressed as

EFCI
q = min

{
⟨ψ|H|ψ⟩

∣∣∣ |ψ⟩ ∈ HL, ∥ψ∥ = 1, ⟨ψFCI
q′ |ψ⟩ = 0,∀q′ < q

}
, (2.45)
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Figure 2.4. The calculation of the reduced density matrix Tr{2,3}(|ψ⟩⟨ψ|) (a)
and the expectation value of the bilocal operator O = I⊗O(2)⊗O(3)⊗ I⊗ . . .⊗ I

(b) is performed by the contraction of the tensor network.

where the vector |ψFCI
q ⟩ is the corresponding minimizer. The full configuration interaction (FCI)

notation (motivated by quantum chemistry notions, and discussed in appendix C) refers to

the exact treatment of the eigenvalue problem of H in the Hilbert space HL. Contrary, an

approximate solution can be obtained by the MPS approach. The q-th lowest energy expectation

value of H, for q = 0, . . . , DL − 1, among the MPSs with bond dimensions D̃ can be expressed

as

ED̃
q = min

{
⟨ψ|H|ψ⟩

∣∣∣ |ψ⟩ ∈ MD̃, ⟨ψ
D̃
q′ |ψ⟩ = 0,∀q′ < q

}
, (2.46)

where the vector |ψD̃
q ⟩ is the corresponding minimizer. Note that, MD̃ contains normalized

vectors only. Since MD̃ is a submanifold in HL, the inequality EFCI
q ≤ ED̃

q holds, and we say

that the energy of the system is ED̃
q within the MPS the approximation with bond dimensions D̃.

If the bond dimensions are the maximal, that is, there is no truncation in (2.37), the MPS energy

is the exact eigenvalue. One can introduce a partial order between the bond dimension vectors,

D̃ ≤ D̃′ if D̃i ≤ D̃′
i for all i. With this we have the nested manifolds MD̃ ⊆ MD̃′ if D̃ ≤ D̃′.

In (2.46) the MPS matrices can be considered as variational parameters, so the minimisation

is in bigger set, therefore, EFCI
q ≤ ED̃′

q ≤ ED̃
q . The aim is to solve (2.45), in which one meets

the curse of dimensionality, so the minimization (2.46) is considered instead. However, it is also

unfeasible to do the minimization simultaneously on the all matrices, so iterative minimization is
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carried out. This approach has an intimate connection with the density matrix renormalization

group algorithm, which is discussed in the next section.

2.6. Density matrix renormalization group algorithm

Let us consider the Hamiltonian of the composite system in a general form

H =
∑
k

H1,k ⊗ . . .⊗Hn,k ∈ LinSA(H1 ⊗ . . .⊗Hn), (2.47)

where, as in (2.28), the factor Hilbert spaces Hi corresponding to elementary subsystems i ∈ L =

[n] are of dimensions Di. Here the summation over k just indicates an arbitrary decomposition

of H into elementary tensors, however, in a clever implementation there are many possibilities

for optimization, leading to the matrix product operator MPO decomposition of H [Sch11].

Our aim is to find approximate solutions of some of the lowest eigenvalues and eigenvectors and

quantities calculated from them. The density matrix renormalization group (DMRG) algorithm

is based on the observation that the relevant quantities in physical systems can be captured by

a decimation (truncation) based on the spectrum of the reduced state (2.18).

In the algorithm an iteration step is called the s-site DMRG step at the ℓ-th cut, where s is

usually one or two. In an s-site DMRG step the following steps are carried out,

(i) diagonalization of the effective Hamiltonian H(ℓ),

(ii) truncation of the reduced density matrix TrX′(ϱ),

(iii) renormalization of the operators H̃X′,k building the effective Hamiltonian of the next

step.

A rightward sweep is the consecutive iteration steps for ℓ = 1, 2, . . . , n− s, and a leftward sweep

is the consecutive iteration steps for ℓ = n−s−1, n−s−2, . . . , 2. The whole DMRG run consists

of several consecutive leftward- and rightward sweeps. Now let us detail each step.

In step (i), the Hamiltonian of form (2.47) is approximated by the effective Hamiltonian at

the ℓ-th cut

H(ℓ) =
∑
k

H̃X,k ⊗HY,k ⊗ H̃Z,k ∈ LinSA(H̃X ⊗HY ⊗ H̃Z). (2.48)

The subsystem Y = {ℓ + 1, . . . ℓ + s} consists of s elementary subsystems, HY = ⊗i∈Y Hi of

dimension DY =
∏

i∈Y Di. Here the operators HY,k ∈ Lin(HY ) are written without approxima-

tion, that is, in their exact form. Contrary, the Hilbert spaces H̃X and H̃Z correspond to the

left block and right block, compress the comprising elementary subsystems X = {1, . . . , ℓ} and

Z = {ℓ + s + 1, . . . , n}, respectively, which are, we will see in the sequel, subspaces H̃X ⊆ HX ,

H̃Z ⊆ HZ . The dimensions of the left and right blocks are called block sizes, D̃X ≤ DX and

D̃Z ≤ DZ , respectively, which are controlled and depending on the resources. The operators

H̃X,k ∈ Lin(H̃X) and H̃Z,k ∈ Lin(H̃Z) in these spaces are written in an approximate form

(hence the tilde above the operators) and constructed in an iterative manner. In figure 2.5 the

s = 2 setting is depicted. The q-th lowest energy eigenvalue of the effective Hamiltonian, for

q = 0, . . . , D̃XDY D̃Z − 1, can be expressed as

E(ℓ)
q = min

{
⟨ψ|H(ℓ)|ψ⟩

∣∣∣ |ψ⟩ ∈ H̃X ⊗HY ⊗ H̃Z , ∥ψ∥ = 1, ⟨ψ(ℓ)
q′ |ψ⟩ = 0,∀q′ < q

}
, (2.49)
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ℓ = |X| = 2 |Z| = 4

H̃{1,...,ℓ} H{ℓ+1,ℓ+2} H̃{ℓ+3,...,n}

ℓ = |X| = 3 |Z| = 3

ℓ = |X| = 4 |Z| = 2

ℓ = |X| = 5 |Z| = 1

ℓ = |X| = 4 |Z| = 2

ℓ = |X| = 3 |Z| = 3

Figure 2.5. Subsystems of the two-site DMRG (s = 2). Sweeping in the two-

site DMRG algorithm

where the vector |ψ(ℓ)
q ⟩ is the minimizer. Solving the full eigenvalue problem (2.49) of the effective

Hamiltonian is unfeasible, and not even necessary in most of the applications. Therefore some

of the lowest eigenvalues and the corresponding eigenvectors, which are of the form

|ψ(ℓ)
q ⟩ =

D̃X ,DY ,D̃Z∑
αX ,αY ,αZ=1

x(q)αX ,αY ,αZ
|χ̃X,αX

⟩ ⊗ |χY,αY
⟩ ⊗ |χ̃Z,αZ

⟩, (2.50)

are calculated by iterative diagonalization algorithms (for example, Lánczos or Davidson algo-

rithm).

In step (ii), the state of the whole system L = {X∪Y ∪Z}, which is inD(HL), is approximated

by ϱ ∈ D(H̃X ⊗ HY ⊗ H̃Z). In the simplest case, which is the usual practice, the pure state

ϱ = |ψ(ℓ)
0 ⟩⟨ψ(ℓ)

0 | is considered. One can also form the statistical mixture of excited eigenstates with

weights wq, for example Gibbs(-like) states, ϱ =
∑

q wq|ψ(ℓ)
q ⟩⟨ψ(ℓ)

q | [Sch05, Noa05, Sza15]. The

reduced state of the extended left-/right block is constructed, and the truncation is performed

in its eigenbasis. So in case of the rightward sweep, we obtain the reduced state ϱX′ = TrX′(ϱ) ∈
D(H̃X ⊗Hℓ+1) of the subsystem X ′ = X ∪ {ℓ+ 1} by the partial trace (2.6),

ϱX′ =

D̃X∑
αX ,α′

X=1

Dℓ+1∑
αℓ+1,α′

ℓ+1=1

(ϱX′)(αX ,αℓ+1),(α′
X ,α′

ℓ+1)
|χ̃X,αX

⊗ χℓ+1,αℓ+1
⟩⟨χ̃X,α′

X
⊗ χℓ+1,α′

ℓ+1
|,

(2.51a)

where the coefficients are the entries of the reduced density matrix ϱX′ of the new left block X ′

written in the composite Hilbert space H̃X ⊗Hℓ+1. This is the point in the algorithm where one

sets a limit to the growing dimensions. The reduced state ϱX′ is approximated in the subspace

H̃X′ ⊆ H̃X ⊗ Hℓ+1 spanned by eigenvectors |χ̃X′,αX′ ⟩ corresponding to the D̃X′ ≤ D̃XDℓ+1

highest eigenvalues of ϱX′ . Thus the truncated reduced state ϱ̃X′ ∈ D(H̃X′) in the eigenbasis is

ϱ̃X′ =

D̃X′∑
αX′=1

ωαX′ |χ̃X′,αX′ ⟩⟨χ̃X′,αX′ |, (2.51b)
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where the ωαX′ eigenvalues are re-normalized such that Tr(ϱ̃X′) = 1. The connection between

the two states can be expressed by the partial isometry

U (ℓ+1) =

D̃X′∑
(αX ,αℓ+1)=1

|χ̃X′,(αX ,αℓ+1)⟩⟨χ̃X,αX
⊗ χℓ+1,αℓ+1

|, (2.51c)

where the composite index αX′ = (αX , αℓ+1) is ordered such that the ωαX′ eigenvalues are or-

dered non-increasingly. This partial isometry maps from the composite system H̃X ⊗Hℓ+1 to its

subspace, the Hilbert space of the new left block H̃X′ . The truncation yields U (ℓ+1)†U (ℓ+1) ̸=
IH̃X⊗Hℓ+1

. With the projection U (ℓ+1)U (ℓ+1)† = IH̃X′ , which is the identity in the new left block,

the reduced state of the new left block is ϱ̃X′ = IH̃X′ϱX′IH̃X′/Tr(IH̃X′ϱX′IH̃X′ ). We can formu-

late this equivalently with matrices. The reduced density matrix of the new left block is ω =

U (ℓ+1)†ϱX′U (ℓ+1)/Tr(U (ℓ+1)†ϱX′U (ℓ+1)), where the matrix of the partial isometry is rectan-

gular, U (ℓ+1) ∈ CD̃XDℓ+1×D̃X′ , with entries U
(ℓ+1)
(αX ,αℓ+1),αX′

= ⟨χ̃X,αX
⊗ χℓ+1,αℓ+1

|χ̃X′,(αX ,αℓ+1)⟩,
and the ω is diagonal containing the eigenvalues. Similarly, in case of leftward sweep, we obtain

the reduced state ϱZ′ ∈ Hℓ+s ⊗ H̃Z of the subsystem Z ′ = {ℓ+ s} ∪ Z,

ϱZ′ =

Dℓ+s∑
αℓ+s,α′

ℓ+s=1

D̃Z∑
αZ ,α′

Z=1

(ϱZ′)(αℓ+s,αZ),(α′
ℓ+s,α

′
Z)|χℓ+s,αℓ+s

⊗ χ̃Z,αZ
⟩⟨χℓ+s,α′

ℓ+s
⊗ χ̃Z,α′

Z
|, (2.51d)

where the coefficients are the entries of the reduced density matrix ϱZ′ of the new right block Z ′

written in the composite Hilbert space. The reduced state ϱZ′ is approximated in the subspace

H̃Z′ ⊆ Hℓ+s⊗H̃Z spanned by eigenvectors |χ̃Z′,αZ′ ⟩ corresponding to the D̃Z′ ≤ Dℓ+sD̃Z highest

eigenvalues of ϱZ′ . Thus the truncated reduced state ϱ̃Z′ ∈ D(H̃Z′) in the eigenbasis is

ϱ̃Z′ =

D̃Z′∑
αZ′=1

σαZ′ |χ̃Z′,αZ′ ⟩⟨χ̃Z′,αZ′ | (2.51e)

where the σαZ′ eigenvalues are re-normalized such that Tr(ϱ̃Z′) = 1. The connection between

the two states can be expressed by the partial isometry

V (ℓ+s) =

D̃Z′∑
(αℓ+s,αZ)=1

|χ̃Z′,(αℓ+s,αZ)⟩⟨χℓ+s,αℓ+s
⊗ χ̃Z,αZ

|, (2.51f)

where the composite index αZ′ = (αℓ+s, αZ) is ordered such that the σαZ′ eigenvalues are or-

dered non-increasingly. This partial isometry maps from the composite system Hℓ+s⊗H̃Z to its

subspace, the Hilbert space of the new right block H̃Z′ . The truncation yields V (ℓ+s)†V (ℓ+s) ̸=
IHℓ+s⊗H̃Z

. With the projection V (ℓ+s)V (ℓ+s)† = IH̃Z′ , which is the identity in the new right

block, the reduced state of the new right block is ϱ̃Z′ = IH̃Z′ϱZ′IH̃Z′/Tr(IH̃Z′ϱZ′IH̃Z′ ). We can

formulate this equivalently with matrices. The reduced density matrix of the new right block is

σ = V (ℓ+s)†ϱZ′V (ℓ+s)/Tr(V (ℓ+s)†ϱZ′V (ℓ+s)), where the matrix of the partial isometry is rect-

angular, V (ℓ+s) ∈ CDℓ+sD̃Z×D̃Z′ , with entries V
(ℓ+s)
(αℓ+s,αZ),αZ′

= ⟨χℓ+s,αℓ+s
⊗ χ̃Z,αZ

|χ̃Z′,(αℓ+s,αZ)⟩,
and the σ is diagonal containing the eigenvalues.

In step (iii), operators in the effective Hamiltonian are constructed such that the operators

of the new extended left-/right block are expressed in the eigenbasis of the truncated reduced
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Figure 2.6. Graphical representation of the energy expectation value (2.54).

The effective Hamiltonian H(ℓ) is obtained by the contractions inside the dashed

line. The renormalized operators of the left block H̃X,k and the right block H̃Z,k

can be obtained by the contractions of tensors corresponding to X = {1, . . . , ℓ}
and Z = {ℓ + 3, . . . , n}, respectively. The operators HY,k of the subsystem

Y = {ℓ+ 1, ℓ+ 2} are written in their exact form.

state. In case of rightward sweep, the operators in (2.48) are transformed, we say renormalized,

according to the truncation of the reduced state (2.51c),

H̃X′,k = U (ℓ+1)(H̃X,k ⊗H{ℓ+1},k)U
(ℓ+1)† ∈ Lin(H̃X′). (2.52a)

The algorithm steps to the next ℓ 7→ ℓ + 1 iteration with the relabelling X ′ 7→ X, as depicted

in figure 2.5 for the s = 2 site case. The new operators for the right block are loaded (form the

disk or memory), which had been renormalized during leftward sweep (2.52b). Similarly, in case

of leftward sweep the renormalization is

H̃Z′,k = V (ℓ+s)(H{ℓ+s},k ⊗ H̃Z,k)V
(ℓ+s)† ∈ Lin(H̃Z′). (2.52b)

The algorithm steps to the next ℓ 7→ ℓ− 1 iteration with the relabelling Z ′ 7→ Z, as depicted in

figure 2.5 for the s = 2 site case. The new operators for the left block are loaded (form the disk

or memory), which had been renormalized during rightward sweep (2.52a).

2.7. DMRG and MPS

The main aspects of DMRG, the concept of matrix product operators and the relation

between DMRG and MPS are comprehensively detailed in reference [Sch11]. Here we mention

just some practical points which are relevant to the present work. To show the connection of the

DMRG to the MPS, let us write out the transformation and truncation (renormalization) of the

operators of blocks X and Z. From the recursion (2.52a) and (2.52b) we are able to express the
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renormalized operators in terms of the exact operators,

H̃X,k = U (ℓ)†
(
. . .
(
U (2)†((U (1)†H1,kU

(1))⊗H2,k

)
U (2)

)
. . .⊗Hℓ,k

)
U (ℓ), (2.53a)

H̃Z,k = V (ℓ+s+1)†
(
Hℓ+s+1,k ⊗ . . .

(
V (n−1)†(Hn−1,k ⊗ (V (n)†Hn,kV

(n))
)
V (n−1)

)
. . .

)
V (ℓ+s+1).

(2.53b)

Note that, these are not explicit expressions since the U (i) and V (i) isometries are determined

from the eigenvalue problem of the effective Hamiltonian, which is built from the renormalized

operators of the previous step. With this, the energy expectation value with a state vector (2.50)

(omitting the q index) can be expressed as

⟨ψ(ℓ)(x)|H(ℓ)|ψ(ℓ)(x)⟩H̃X⊗HY ⊗H̃Z
=
∑
k

∑
αX ,αY ,αZ

α′
X ,α′

Y ,α′
Z

xα′
X ,α′

Y ,α′
Z

∗H̃
α′

X ,αX

X,k H
α′

Y ,αY

Y,k H̃
α′

Z ,αZ

Z,k xαX ,αY ,αZ
=

= ⟨ψMPS(x)|H|ψMPS(x)⟩H1⊗...⊗Hn
,

(2.54)

where after the second equation the expectation value of the Hamiltonian in form of (2.47) is

written with a state vector

|ψMPS(x)⟩ =
∑

α1,...,αn

A1,α1 . . .Aℓ,αℓ
xαY

Aℓ+s+1,αℓ+s+1
. . .An,αn |χ1,α1⟩ ⊗ . . .⊗ |χn,αn⟩, (2.55)

which is expressed with left-canonical MPS matrices on the left, right-canonical MPS matrices

on the right and a remaining in-between tensor x. These messy formulas can be illustrated well

by boxes and lines in figure 2.6 for the s = 2 case. The ground-state energy in the DMRG

framework (2.49), that is, the lowest eigenvalue of the effective Hamiltonian in step (i), can be

expressed now in terms of the optimization of the local tensor x

E
(ℓ)
0 =min

{
⟨ψ(x)|H(ℓ)|ψ(x)⟩

∣∣∣ x ∈ CD̃X×DY ×D̃Z , ∥x∥ = 1
}

=min
{
⟨ψMPS(x)|H|ψMPS(x)⟩

∣∣∣ x ∈ CD̃X×DY ×D̃Z , ∥x∥ = 1
}
.

(2.56)

From the reshaping and decomposition of the minimizer xαX ,αY ,αZ
of (2.56),

x(αX ,αℓ+1),αX̄′ =

D̃XDℓ+1∑
αX′=1

U
(ℓ+1)
(αX ,αℓ+1),αX′

√
ωαX′V

′
α

X̄′ ,αX′ , (2.57a)

xα
Z̄′ ,(αℓ+s,αZ), =

Dℓ+sD̃Z∑
αZ′=1

U ′
α

Z̄′ ,αZ′

√
σαZ′V

(ℓ+s)
(αℓ+s,αZ),αZ′

, (2.57b)

one can obtain the updated left- and right-canonical MPS matrices according to (2.38). Substi-

tuting (2.57a) into the DMRG state form (2.50) and applying partial trace on the pure ground

state, one can get the reduced state (2.51b) in its eigenbasis, hence the same symbol U (ℓ+1) were

used for unitaries (partial isometries) in (2.51c) and (2.57a). Similar applies for V (ℓ+s). The

truncation here is the same as in (2.51b) and (2.51e) in step (ii), namely, the restriction of the

range of indices αX′ = 1, . . . , D̃X′ ≤ D̃XDℓ+1 and αZ′ = 1, . . . , D̃Z′ ≤ Dℓ+sD̃Z . That is, the
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MPS bond dimensions D̃X are the block sizes in the traditional DMRG context. In step (iii) the

renormalization of operators are carried out for the left and right block, which is the contraction

of the tensors corresponding to X ′ and Z ′, respectively.

The variational MPS approach is the optimization of the energy expectation value in (2.46)

in terms of the MPS matrices (being variational parameters) in a fixed bond dimension manifold

MD̃ [Sch11]. The simultaneous optimization of the MPS matrices is still unfeasible, however,

the approach is equivalent to the s = 1 site DMRG method [Tak99, Whi05] with predefined

fixed block sizes D̃ = (D̃[1], D̃[2], . . . , D̃[n−1]). This can be seen by setting Y = {ℓ+ 1} in (2.55),

so we have X ′ = Z in (2.57), and by the property of the rank of the Schmidt decomposition

(2.17), the dimension of the MPS matrices cannot increase during the one-site DMRG iteration.

So the optimization is carried out in a submanifold MD̃.

Contrary, the s = 2 site DMRG provides the advantageous property that the bond dimension

can increase during the iterations, that is, the decomposition (2.57) for Y = {ℓ+ 1, ℓ+ 2} is

x(αX ,αℓ+1),(αℓ+2,αZ) =

D̃XDℓ+1∑
αX′=1

(A(ℓ+1)
αℓ+1

)αX ,αX′
√
ωαX′ (A

(ℓ+2)
αℓ+2

)
∗
αX′ ,αZ

. (2.58)

One can control the bond dimensions D̃X′ according to a predefined maximal value (possibly for

each ℓ). The more rigorous way to control the error is setting the D̃X′ adaptively, for example,

by a prior defined truncation error threshold (2.42) [Leg03a, Hol12a, Hol12b]. In this case

the bond dimension strongly depends on the correlation in the system, and in case of general

TNS methods, on the network topology [Leg03b, Nak13, Mur15] and on the properties of the

component tensors [Gun18]. Also, the two-site DMRG framework provides the advantageous

property that the action of an arbitrary neighbouring two-site operator, that is, operator acting

non-trivially only on subsystem Y = {ℓ + 1, ℓ + 2}, can be evaluated easily. By this, time

evolution, imaginary time evolution and mode transformation [Kru16] can be straightforwardly

implemented.

The performance of the DMRG algorithm relies on the efficiency of the diagonalization in

step (i) [Men23]. When the full diagonalization of a matrix A is not necessary, only some of

the lowest (or highest) eigenvalues and eigenvectors are searched for, iterative diagonalization

algorithms [Bai00] can be applied (for example, by Lánczos [Lan50, Cul02, Gol13] or David-

son [Dav75, Sle96] algorithm), which needs only the efficient evaluation of the matrix-vector

product Ax of an arbitrary vector x. That is, to store A as a full matrix is not even needed. The

cost of a two-site DMRG step scales as

O(D̃3
maxD

3 + D̃2
maxn

4), (2.59)

supposing D = Di for all i ∈ [n]. The first term is coming from the diagonalization and the

second is from the renormalization step.

Numerical efficiency can be significantly increased by the exploitation of symmetries [McC07,

Sza15], that is, by the restriction of the eigenvalue problem into a subspace determined by the

symmetry operator that commutes with the Hamiltonian. The examples of the Abelian U(1)

symmetry are the total spin projection conservation [Whi96], the particle number conservation
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[Cha02, Leg03b, Kur09], the point group symmetry [Leg03b, Cha04] and the translational

invariance [Xia96, Por06, Ver08, Pip10, Pir11]. Another Abelian symmetry is the Z2 spin

reflection symmetry [Leg97]. Several implementation for the non-Abelian SU(2) symmetry exist

[Sie97, McC02, Pit06, Zgi08, Wei12, Sha12, Sin12, Wou12, Kel16] and also for the more

general SU(N) case [Tót08, Sin10, Wer20].

In order to improve the convergence properties and perform large-scale DMRG simulations

routinely and consistently, some consideration are employed at the initialization stage of the

DMRG algorithm [Sza15]. These are the order optimisation (see appendix A), basis optimisa-

tion (see chapter 4) and the initialization of the MPS tensors (see appendix B). We note here,

that the sophisticated implementation of the initialization procedure, called the configuration

interaction based dynamically extended active space method [Bar11, Sza15], opens the way for

the restricted active space (RAS) methods [Bar22]. It was recently shown that the DMRG-RAS

yields a powerful extrapolation method for strongly correlated systems [Fri23].

2.8. Identical particles: particle picture

In section 2.2, the composite quantum systems were represented on tensor product Hilbert

spaces. In the following, the formalism of identical particles is summarized.

The indistinguishability of identical particles is formulated by the symmetrization-/anti-

symmetrization postulate, which can be taken as an experimental fact. Although, it cannot be

derived from the other postulates of quantum mechanics within the non-relativistic framework,

but omitting it leads to non-physical (in sense of measurement postulate) state vectors and

operators. Based on certain assumptions, theoretical derivation can be given in quantum field

theory to show that there are two sufficient ways to construct many-body state vectors of identical

particles. By this, particles have either fermionic or bosonic nature, corresponding to the (totally)

symmetric and antisymmetric representation of the permutation group, respectively.

We would like to describe N (fermionic or bosonic) particles, so let us begin with N copies

of Kr, for r ∈ [N ], of the one-particle Hilbert space K. The tensor products of N (not necessarily

basis) vectors |ψr⟩ ∈ Kr, called elementary tensors |ψ1⟩ ⊗ . . . ⊗ |ψN ⟩, span the tensor product

space K⊗N :=
⊗

r∈[N ] Kr. The elementary symmetric and antisymmetric vectors (denoted by ∨
and ∧, respectively) are of the form

|ψ1⟩ ∨∧ . . . ∨∧ |ψN ⟩ := 1√
N !

∑
σ∈S[N]

(±1)Par(σ)Rσ(|ψ1⟩ ⊗ . . .⊗ |ψN ⟩), (2.60)

and span the symmetric and antisymmetric subspaces K∨
∧N ⊆ K⊗N , where S[N ] is the set of

permutations of the set [N ], and Par(σ) ∈ {0, 1} is the parity of the permutation σ, and Rσ is the

usual representation of the symmetric group on the tensor product space, Rσ(|ψ1⟩⊗ . . .⊗|ψN ⟩) =
|ψσ(1)⟩ ⊗ . . . ⊗ |ψσ(N)⟩. Note that, for N = 1 we have K⊗1 = K∧1 = K∨1 = K, while for N = 0

we define K⊗0 = K∧0 = K∨0 ∼= C. It is straightforward to show that both the symmetric and

antisymmetric vectors (2.60) are N -linear, that is, linear in each |ψr⟩, and the inner product in

the symmetric and antisymmetric subspaces K∨
∧N are inherited from the tensor product space
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K⊗N ,(
⟨ψ1| ∨∧ . . . ∨∧ ⟨ψN |

)(
|κ1⟩ ∨∧

′
. . . ∨∧

′ |κN ⟩
)
=

=
( 1

N !

∑
σ∈S[N]

(
(±1)(±′1)

)Par(σ))
det±⟨ψi|κj⟩ = δ±,±′ det±⟨ψi|κj⟩ (2.61)

where det±⟨ψi|κj⟩ denotes the matrix permanent and determinant in the indices i, j, respectively.

This shows also the orthogonality of the symmetric and antisymmetric subspaces. Note, however,

that they are not othocomplements of each other in general, there are other irreps of S[N ] if n ≥ 2.

The normalized vectors of K are called modes, let us single out {|φi⟩}i∈[d] ⊆ K orthonormal

basis describing to d modes. The standard orthonormal basis of K⊗N is{
|φi⟩ = |φi1⟩ ⊗ . . .⊗ |φiN ⟩

∣∣ i ∈ I⊗N
}
, (2.62)

where the index set

I⊗N ([d]) := [d]×N =
{
i = (i1, . . . , iN )

∣∣ ir ∈ [d], r ∈ [N ]
}

(2.63)

has dN elements, so dim(K⊗N ) = dN . It follows from (2.61) by the identity det±(A ⊕ B) =

(det±(A))(det±(B)) that the standard orthonormal bases of K∨
∧N are{

|φ
∨
∧
i ⟩ =

(∏d
j=1 νj !

)−1/2|φi1⟩
∨
∧ . . .

∨
∧ |φiN ⟩

∣∣∣ i ∈ I
∨
∧
N

}
, (2.64)

where the index sets

I∨N ([d]) := {i ∈ I⊗N : 1 ≤ i1 ≤ . . . ≤ iN ≤ d} (2.65a)

and

I∧N ([d]) := {i ∈ I⊗N : 1 ≤ i1 < . . . < iN ≤ d} (2.65b)

have
(
d+N−1

N

)
and

(
d
N

)
elements, respectively, so dim(K∨N ) =

(
d+N−1

N

)
and dim(K∧N ) =

(
d
N

)
.

The argument of the index sets, that is, the index set of the modes, are omitted if this does not

lead to confusion. Here the occupation number νj of the mode j = 1, . . . , d is

νj =
∣∣{r ∈ [N ] | ir = j}

∣∣. (2.66)

To be able to treat different numbers of particles simultaneously, we have the direct sum

F :=
⊕
N∈N0

K
∨
∧N , (2.67)

called Fock space, which is a Hilbert space, with inner product inherited from the K∨
∧N Hilbert

spaces. Transition among subspaces of fixed particle number can be realized by the creation

operator a†(|κ⟩) ∈ Lin(F) of mode |κ⟩ ∈ K,

a†
(
|κ⟩
)(
|ψ1⟩ ∨∧ . . . ∨∧ |ψN ⟩

)
= |κ⟩ ∨∧ |ψ1⟩ ∨∧ . . . ∨∧ |ψN ⟩, (2.68a)

and its adjoint, the annihilation operator,

a
(
|κ⟩
)(
|ψ1⟩ ∨∧ . . . ∨∧ |ψN ⟩

)
=

N∑
r=1

(±)r−1⟨κ|ψr⟩|ψ1⟩ ∨∧ . . .��|ψr⟩ . . . ∨∧ |ψN ⟩. (2.68b)
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These satisfy the canonical commutation-/anticommutation relations[
a
(
|ψ⟩
)
, a†
(
|κ⟩
)]

±
= ⟨ψ|κ⟩I,

[
a
(
|ψ⟩
)
, a
(
|κ⟩
)]

±
= 0. (2.69)

Here the commutator/anticommutator of operators A and B is [A,B]± = AB − (±BA).
The basis vectors (2.64) can be expressed as

|φ
∨
∧
i ⟩ =

(∏d
j=1 νj !

)−1/2|φi1⟩
∨
∧ . . .

∨
∧ |φiN ⟩ =

(∏d
j=1 νj !

)−1/2
a†
(
|φi1⟩

)
. . . a†

(
|φiN ⟩

)
|φvac⟩, (2.70)

where a†
(
|φj⟩

)
is the creation operator of the j-th mode, and |φvac⟩ := |φ()⟩ ∈ K0 ∼= C is the

zero-particle state vector, referred to as vacuum state. The eigenvalue of the particle number

operator of the j-th mode a†
(
|φj⟩

)
a
(
|φj⟩

)
is the occupation number νj indeed, which can be

expressed by (2.66). The canonical commutation/anticommutation relations with respect to the

one-particle basis take the form[
a
(
|φi⟩

)
, a†
(
|φj⟩

)]
±
= δi,jI,

[
a
(
|φi⟩

)
, a
(
|φj⟩

)]
±
= 0. (2.71)

2.9. Identical particles: mode picture

In the particle picture, also called first quantitation, the elementary subsystems were the

indistinguishable particles, which could occupy given modes, although the symmetrization-/an-

tisymmetrization principle made this picture problematic to imagine. In the mode picture,

also called second quantization, we change our focus, the elementary subsystems are the dis-

tinguishable modes, which can be occupied by given number of particles. This is formulated

with respect to a fixed mode set {|φi⟩}i∈[d] ⊆ K, by which we express |φ∨
∧
i ⟩ ∈ F in terms of

the occupation numbers νi, given by (2.66). To this end, let us have the one-mode occupa-

tion Hilbert spaces Ni for i ∈ [d], and let {|ϕi,νi
⟩} be orthonormal bases in these, where νj

ranges in N0 and {0, 1} for bosons and fermions, respectively. The orthonormal basis vectors

|ϕν⟩ = |ϕ1,ν1
⟩ ⊗ . . .⊗ |ϕd,νd

⟩ ∈ N1 ⊗ . . .⊗Nd =: N[d] represent the occupation number configu-

rations of d modes by the linear isomorphism

F : F −→ N[d],

|φ
∨
∧
i ⟩ 7−→ |ϕν⟩ ≡ |ϕν(i)⟩.

(2.72)

where the map of the indices in (2.65) is ν : i 7→ ν, given by (2.66). If the occupation number space

N[d] is not distinguished from the Fock space F , then the occupation number labelling induces

a tensor product structure in the Fock space. We make this distinction for clarity. We note that

the tensor product structure in N[d] is not physical in the fermionic case [Sza21], however, it is

useful in the description in the concrete representation. We also have the N -particle subspaces

NN
[d] := F

(
K

∨
∧N
)
= Span

{
|ϕν⟩

∣∣ ν ∈ ν
(
I
∨
∧
N ([d])

)}
⊆ N[d] (2.73a)

and the corresponding projections PN
[d]. Also, we introduce subspaces by imposing occupation

number restrictions N1, . . . , Nr to disjoint subsets X1, . . . , Xr ⊆ [d],

NN1,...,Nr

X1,...,Xr
:= Span

{
|ϕν⟩

∣∣ ∑
i∈Xk

νi = Nk,∀k = 1, . . . , r
}
⊆ N[d] (2.73b)
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and the corresponding projection PN1,...,Nr

X1,...,Xr
. If X1| . . . |Xr is a partition of [d] and N1+. . .+Nr =

N , then NN1,...,Nr

X1,...,Xr
⊆ NN

[d].

The construction of the N -particle state from the vacuum (2.70) can be done in the second

quantized picture as

|ϕν⟩ = |ϕ1,ν1⟩ ⊗ . . .⊗ |ϕd,νd
⟩ =

(∏d
j=1 νj !

)−1/2(
a†i1
)ν1

. . .
(
a†iN
)νN |ϕvac⟩, (2.74)

where the vacuum state |ϕvac⟩ = F (|φvac⟩) = |ϕ(0,...,0)⟩, and the Jordan–Wigner representation

of the creation operator acting on N[d] is

a†j := Fa†
(
|φj⟩

)
F−1 =


(⊗

k<j Ik
)
⊗
(∑

ν∈N0
|ϕj,ν+1⟩⟨ϕj,ν |

)
⊗
(⊗

j<k Ik
)
,(⊗

k<j Pk

)
⊗ |ϕj,1⟩⟨ϕj,0| ⊗

(⊗
j<k Ik

) (2.75)

in the bosonic and fermionic cases, respectively, where the fermionic phase operator is Pk =

|ϕk,0⟩⟨ϕk,0| − |ϕk,1⟩⟨ϕk,1| [Jor28]. The canonical commutation-/anticommutation relations in

the second quantized picture take the form

[ai, a
†
j ]± = δi,jI, [ai, aj ]± = 0. (2.76)

2.10. Mode transformation

Changing the modes in the first quantized picture is simple, since it does not affect the

structure of F =
⊕

N∈N0
K∨

∧N . However, since the second quantized picture is constructed

with respect to fixed modes, the mode transformation in this case needs some more elabora-

tion. Having the modes {|φi⟩}di=1 ⊆ K, let U ∈ U(K) be a unitary transformation by which

|φ̃i⟩ := U |φi⟩ =
∑d

j=1 Uj,i|φj⟩ in the one-particle Hilbert space K. By (2.60) the N -particle

bosonic/fermionic state vector transforms as

(U ⊗ . . .⊗ U)|φi1⟩
∨
∧ . . .

∨
∧ |φiN ⟩ = U |φi1⟩

∨
∧ . . .

∨
∧ U |φiN ⟩ = |φ̃i1⟩

∨
∧ . . .

∨
∧ |φ̃iN ⟩ ∈ K

∨
∧N , (2.77)

that is, K∨
∧N are invariant subspaces of U⊗N , acting over the whole K⊗N . The linearity of

a†
(
|φj⟩

)
in |φj⟩ follows from its definition (2.68a) and form the N -linearity of the symmetric and

antisymmetric vectors (2.60), so the creation operator corresponding to the transformed state

vector reads as

a†
(
|φ̃i⟩

)
=
∑
j∈[d]

Ujia
†(|φj⟩

)
∈ Lin(F), (2.78a)

ã†i =
∑
j∈[d]

Ujia
†
j

!
= g(U)a†ig(U)† ∈ Lin(N[d]), (2.78b)

where g(U) ∈ U(N[d]) is unitary and it is block-diagonal with respect to the fixed particle

number subspaces NN
[d]. The canonical commutation-/anticommutation relations (2.69) and

(2.71) are preserved by such a unitary transformation. Substituting the ansatz g(U)(θ) =

e−iθ
∑

i,j∈[d] Ji,ja
†
iaj , with θ ∈ R, Ji,j = Jj,i

∗ ∈ C into (2.78b), taking its derivative in θ and

using the canonical commutation-/anticommutation relations (2.76) one can derive

g(U) = e
∑

i,j∈[d](lnU)i,ja
†
iaj , (2.79)
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for both bosons and fermions. The important point is that the restriction of U⊗N to the fixed

particle number subspace, as in (2.77), is a highly non-trivial task, which is achieved by the for-

mula (2.79) in terms of the particle number preserving combination of creation and annihilation

operators, acting naturally not only on the fixed particle number subspace, but also on the whole

Fock space or occupation number space.

2.11. Many-body observables and states: particle picture

We would like to deal with operators, states and reduced states in the particle picture. We

are interested in operators that leave the symmetric and antisymmetric subspaces K∨
∧N invariant.

For example, we have seen that the operator U⊗N in (2.77) is of this kind. Now, we consider

permutation invariant operators, which are also of this kind, and we would like to express these

in terms of creation and annihilation operators. To this end, let us have a permutation invariant

operator OM ∈ LinPI(K⊗M ), that is, [Rσ, OM ]+ = 0 for all σ ∈ S[M ] permutations. For M ≤ N ,

for all M -particle subsystems X ⊆ [N ], |X| =M , let OX be the copy of OM . With these, let us

have the permutational invariant particle operator extension

ιM,N : LinPI(K⊗M ) −→ LinPI(K⊗N ),

OM 7−→
∑

X⊆[N ],
|X|=M

OX ⊗ I[N ]\X . (2.80)

The main point is that this is a “collective” verison of OM . For example, the one-particle

identity operator I ∈ LinPI(K⊗1) is mapped to ι1,N (I) = N I ∈ LinPI(K⊗N ), however, the two-

particle identity operator I ⊗ I ∈ LinPI(K⊗2) is mapped to ι2,N (I ⊗ I) =
(
N
2

)
I ∈ LinPI(K⊗N ).

This is the natural practice in many-body physics, although, we will see that the resulting

state reduction behaves in a slightly different way than in the usual distinguishable setting

(2.6). Because of the same reason, the composition rule of this extension is the slightly unusual

ιM,N ◦ιK,M =
(
N−K
M−K

)
ιK,N for K ≤M ≤ N . We note that one may define a normalized extension

ι̂M,N :=
(
N
M

)−1
ιM,N , by which ι̂M,N ◦ ι̂K,M = ι̂K,N . The extension of the identity by this is the

identity, ι̂1,N (I) = I ∈ LinPI(K⊗N ).

Let us consider M ≤ N -particle subsystems. The observables OM of the M -particle sub-

system are given by the exension (2.80) among the observables of the N -particle subsystem.

If the state of the N -particle subsystem is given by γN ∈ D(K∨
∧N ), then the reduced state

γM := rN,M (γN ) of the M -particle subsystem is the state that gives back the expectation values

of observables of the M -particle subsystem, as before, Tr
(
rN,M (γN )OM

)
= Tr

(
γN ιM,N (OM )

)
for all OM . This means again that the operation of the state reduction rN,M is just the adjoint

map of the operator extension ιM,N . It turns out that this holds if and only if the state reduction

is done by the unusually normalized partial trace operation

rN,M : D(K
∨
∧N ) −→

(
N

M

)
D(K

∨
∧M ),

γN 7−→
(
N

M

)
Tr[N ]\X(γN ) =

(
N

M

)
TrN−M (γN ),

(2.81)
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where the TrN−M symbolizes that the partial trace Tr[N ]\X is independent on which spaces [N ]\X
it is applied, and the

(
N
M

)
factor shows that the M -particle reduced state γM = rN,M (γN ) is not

normalized. For example, the trace of the one-particle reduced state γ1 = rN,1(γN ) is the particle

number Tr(γ1) = N . Note, that the normalization (trace) of γM is somewhat ambiguous, it is(
N
M

)
(because the partial trace is trace preserving), which depends on N , the particle number

of the subsystem from which the state comes. This is the manifestation of the slightly unusual

composition rule of the reduction, rM,K ◦rN,M =
(
N−K
M−K

)
rN,K for K ≤M ≤ N , coming from that

of the extension ιM,N . We note that the normalized reduction r̂N,M =
(
N
M

)−1
rN,M = TrN−M ,

being the adjoint of the normalized extension ι̂M,N , is free of these ambiguities, r̂M,K ◦ r̂N,M =

r̂N,K , by which the reduction of a state γN ∈ D(K∨
∧N ) is a state r̂N,M (γN ) ∈ D(K∨

∧M ).

The introduction of the Fock space was motivated by the need for the treatment of different

number of particles together. So we would like to have the form of OM ∈ LinPI(K⊗M ) not only

in the N -particle collective form as in (2.80), but also that can act on the whole Fock space.

This can be achieved by utilizing the creation and annihilation operators as

ιM : LinPI(K⊗M ) −→ Lin(F),

OM 7−→ 1

M !

∑
i,j∈I⊗

M

⟨φi|OM |φj⟩a†
(
|φi1⟩

)
. . . a†

(
|φiM ⟩

)
a
(
|φjM ⟩

)
. . . a

(
|φj1⟩

)
.

(2.82)

With this map we have that all N -particle restriction of (2.80) and (2.82) are the same, that

is, ιM (OM )|K∨
∧N = ιM,N (OM )|K∨

∧N . These operators leave the fixed particle number subspaces

K∨
∧N invariant for all N [Ali01]. Note that for N ≤ M , these map to the null vector, which

is of course an element of the given subspace, that is, K∨
∧N ⊆ ker(ιM (OM )) for all N ≤ M . It

is easy to check that ιM preserves positivity. For example, the one-particle identity operator

I ∈ LinPI(K⊗1) is mapped to the particle number operator ι1(I) =
∑

i∈[d] a
†
iai, and the two-

particle identity operator I⊗I ∈ LinPI(K⊗2) is mapped to the pair correlation operator ι2(I⊗I) =
1
2

∑
i∈[d]

∑
j∈[d],j ̸=i a

†
iai(a

†
jaj − I).

The observables OM of the M -particle subsystem are given by the extension (2.82) among

the observables of the full Fock space. Let us consider an N -particle state γN ∈ D(F) among

the states of the full Fock space, that is, ι1(I)γN = γN ι1(I) = NγN . Then the reduced state

γM := rM (γN ) of the M -particle subsystem is the state that gives back the expectation values

of observables of the M -particle subsystem, as before, Tr
(
rM (γN )OM

)
= Tr

(
γN ιM (OM )

)
for all

OM . This means again that the operation of the state reduction rM is just the adjoint map of

the operator extension ιM . It turns out that this holds if and only if the state reduction is done

by

rM : D(F) −→
(
N

M

)
D(K

∨
∧M ),

γN 7−→ 1

M !

∑
i,j∈I⊗

M

Tr
(
γa†
(
|φj1⟩

)
. . . a†

(
|φjM ⟩

)
a
(
|φiM ⟩

)
. . . a

(
|φi1⟩

))
|φi⟩⟨φj |,

(2.83)
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For example, the one-electron reduced state of an N -electron state γN ∈ D(F) is

r1(γN ) =

d∑
i,j=1

Tr
(
γNa

†(|φj⟩
)
a
(
|φi⟩

))
|φi⟩⟨φj | =:

d∑
i=1

λi|φ̃i⟩⟨φ̃i|, (2.84)

where the eigenvectors |φ̃i⟩ are called natural orbitals and the eigenvalues λi (summing up to N)

are the natural occupations. For example, if the fermionic state is the pure state of a basis vector

(2.64), then the one-body reduced state is the uniform mixture of the one-body states of the

component vectors, r1(|φi⟩⟨φi|) =
∑

i∈i |φi⟩⟨φi|, so the natural orbitals are the basis vectors.

2.12. Many-body observables and states: mode picture

We can also consider operators, states and reduced states in the mode picture. Here we deal

with finite, d <∞ number of modes only, labelled by L = [d].

In the bosonic case we can obtain the extension (2.5), reduction (2.6) and the reduced state

as it was introduced in the distinguishable case in section 2.2, since the modes are distinguishable,

and the bosonic mode operators of distinct mode subsets are commuting (2.76). In numerical

calculations the number of maximal occupation is restricted, leading to finite dimensional occu-

pation spaces, dim(Ni) = νmax <∞ for i ∈ [d]. In this case, however, the canonical commutation

relation (2.76) cannot be satisfied, and the formula (2.79) of the mode transformation cannot be

derived either. So such restricted occupation description is valid only if we operate on physically

and numerically relevant subspace of the Hilbert space for which νi < νmax. In the extremal

case, due to the strong one-mode repulsion, the bosons become the so-called hard-core bosons,

for which νmax = 1, leading to a mixed commutation relation. We discuss this in chapter 5.

In the fermionic case, the tensor product structure on the occupation number space N[d] does

not resemble well the mode subset structure. This is because the Jordan–Wigner representation

of the creation and annihilation operators (2.75) are non-local with respect to that. This holds

of course not only for the Jordan–Wigner representation, the fermionic mode operators cannot

be represented locally, since they anticommute (2.76), while the local operators of disjoint mode

subsets, given by (2.5), commute. The parity superselection rule restores commutativity (al-

gebraic independence) of disjoint mode subsets, by which the locality of disjoint mode subsets

and maps acting on those become meaningful, on which the mere definition of correlation and

entanglement rely. Let us have the nested mode subsets Y ⊆ X ⊆ L = [d]. It turns out [Sza21]

that the observables OY of mode subset Y among the observables of mode subset X are given

by the fermionic mode operator extension

ι̃Y,X = AdUY,Ȳ
◦ιY,X : Lin(NY ) −→ Lin(NX),

OY 7−→ UY,Ȳ (OY ⊗ IȲ )U
†
Y,Ȳ

,
(2.85)

where the non-local unitary UY,Ȳ is diagonal, given as

UY,Ȳ =
∑

ν∈{0,1}d

(−1)
∑

i∈Ȳ νi
∑

j∈X,i<j νj |ϕν⟩⟨ϕν |. (2.86)

If the state of mode subset X is given by ϱX ∈ DX , ϱY := r̃X,Y (ϱX) ∈ DY of mode subset

Y is the state that gives back the expectation values of observables of mode subset Y , that is,
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Tr
(
r̃X,Y (ϱX)OY

)
= Tr

(
ϱX ι̃Y,X(OY )

)
for all OY . This means that the operation of the state

reduction r̃X,Y is just the adjoint map of the operator extension ι̃Y,X . It turns out that this

holds if and only if the fermionic mode state reduction is done by the fermionic partial trace

operation

r̃X,Y = rX,Y ◦AdU†
Y,Ȳ

: Lin(NX) −→ Lin(NY ),

ϱX 7−→ TrX\Y (U
†
Y,Ȳ

ϱXUY,Ȳ ),
(2.87)

with the unitary above (2.86) and the partial trace (2.6).

The corresponding operator on the occupation number space N[d] can be obtained by the

map the (2.72),

FιM (O)F−1 =
1

M !

∑
i,j∈I⊗

M

⟨φi|OM |φj⟩a†i1 . . . a
†
iM
ajM . . . aj1 ∈ Lin(N[d]). (2.88)

2.13. The many-body Hamiltonian

Equipped with the formulas of classical Hamiltonian mechanics, it is intuitive to construct

the quantum Hamiltonian by replacing the dynamical variables (such as positions, momenta,

angular momentum, . . .) by their corresponding operators. However, there is no logical way to

derive quantum mechanics from classical mechanics, but predictions of quantum mechanics in

the high-energy limit must coincide with that of classical physics. For example, the Ehrenfest

relation and the Wentzel–Kramers–Brillouin approximation describes the connection between

the evolution of the wave packet and the trajectory of the classical point particle.

In most of the cases, we have one-particle terms (corresponding to the kinetic energy and

external potential) described by H1 ∈ LinPI(K⊗1), and two-particle terms (corresponding to the

particle-particle interaction) described by H2 ∈ LinPI(K⊗2), and the number of particles is fixed

(open systems are not considered here). By (2.88), the Hamiltonian acting on the occupation

number space is

H = F (ι1(H1) + ι2(H2))F
−1 =

=

d∑
i,j=1

(H1)i,ja
†
iaj +

1

2

d∑
i1,i2,j1,j2=1

(H2)(i1,i2),(j1,j2)a
†
i1
a†i2aj2aj1 .

(2.89)

This Hamiltonian is block diagonal with respect to the particle number subspaces, NN
[d] ⊂ N[d],

so the solution of the eigenvalue problem can be searched in these
(
d+N−1

N

)
or
(
d
N

)
dimensional

subspaces. In the special case, when there are only one-particle terms, the problem reduces to

the diagonalization of the one-particle operator H1 in the d dimensional one-particle Hilbert

space K. By this we have

Fι1(H1)F
−1 = Fι1

( d∑
i,j=1

(H1)i,j |φi⟩⟨φj |
)
F−1 =

=

d∑
i,j=1

(H1)i,ja
†
iaj =

d∑
i,j,k=1

Uj,kεkU
∗
i,ka

†
iaj =

d∑
i=1

εkã
†
kãk,

(2.90a)
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where ã†i are the eigenmodes obtained by mode transformation (2.78b), ã†i =
∑

j Uj,ia
†
j . The

solution of the one-mode energies (and also the dimension) does not depend on the number

of particles, and being independent particles, the total energy of the system is the sum of the

one-mode energies, (
Fι1(H1)F

−1
)
|ϕ̃ν⟩ =

( d∑
k=1

νkεk
)
|ϕ̃ν⟩, (2.90b)

where |ϕ̃ν⟩ = g(U)|ϕν⟩.
In the presence of two-particle interactions, the solution cannot be obtained so easily. How-

ever, as we will see in chapter 4, in numerical treatment it is favourable to perform a mode

transformation to get a basis that somehow fits better to the problem. In practice, when turn

to numerical simulation including mode transformation, it is favourable not to transform the

operators themselves to keep robustness. Rather it is practical to perform mode transformation

(2.78b) in terms of the matrix elements of H1 and H2 in the Hamiltonian, that is,

g(U)Hg(U)† =

d∑
i,j=1

( d∑
i′,j′=1

Ui,i′(H1)i′j′U
∗
j′,j

)
a†iaj+

1

2

d∑
i1,i2,j1,j2=1

( d∑
i′1,i

′
2,j

′
1,j

′
2=1

Ui1,i′1
Ui2,i′2

(H2)(i′1,i′2),(j′1,j′2)U
∗
j′1,j1

U∗
j′2,j2

)
a†i1a

†
i2
aj2aj1 .

(2.91)

Usually the coefficients (H1)i,j are the matrix elements of the operators of the kinetic energy

and the external potential, and the coefficients (H2)(i1,i2),(j1,j2) are the matrix elements of the

operator of the particle-particle interaction. However, in many cases the model of the physical

system is formulated directly in the second-quantized framework, and there no first-quantized

form behind. We have the former case in chapters 3 and 4 (and appendix C), and the latter case

in chapter 5.



3. CHAPTER

Analysis of the tailored coupled cluster in multireference

systems

In quantum chemistry, a kind of standard computational method is the coupled cluster (CC)

up to single and double excitations with perturbative triples, which performs well in many cases

of small and medium sized molecules [Rag89, Bar90, Bar07]. Since this method relies on one

reference Slater determinant, it may work if the system can be approximated well with one Slater

determinant and fail otherwise, hence we say for these two cases that the system is of single-

reference character and multireference character, respectively. Also, we say that the system is

dynamically correlated and statically correlated (or it is strongly correlated, with terminology

in physics), respectively. Moreover, the CC approach also fails if the energy gap between the

highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO

gap) becomes small. (See appendix C for a brief summary of the single-reference approaces.)

On the other hand, the DMRG is a powerful method in statically correlated systems [Whi99],

however, the computational demands are governed by the bond dimension.

One of the possibilities to overcome this problem is using externally corrected CC, that is,

splitting of the FCI space into active space and an external space (see section 3.1) to resolve the

static and dynamical correlation, respectively. Computational advantages can be gained by the

CC method tailored by the density matrix renormalization group (DMRG-TCC) restricted to

single and double excitations, which was demonstrated on large and statically correlated systems

[Vei16, Vei18]. Here, in section 3.3, we show a numerical and theoretical analysis of the DMRG-

TCC method, and demonstrate it on the nitrogen dimer, providing also error analysis.

3.1. Tailored coupled cluster method

Several attempts have been made based on multireference coupled cluster theory [Bar07,

Lya12] to make corrections for statically correlated systems, and outperform the single-reference

CC method. These methods can be grouped [Lya12] into valence-universal, state-universal and

state-specific approaches. One of the possible refinement of the CC method is partitioning of

the cluster operator [Pie93, Pie94]. A notable advantage of the tailored coupled cluster (TCC)

approach over the conventional multireference CC methods is that the cluster operator is the

linear combination of commuting excitation operators [Kin05]. Clearly, it is worth partitioning

the L = {1, . . . , d} orbitals and the cluster operator accordingly. So let us write the space of

orbitals as K = KY ⊕ KȲ , where KY is the space of active orbitals and KȲ is the space of

external orbitals, where Y ⊆ L and Ȳ = L \ Y . The space of active orbitals is spanned by

36
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k = |Y | well-chosen orbitals, KY = Span{φi}i∈Y , and the space of external orbitals is spanned

by the remaining d− k = |Ȳ | orbitals, KȲ = Span{φi}i∈Ȳ . This choice is of central importance,

and discussed in the sequel (section 3.5). Once a reference (C.13) is fixed, we have the occupied

and virtual orbitals for the active orbitals, Yo := Y ∩Lo, Yv := Y ∩Lv, respectively. Similarly we

have the occupied and virtual orbitals for the external orbitals, Ȳo := Ȳ ∩Lo, Ȳv := Ȳ ∩Lv. This

partition is made because we want to perform approximative calculations in which the electrons

of the Ȳo orbitals are “frozen” and the Ȳv orbitals remain unoccupied. This can be formulated

in the occupation number space by (2.73b), and this subspace is called complete active space

(CAS)

NCAS := N |Ȳo|,N−|Ȳo|,0
Ȳo,Y,Ȳv

. (3.1a)

We can write the corresponding projection with the excitaiton operators,

PCAS :=
∑

µ∈J(Yo,Yv)

|XµΦ
HF⟩⟨XµΦ

HF|+ |ΦHF⟩⟨ΦHF|. (3.1b)

The naming suggests that this subspace is of high importance and accurate numerical treatment

is demanded. The orthogonal complement of CAS is the external space, Next such that NN
L =

NCAS ⊕Next.

The TCC parametrization [Kin05] of the (intermediately normalized) state vector is

|ΦTCC⟩ = eT+S |ΦHF⟩ = e(T1+T2+...)+(S1+S2+...)|ΦHF⟩,

SM =
∑

µ∈JM (Yo,Yv)

sµXµ,

TM =
∑

µ∈J̄M (Yo,Yv)

tµXµ,

(3.2)

where the full cluster operator (C.17) is partitioned into the sum S+T . In the cluster operator S

of the CAS, such terms from the full cluster operator are included in which the excitation indices

(both the M occupied and M virtual) are in Y , that is, µ ∈ JM (Yo, Yv). The cluster operator

T of the rest, contains the remaining terms, that is, µ ∈ J̄M (Yo, Yv) := JM (Lo, Lv) \ JM (Yo, Yv).

This is merely a partition of the sum in the definition of the full cluster operator (C.17), therefore

S and T commute, so eT+S = eT eS . Consequently, the TCC is an externally corrected approach,

but fundamentally a single-reference method. The motivation of this partition is that the CAS

amplitudes are to describe the so called static correlations, and the rest of the amplitudes are to

describe the dynamic correlations in the system, hence calculated by different methods.

First, calculation in the NCAS subspace is performed. The approximate solution of (C.16)

for the CAS Hamiltonian HCAS := PCASHPCAS is calculated, in our case with DMRG. Note that

the HCAS is not the restriction of the Hamiltonian to active orbital terms but also contains terms

from the frozen-core orbitals Ȳo. Then, the µ ∈ J(Yo, Yv) excitation terms of the confiuration
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interaction (CI) (C.15) and the CC (C.17) parametrization are matched, that is,

eS1+S2+...|ΦHF⟩ = (I + C1 + C2 + . . .)|ΦHF⟩,

sji = cji , (i, j) ∈ J1(Yo, Yv),

s
(j1,j2)
(i1,i2)

= c
(j1,j2)
(i1,i2)

− cj1i1 c
j2
i2
+ cj2i1 c

j1
i2
, ((i1, i2), (j1, j2)) ∈ J2(Yo, Yv),

... .

(3.3)

Next, calculation in the Next subspace is performed with a fixed solution in the CAS. That is, the

amplitudes s in the CAS from (3.3) serve as input and kept fixed while solving the CC equations

(C.18). To be more precise, in the linked CC formalism the tailored CC equations are solved,

{
E(t; s) = E = ⟨ΦHF|e−Se−THeT eS |ΦHF⟩,

0 = ⟨XµΦ
HF|e−Se−THeT eS |ΦHF⟩, µ ∈ J̄(Yo, Yv),

(3.4)

where J̄(Yo, Yv) := J(Lo, Lv) \ J(Yo, Yv) = J̄1(Yo, Yv) ∪ J̄2(Yo, Yv) ∪ . . ., that is, only the not-

CAS equations are considered. It is also important to note that in this scheme the CAS cluster

amplitudes J(Yo, Yv) are independent of the rest of the amplitudes J̄(Yo, Yv).

3.2. Properties of the tailored coupled cluster approach

Here we consider the formal properties of the TCC aproach. First, the lack of equivalence of

linked and unlinked TCC equations, then, the size-consistency of the TCC. These are the direct

consequences of the parametrization (3.2) and the tailoring (3.3) and (3.4).

It is important to highlight that, unlike in the conventional CC case (C.18), the linked and

unlinked TCC equations are in general not equivalent [Fau19b]. To show this, we follow the

argument of textbooks [Hel00] adapted to the TCC case. We say that J is excitation complete

(or complete under deexcitations) if for all µ, ν ∈ J we have (Xµ)
†Xν |ΦHF⟩ ∈ Span

{
Xη|ΦHF⟩

∣∣ η ∈
J
}
⊕ Span

{
|ΦHF⟩

}
. For example, CCSD, CCSDT,. . ., or CCD are of this kind. We assume that

J(Yo, Yv) is excitation complete, consequently,

( ∑
µ∈J(Yo,Yv)

|XµΦ
HF⟩⟨XµΦ

HF|+
∑

µ∈J̄(Yo,Yv)

|XµΦ
HF⟩⟨XµΦ

HF|+ |ΦHF⟩⟨ΦHF|

)
e−Se−T = e−Se−T ,

(3.5)

that is, the expression in the parenthesis acts identically on the exponential of cluster operators

containing excitation complete excitations. Now, we consider the matrix ⟨XνΦ
HF|eSeT |XµΦ

HF⟩
for µ, ν ∈ J(Lo, Lv), which is block-lower triangular with respect to the excitation rank, and all

the diagonal elements are one, therefore being not singular. So with this matrix the system of

equations for the linked TCC (3.4) can be transformed, that is, we have an equivalent system of
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equations

0 =
∑

µ∈J̄(Yo,Yv)

⟨XνΦ
HF|eSeT |XµΦ

HF⟩⟨XµΦ
HF|e−Se−THeT eS |ΦHF⟩

=⟨XνΦ
HF|HeT eS |ΦHF⟩ − E⟨XνΦ

HF|eT eS |ΦHF⟩

−
∑

µ∈J(Yo,Yv)

⟨XνΦ
HF|eSeT |XµΦ

HF⟩⟨XµΦ
HF|e−Se−THeT eS |ΦHF⟩

(3.6)

for all ν ∈ J̄(Yo, Yv). In the second equation (3.5) and the energy expression of the linked

TCC equations (3.4) are used. The first two terms in the right-hand-side of (3.6) cancel each

other because they describe the unlinked CC equations (see section C.6), however, the last

term is non-zero. This is because of the fact that the product of a CAS- and an external-

type excitation results external-type excitation(s), that is, there are some non-zero vectors

XηXµ|ΦHF⟩ ∈ Span
{
Xν |ΦHF⟩

∣∣ ν ∈ J̄(Yo, Yv)
}
, for some µ ∈ J(Yo, Yv) and ν ∈ J̄(Yo, Yv).

Obviously, if Y is the empty set, the TCC (3.4) simplifies to the conventional CC (C.18) ap-

proach, in which the sum over µ ∈ J(Yo, Yv) is empty, proving the equivalence of the linked and

unlinked formulations in that case.

To prove the size-extensivity of the DMRG-TCC, as in section C.5, consider the bipartition

of the orbitals LA ⊂ L and LB = L \ LA, and the corresponding occupied and virtual orbitals,

LA,o := LA ∩ Lo and LA,v := LA ∩ Lv, respectively; and similarly for subsystem B. Let

the projected Schrödinger equation in the linked TCC from (3.4) for subsystem A with the

Hamiltonian of HA be fulfilled by |ΦA,TCC⟩ = e(T
A
1 +TA

2 +...)+(SA
1 +SA

2 +...)|ΦHF⟩, where the CAS

solution of A is described by SA
M =

∑
µ∈JM (YA,o,YA,v)

sµXµ, and TCC solution of A is described

by TA
M =

∑
µ∈J̄M (YA,o,YA,v)

tµXµ, that is, excitaion indices are only in subsystem A; and similarly

for subsystem B. If the subsystems are independent, the Hamiltonian can be written as H =

HA+HB , then the projected Schrödinger equation in the linked TCC from (3.4) forH = HA+HB

is fulfilled by |ΦTCC⟩ = eS
A+TA

eS
B+TB |ΦHF⟩, that is,

0 =⟨XµΦ
HF|e−SA−TA

e−SB−TB

(HA +HB)e
SA+TA

eS
B+TB

|ΦHF⟩

=⟨XµΦ
HF|e−SA−TA

HAe
SA+TA

|ΦHF⟩+

⟨XµΦ
HF|e−SB−TB

HBe
SB+TB

|ΦHF⟩, µ ∈ J̄(Yo, Yv).

(3.7)

In the second equation we used that the cluster operators of subsystem A (B) commutes with the

Hamiltonian of the independent subsystem B (A). For indices µ ∈ J̄(YA,o, YA,v), the first term is

zero by assumption, the second is zero because Xµ commutes with operators acting on the B sub-

system. Similar argument applies for indices µ ∈ J̄(YB,o, YB,v). It remains to see that for indices

in J̄(Yo, Yv)\
(
J̄(YA,o, YA,v)∪J̄(YB,o, YB,v)

)
the expression (3.7) vanishes. This is because, Xµ acts

non-trivially on both subsystems, but the similarity-transformed Hamiltonian is the sum of that

of the subsystems. To be more precise, if the HF reference is |ΦHF⟩ = a†i1 . . . a
†
iN1

a†j1 . . . a
†
jN2

|Φvac⟩,
with {i} = I∧N1

(LA,o) and {j} = I∧N2
(LB,o), then Xµ|ΦHF⟩ = a†i′1

. . . a†i′N1

a†j′1
. . . a†j′N2

|Φvac⟩, with
different indices in both subsystems, with i ̸= i′ ∈ I∧N1

(LA) and j ̸= j′ ∈ I∧N2
(LB), resulting
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orthogonality in both terms, which establish (3.7). Because of the exponential ansatz, the trunca-

tion of the excitation rank does not lead to the violation of size-consistency. The size-consistency

of the conventional CC (C.18) follows from the special case if Y is the empty set.

3.3. Local analysis of the DMRG-TCC

As it was highlighted in section C.6, a major difference between the CI and CC method is

that the CC is not variational, and since the TCC method is merely the partition of the cluster

operator (3.2), it is also not variational. The analysis of the CC and TCC can be formulated as

a nonlinear Galerkin scheme, which is a well-established framework in numerical analysis. Note

that, however, the analysis of the TCC [Fau19a] is more involved than that of the CC [Sch09,

Roh13, Lae19]. In spite of being nonvariational, thus not obeying (C.3), the local uniqueness

and quasioptimality of the DMRG-TCC solution can be proved under two assumptions [Fau19a].

The quasioptimality means that taking a fixed DMRG solution in NCAS, the CC solution in

Next converges in the truncation hierarchy (with respect to the excitation rank), and gives

the best possible solution up to a multiplicative constant. Based on Zarantonello’s theorem

[Zei90, Lae19], this property can be formulated with an inequality, which replaces (C.3a)

[Fau19a]. The local uniqueness means that taking a fixed DMRG solution in NCAS, the CC

solution in Next is unique around the exact solution [Fau19a].

The two assumptions are the following. First, the Fock operator F1 ∈ Lin(K), defined in

(C.10), is assumed to be bounded and have a CAS-external (CAS-ext) gap

0 < ∆(Y, Ȳ ∩ Lv) = (min
j∈Ȳv

ϵj)− (max
i∈Y

ϵi) (3.8)

in its spectrum, which is the gap between the energy of the lowest unoccupied external orbital

and that of the highest active orbital (unoccupied or occupied). As it is noted in section C.6, the

numerical convergence of the quasi-Newton method depends on the HOMO-LUMO gap (C.22),

and this assumption is standard in the analysis of dynamically correlated systems. In our TCC

approach we circumvent and replace this condition by the CAS-external gap (3.8) assumption.

Moreover, it turns out that due to the fixed CAS amplitudes s, the crucial stability condition in

the solution of the TCC equations (3.4) becomes larger than the CAS-external gap (3.8) and can

be estimated by ∆(Yo, Ȳv), which is the gap between the energy of the LUMO in the external

space and that of the HOMO in the CAS [Fau19b, Fau19a].

Second, let us have fixed CAS amplitudes s and the corresponding CAS cluster operator S,

then the map

t 7−→ e−T e−SW eSeT |ΦHF⟩ (3.9)

is assumed to have a small enough Lipschitz-continuity constant, where W := ι1,N (H1) +

ι2,N (H2) − ι1,N (F1) is the fluctuation operator. Since W is the difference of the Hamiltonian

and the Fock operator, it describes the difference between the effective electron-electron repul-

sion and the true two-electron (Coulomb) potential. The physical interpretation of the Lipschitz

condition of the map (3.9), containing the similarity transformed W with fixed CAS amplitudes

s, is at the moment unclear.
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We note again that in this chapter the mathematical and numerical analysis was performed

for a fixed orbital set. However, in the DMRG framework, both the extrapolation to the complete

basis limit (d → ∞) [Fri22b], and optimization of the underlying basis (see chapter 4) can be

analysed.

3.4. Error estimates for the DMRG-TCC method

The energy error of the DMRG-TCC method, being nonvariational, does not obey the bound

(C.3b). However, derivations shows that the absolute value of the energy error measured from

the FCI energy obeys a quadratic bound in terms of the CC amplitudes [Fau19a]. Here we

summarise the most important points of the analysis, for the precise construction and more

details see [Fau19a, Fau19b].

In the FCI space NN
L , defined by |L| orbitals used in the Ritz–Galerkin scheme, the numer-

ically exact ground state |ΦFCI⟩ of H in the second quantized form (2.89) is still not accessible,

and the task is to be approximated by the DMRG-TCCSD solution. The error estimation is given

for a given CAS-ext partition Y |Ȳ , hence we write the unknown exact solution vector |ΦFCI⟩ and
ground-state energy EFCI = E(tFCI; sFCI) in the FCI space in the TCC parametrization (3.2),

H|ΦFCI⟩ = E(tFCI; sFCI)|ΦFCI⟩, |ΦFCI⟩ = eT
FCI

eS
FCI

|ΦHF⟩. (3.10)

First we consider the eigenvalue problem of the CAS Hamiltonian,

HCAS|ΦCAS⟩ = ECAS|ΦCAS⟩, |ΦCAS⟩ = eS
CAS

|ΦHF⟩, (3.11)

where the HCAS = PCASHPCAS, with the projection (3.1b). So there is no coupling between

the active and external orbitals, only the frozen-core contribution apperas. Therefore, the CAS

solution (3.11) is not equal to the CAS part of the FCI solution (3.10), sCAS ̸= sFCI. Moreover,

in general we cannot access to the exact solution of HCAS, only approximated, in our case by

the DMRG solution eS
DMRG |ΦHF⟩. To sum up, we have

eS
DMRG

|ΦHF⟩ ≈ eS
CAS

|ΦHF⟩ ≈ eS
FCI

|ΦHF⟩ = PCAS|ΦFCI⟩. (3.12)

The solution of the problem in the DMRG-TCCSD approach is

E(t̃CCSD; s̃DMRG), |ΦDMRG-TCCSD⟩ = eT̃
CCSD

eS̃
DMRG

|ΦHF⟩, (3.13)

that is, the amplitudes (s̃DMRG)µ := (sDMRG)µ for singles and doubles µ ∈ J1 ∪ J2 have been

extracted and passed as inputs for the system of equations (3.4). By the solution of the TCCSD

part of the system of equations (3.4), we obtain (t̃CCSD)µ for singles and doubles µ ∈ J̄1 ∪ J̄2.
For clarity, tilde is used for indicating the truncation in the excitation rank, that is, keeping only

singles and doubles. (The solution up to higher excitation ranks are out of the scope of this

work.) Then the total DMRG-TCCSD error measured from the exact FCI solution is estimated

as

∆E := |E(t̃CCSD; s̃DMRG)− E(tFCI; sFCI)| ≤ ∆ε+∆εCAS +∆ε∗CAS, (3.14)

where the terms on the right-hand side are the following. The first term,

∆ε = |E(t̃CCSD; s̃DMRG)− E(tCC; sDMRG)|, (3.15a)
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describes the truncation error of the CCSD method from the untruncated CC for a fixed tailoring

DMRG solution, that is, CAS amplitudes are truncated accordingly s̃DMRG, sDMRG. Hence, the

analysis of this error is similar to that of the conventional single-reference CC method [Sch09,

Roh13]. The second term,

∆εCAS = |E(tCC; sDMRG)− E(tCC; sCAS)|, (3.15b)

descibes the effect of different CAS solutions for a fixed external untruncated CC solution. This

includes the error of the DMRG solution on the CAS compared to the FCI solution on the CAS,

which can be controlled by the DMRG truncation error threshold (2.42). The third term,

∆ε∗CAS = |E(tCC; sCAS)− E(tFCI; sFCI)|, (3.15c)

is caused by the splitting Y |Ȳ , so the correlation “from” the external part “into” the CAS is

ignored in the sense of fixing the CAS cluster amplitudes. Therefore, the best possible solution

for a given splitting differs in general from the exact solution on NN
L . For the detailed analysis

of the quadratic bounds of each error term, we refer to [Fau19b, Fau19a].

The TCC solution depends strongly on the choice of the active orbitals Y , and the derived

error bounds has a highly complicated Y -dependence. Therefore the analysis [Fau19a] summa-

rized above is not directly applicable, so it is motivated to further investigate the Y -dependence

of the overall error ∆E (3.14). Let (tCC; sDMRG) be the solution of (3.4). If sDMRG → sCAS

then we obtain that (tCC; sCAS) is also close to a solution of (3.4) since the TCC method is

numerically stable (section 3.3), that is, a small perturbation in the input s corresponds to a

small perturbation in the solution t. This sDMRG → sCAS limit can again be controlled and

analysed by tuning the DMRG truncation error threshold (2.42). Furthermore, if we assume

that tCCSD ≈ tCC, which is reasonable for the equilibrium bond length of N2, the error can be

bound as

∆E ≤ CY

(∑
µ∈J̄1

(t̃CCSD)2µ + ∥t̃CCSD − t̃FCI∥22 + ∥s̃DMRG − s̃FCI∥22
)
. (3.16)

Here the subscript Y in CY highlights the CAS dependence, however, the amplitudes s̃DMRG and

t̃CCSD are also depend on Y . In the sequel, we refer to the error arising from the choice of the

active orbitals Y and the fact that the CAS amplitudes are kept fixed during the CC calculation

as methodological error of the DMRG-TCC. These are discussed and investigated numerically in

section 3.7.3.

3.5. The choice of the active space

As it was formulated in (3.2), the TCC method relies on the selection of the complete

active space (CAS), that is, on the choice of the active orbitals Y ⊆ L. For this we have∑d
k=0

(
d
k

)
= 2d choices, assuming |L| = d. Including this dependence in the above shown error

analysis explicitly is a highly non-trivial task, involving many mathematical obstacles and is a

part of our ongoing work. Therefore, here we extend the mathematical results of the previous

sections with a numerical study on this Y -dependence.
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The DMRG-TCC method becomes the bare DMRG method in the special case when all

orbitals are active, Y = L, on the other hand, if there are no active orbitals, Y = ∅, the

problem reduces to the bare CC method. We note again that the CCSD method can not resolve

static correlation and the DMRG method needs high bond dimension or small truncation error

threshold for dynamically correlated systems. This suggests, qualitatively, a large enough CAS

with well-chosen orbitals that covers the static correlation of the system. Consequently, we

require a quantitative measurement for the quality of the CAS, which presents the first obstacle

for creating a non-empirical model, since the chemical concept of correlation is not well-defined

[Lya12]. In the DMRG-TCC method, we use a quantum information theory approach to classify

the orbital correlation. This classification is based on the one-orbital entropy (2.20), S(ϱ{i}), and

the two-orital mutual information (2.23a), Ii|j = S(ϱ{i})+S(ϱ{j})−S(ϱ{i,j}), where i, j ∈ L. We

emphasize that in practice these are basis dependent quantities, which is in agreement with the

chemical definition of correlation concepts [Lya12]. Note that the two-orbital mutual information

describes two-orbital correlations, for a more general connection between multipartite correlations

and chemical bonding, see [Szal17].

As we will see in the sequel for the entropy and mutual information profile of N2, one can

identify pairs of orbitals with to a high mutual information value as strongly correlated, the pairs

contributing to the plateau region as non-dynamically correlated and the pairs contributing to

the mutual information tail as dynamically correlated. Also one can draw the conclusion that

the orbitals with large entropies (which at the same time correspond to orbitals contributing

to the largest elements of the mutual information Ii|j) can be identified already from the low

bond dimension calculations. This provides us a routine procedure to form the CAS with the

strongly correlated orbitals. Thus, the decreasingly ordered values of the one-orbital entropy

provide guide in what order to extend the CAS by including additional orbitals. In our study,

the size of the active space k = |Y (k)| is systematically increased by including orbitals with the

largest one-orbital entropy values,

Y (k) := Lo ∪
{
{i1, . . . , ik−N} ⊆ Lv

∣∣ Si1 ≥ . . . ≥ Sik−N

}
. (3.17)

This results that there are no occupied external orbitals, Ȳo, and the smallest active space

consists of all the occupied spin-orbitals, Y (N) = Lo, for which the dimension of the FCI space

is dim(K∧N
Lo

) = 1, so this also reduces to the CC method. By assumption (3.8), and to avoid

numerical instabilities, the degenerate orbitals in orbital energy are not separated, hence Y (k) for

these k values are not considered. The preceding arguments suggest that the energy error ∆E in

(3.14) takes its minimum for some Y (k) ⊂ L, so there exists an optimal choice of k determining

the basis splitting. Note that this feature becomes important for large systems, since calculations

with high bond dimensions become unfeasible.

3.6. Computational details of the DMRG-TCCSD method

Here we give a short description how to perform DMRG-TCCSD calculations in practice, that

is, finding a good set of active orbitals and the corresponding TCCSD energy E(t̃CCSD; s̃DMRG)

that approximates the FCI energy EFCI of the problem with high accuracy.
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After choosing the molecule and setting its geometry (which may be optimized also), HF

calculation is performed with a chosen atomic orbital set {|φAO
j ⟩}j∈[d] by solving the Roothan–

Hall equation (C.12). From the resulting HF canonical molecular orbitals (C.11), the integrals

(C.7), that is, the coefficients in the Hamiltonian (2.89) are computed. Then, the following steps

are carried out:

(i) determine the active orbitals Y (k) in terms of k,

(ii) calculate the ground state of the CAS Hamiltonian HCAS by DMRG (for each Y (k)),

(iii) extract amplitudes s̃DMRG from the DMRG solution (for each Y (k)),

(iv) calculate the tailored CCSD energy E(t̃CCSD; s̃DMRG) (for each Y (k)),

(v) large-scale calculation for the best Y (k).

Now let us detail each step.

In step (i), a preliminary DMRG calculation is carried out for the full orbital set, that is,

by setting Y = L. First, the order of orbitals is optimized, which is routinely used in quantum

chemistry DMRG calculations (see appendix A). Then, a DMRG with a fixed low bond dimension

(or with a large truncation error threshold) is carried out, and the corresponding one-orbital

entropies and two-orbital mutual informations are calculated. This rough calculation already

provide a qualitatively good description of the entropy profile with respect to the exact solution,

so the strongly correlated orbitals can be identified. With this, the series of active spaces Y (k)

is determined, as described above in (3.17). Our main concern is studying the k-dependence of

the quantities.

In step (ii), for each active space Y (k) the projected Hamiltoian HCAS = PCASHPCAS is

formed. First, the order of the k orbitals is optimized again. Then, large-scale DMRG calculation

is carried out (that is, low truncation error threshold is used) for the ground state to get an

accurate approximation of the CAS ground state, eS
DMRG |ΦHF⟩ ≈ eS

CAS |ΦHF⟩.
In step (iii), the CC algorithm is tailored by the DMRG. The entries of the full coefficient

tensor ψ of the state vector (2.28) are not appearing explicitly in the DMRG algorithm but

they can be accessed by the contraction of the tensor network. The number of MPS matrix

multiplication in (2.55) scales exponentially, however, only the coefficient of the reference, singly

and doubly excited configuration are needed. Also, the contrations of the network are performed

in an optimized way, that is, common matrix product strings are pre-contracted [Fau19b]. Note

that the DMRG method yields the normalized MPS form (2.55), but in the CI parametrization

(C.15) the state vector is intermediately normalized. By the connection between the CI and CC

parametrization (3.3), the s̃DMRG amplitudes are calculated, which form the input of the CCSD

calculation.

In step (iv), the TCC equations (3.4) are solved for single and double excitations. That is, the

cluster amplitudes t̃CCSD for the external part and the corresponding energy E(t̃CCSD; s̃DMRG) are

calculated with quasi-Newton iteration techniques, implemented by standard quantum chemistry

program packages [Nee22, Val10].

In step (v), large-scale DMRG-TCCSD calculation is performed for the best k value. As

we discussed above, finding the optimal Y is a highly non-trivial problem, and this presented

protocol is considered as a heuristic approach in terms of rigorous mathematics. In practice,
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we carry out steps (ii)-(iv) using a relatively cheap DMRG-TCCSD scheme, that is, for some

high DMRG truncation error thresholds ωTr, to find local energy minima as a function of k,

N < k < d (see figure 3.5 later). This can be done parallel since runs for different values of k and

ωTr are independent. Around such a local minimum we perform more accurate DMRG-TCCSD

calculations by lowering the ωTr in order to refine the best k. We also monitor the maximal MPS

bond dimension required to reach the a priori defined ωTr as a function of k. It can happen that

several k values lead to low DMRG-TCCSD energy error ∆E, while the computational effort

increases significantly with increasing k. Hence we select the best k that leads to low DMRG-

TCCSD energy error and also have the lowest MPS bond dimension. Using this best k value

we perform large-scale (that is, up to the available computational resource) DMRG-TCCSD

calculation using a relatively tight ωTr.

Our numerical study was restricted to the DMRG-TCCSD method, but the results presented

here should also hold for other TNS approaches [Mur10, Nak13, Mur15, Sza15, Gun18].

3.7. Analysis of the splitting error for the nitrogen dimer

In practice, a routine application of the TCC method to strongly correlated molecular sys-

tems, that is, to multireference problems, became possible only recently since it requires a very

accurate solution in a large CAS including all static correlations. Tensor network state methods

fulfil such a high accuracy criterion, but the efficiency of the DMRG-TCCSD method strongly

depends on various parameters of the involved algorithms. Some of these are defined rigorously,

while others are more heuristic from the mathematical point of view. In this section we present

the optimization steps for the most important parameters of the DMRG-TCCSD method and

outline how the numerical error study is performed.

In our numerical study we have the nitrogen dimer N2 with the cc-pVDZ orbital set, which

is a common basis for benchmark computations [Dun89]. The HF calculation yields d = 28

canonical spatial orbitals with N = 14 electrons, so the FCI space is NN
L , where the L = {(1, ↑

), (1, ↓), . . . , (d, ↑), (d, ↓)}, with the notations of section C.3. We exploit the total spin projection

(Abelian) symmetry, that is, the ground state is searched in the subspace where the total spin

projection of the electron system is zero, NN/2,N/2
L↑,L↓

⊆ NN
L (where L↑ = {(1, ↑), . . . , (d, ↑)}).

We remark here that in our calculations the FCI space NN
L is used indeed, opposed to the

typical frozen-core calculations, where the two 1s spatial orbitals are omitted from HL, leading

to a smaller space NN ′

L′ , with L′ = L \ {(1, ↑), (1, ↓), (2, ↑), (2, ↓)} and N ′ = N − 4. The N2

molecule is linear, so the geometry can be defined by one parameter, the distance r of the nuclei.

We investigate three different geometries by stretching the molecule, thus the performance of

DMRG-TCCSD method is assessed against pure DMRG and single-reference CC methods for

bond lengths r = 2.118 a0, 2.700 a0 and 3.600 a0, where a0 is the Bohr radius. At r = 2.118 a0 the

system is close to the equilibrium geometry, so the system is not strongly correlated, implying that

single-reference CC methods yield reliable results. For increasing bond length r, the system shows

multireference character, that is, static correlations become more dominant. For r > 3.500 a0

this results in the variational breakdown of single-reference CC methods [Kow00], which means

that the CC energy goes well below the FCI energy. This breakdown can be overcome with
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the DMRG-TCCSD method when a large and well-chosen CAS is used. Therefore we refer to

the DMRG-TCCSD method as numerically stable with respect to the bond length along the

potential energy surface.

As mentioned before, the DMRG method is in general less efficient for dynamic correlations

since it requires large computational resources. However, due to our specific CAS choice, the

computational resource for the DMRG part of the TCC scheme is expected to be significantly

lower than a pure DMRG calculation for the same level of accuracy in terms of the overall error

∆E (3.14). We investigate the overall error dependence of DMRG-TCCSD as a function of the

active orbitals Y (k) via k (3.17) and as a function of the DMRG truncation error threshold ωTr.

That is, for our numerical error study, we perform steps (i)-(iv) for different DMRG accuracies.

Also, these steps are carried out for each geometry r = 2.118 a0, 2.700 a0 and 3.600 a0 of the

N2 molecule. We obtain reference energies for the FCI solution by very high accuracy DMRG

calculations on the full orbital set (Y = L) with setting a prior truncation error to ωTr = 10−8.

3.7.1. Entropic quantities of the full orbital set Before we turn to the selection of the

active orbitals Y ⊆ L based on entropic quantities, we show DMRG results for the full orbital

set, that is, the CAS is formed by the Y = L orbitals, for various fixed bond dimension D̃ values

and for various a priori defined truncation error thresholds up to ωTr = 10−8. In the latter case

the maximal bond dimension was set to D̃max = 10000. In figure 3.1 (a) we show the relative

error ∆Erel of the ground-state energy as a function of the DMRG truncation error threshold

on a logarithmic scale. The reference energies for the relative errors are obtained by DMRG

calculations with truncation error threshold ωTr = 10−8. We note that for equilibrium geometry

r = 2.118 a0 we could have choosen deeper referece energy available in the literature, obtained by

CCSDTQPH-fc calculation [Cha04], however, for stretched geometries our DMRG energy with

ωTr = 10−8 are below that of CCSDTQPH-fc. It can be seen that the relative error is a linear

function of the truncation error on a logarithmic scale, thus extrapolation to the truncation free

solution of the energy can be carried out according to references [Leg96, Leg03a].

To establish step (i) in section 3.6, in figures 3.2 and 3.3, we present the sorted values of the

one-orbital entropy and of the two-orbital mutual information, respectively, obtained for fixed

D̃ = 64, 256, 512 bond dimensions and with ωTr = 10−8 truncation error threshold for the three

geometries. Because of the spatial orbital formulation we have dim(Ni) = 4, so the entropy varies

between 0 and ln(4), while the mutual information of two spatial orbitals varies between 0 and

2 ln(4). As it can be seen in the figures, the profiles of the entropic quantities are robust, that

is, low-accuracy profiles already resemble the main characteristics of the high-accuracy profiles

(D̃ ≈ 10000). This allows one to approximate the entropy and mutual information profile of the

full system L from a prior DMRG computation with low bond dimension, so low computational

cost. Therefore, orbitals with large one-orbital entropies, also contributing to large values of Ii|j ,

can easily be identified from a low-accuracy computation. According to (3.17), the active space

can be extended systematically for our DMRG-TCCSD study, that is, performing steps (ii)-(v)

in section 3.6.
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Figure 3.1. (a) Relative error of the ground-state energy as a function of the

DMRG truncation error threshold on a logarithmic scale obtained for the full

orbital set (k = 28) for r = 2.118 a0 (blue), 2.700 a0 (green) and 3.600 a0 (red).

The reference energies are DMRG calculations with truncation error threshold

ωTr = 10−8. (b) Maximum bond dimension as a function of the number of the

active orbitals for the a priori defined truncation error threshold ωTr = 10−8.

Taking a look at figure 3.2, it becomes apparent that Si shifts upwards for increasing r,

indicating the higher contribution of static correlations for the stretched geometries. Similarly,

the first 50-100 highest values of Ii|j take larger values for larger r, while the exponential tail,

corresponding to dynamic correlations, is less effected. The gap between large and small values

of the orbital entropies gets larger, and its position shifts rightward for larger r. Thus, for the

stretched geometries, more orbitals must be included in the CAS during the TCC scheme in order

to determine the static correlations accurately. We remark here that the orbitals contributing to

the high values of the one-orbital entropy and two-orbital mutual information values may change

for the different geometries according to chemical bond forming and breaking processes [Bog13].

In figure 3.4, the one-orbital entropies are shown for more stretched geometries, and also the

index label of the first six orbitals with highest entropy are inscribed. We note again that the

orbitals are obtained from HF calculation, and the spactial orbital index labels {1, 2, . . . , 28} are

such that bigger indices correspond to higher Hartree–Fock orbital energies. By this, we can
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Figure 3.2. One-orbital entropies for r = 2.118 a0 (blue), 2.700 a0 (green) and

3.600 a0 (red) obtained for the full orbital set (k = 28) with DMRG for fixed

D̃ = 64, 256, 512 and for ωTr = 10−8 with D̃max = 10000.

identify the four π and two σ molecular orbitals, coming from the 2p atomic orbitals, which

take part in the bond breaking process indeed. The effect of stretching the geometry on the

multireference character will be further discussed in chapter 4.

3.7.2. Numerical investigation of the CAS-dependence of the error Here we present

the numerical results of the ground-state energy errors in terms of k for the DMRG-TCCSD for

different accuracies and geometries. Single-reference coupled cluster calculations were also per-

formed in NWChem program package [Val10], where we employed the cc-pVDZ basis set in

the spherical representation. For the errors ∆E, shown in figures 3.5, 3.6 and 3.7, the reference

energies are the DMRG energy with truncation error threshold ωTr = 10−8 for the full orbitals

set k = d = 28. In the figures, there are some missing data points in terms of k because, as

before, some orbitals are added together to the active space due to symmetry considerations and

also taking (3.8) into account, see the discussion after (3.17). This also manifests itself in the

degenerate one-orbital entropies, so can be routinely checked in the workflow within step (i) in

section 3.6.

We make the following findings from the ground-state errors.

1. The DMRG energy starts from the Hartree–Fock energy for k = 7 and decreases mono-

tonically with increasing k, which is because of the variational property of the DMRG method,
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Figure 3.3. Two-orbital mutual informations for r = 2.118 a0 (blue), 2.700 a0

(green) and 3.600 a0 (red) obtained for the full orbital set (k = 28) with DMRG

for fixed D̃ = 64, 256, 512 and for ωTr = 10−8 with D̃max = 10000.

until the full orbital solution with k = 28 is reached. It is remarkable that the DMRG-TCCSD

energy is significantly below the CCSD energy for all CAS choices, even for a very small k = 9.

The error, however, shows an irregular behaviour. This is clearly seen as the energy error in-

creases between k = 10 and k = 15, even for different DMRG accuracies ωTr, although the CAS

covers more of the static correlation of the system with increasing k. This is due to the fact that

the DMRG-TCCSD approach suffers from a methodological error, discussed in section 3.4, since

the CAS solution is frozen in the during the CCSD calculation. Therefore, whether orbital k is

part of the CAS or external part provides a different methodological error. This supports the

hypothesis of a k-dependent constant in (3.16) and is investigated in more detail in section 3.7.3.

2. Since several choices of CAS orbitals Y (k) lead to small DMRG-TCCSD errors, the value

of k, best from the computational point of view, is determined not only by the error minimum but

also by the minimal computational time, that is, we need to take the computational requirements

of the DMRG into account. Note that the bond dimension in the MPS contributes significantly to

the computational cost of the DMRG calculation (2.59). The connection of the bond dimension

to the CAS choice is shown in figure 3.1 (b), where the maximal bond dimension appearing in

the DMRG algorithm is depicted as a function of k for the a priori defined truncation error

threshold ωTr = 10−8. In the DMRG calculations the total spin projection (Abelian) symmetry
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Figure 3.4. One-orbital entropies for equilibrium and stretched geometries

obtained for the full orbital set (k = 28) with DMRG for ωTr = 10−8 with

D̃max = 10000. For each geometry we indicate the labels of the first six spatial

orbitals with highest entropy. The labels of the orbitals {1, 2, . . . , 28} are as-

signed according to increasing Hartree–Fock energy.

is exploited, that is, the ground state is searched where the total spin projection of the electron

system is zero. In our CAS construction all the 7 occupied spatial orbitals are included for all k,

therefore the number of electrons are N = 14. These two facts yield that the dimension of the

CAS with Y (k) is dim
(
NN/2,N/2

Y↑,Y↓

)
=
(
k
7

)2
. The optimal CAS is therefore chosen such that the

bond dimensions are not too large and the DMRG-TCCSD provides a low error, that is, a local

minimum in the energy error with respect to k.

3. It is important to note that, based on figure 3.5, the DMRG-TCCSD energy got very

close to, or even dropped below, the CCSDT energy for several k values. Since close to the

equilibrium geometry the exact wave function is dominated by one determinant, it is expected

that DMRG-TCCSD leads to even more robust improvements for the stretched geometries, that

is, when the multireference character of the wave function is more pronounced. Our results for

the stretched geometries, r = 2.700 a0 and 3.600 a0, are shown in figures 3.2 and 3.3 for the

entropic quantities, and in figures 3.6 and 3.7 for the ground-state energy errors. As mentioned

in section 3.7.1, for larger r values static correlations gain importance, which is signaled by the

increase in the one-orbital entropy in figure 3.2. Thus the multireference character of the wave
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Figure 3.5. Ground-state energy of the N2 molecule near the equilibrium ge-

ometry, r = 2.118 a0, obtained with DMRG-TCCSD for 7 ≤ k ≤ 28 and for

various DMRG truncation error thresholds ωTr. The CCSD, CCSDT and CCS-

DTQ reference energies are shown by dotted, dashed and dashed-dotted lines,

respectively. The DMRG energy with ωTr = 10−8 on the full space, that is,

k = 28, is taken as a reference for the FCI energy. For ωTr = 10−5 the reverse

CAS extensions, labeled by CAS↑, was additionally formed by taking k orbitals

according to increasing values of the one-orbital entropy.

function becomes apparent through the entropy profiles. For r = 2.700 a0, according to figure

3.6, the DMRG-TCCSD energy is again below the CCSD computation for all k > 7 values and it

is even below the CCSDT reference energy for k > 15. For r = 3.600 a0, according to figure 3.7,

the CC computation fluctuates with increasing excitation ranks, and CCSDT is even far below

the reference energy, revealing the variational breakdown of the single-reference CC method for

multireference problems [Kow00]. In contrast to this, for r = 3.600 a0 the DMRG-TCCSD

energy is again below the CCSD energy for all k > 7, but above the CCSDT energy. The

error furthermore shows a local minimum around k = 19. For the stretched geometries static

correlations are more pronounced, there are more orbitals with large entropies, thus the maximal

bond dimension in DMRG calculations increases more rapidly with k compared to the situation

near the equilibrium geometry (see figure 3.1 (b)). Thus, obtaining an error margin within

1µEh for k = 19 ≪ 28 leads to a significant save in computational time and resources. Here
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Figure 3.6. Ground-state energy of the N2 molecule with bond length r =

2.700 a0, obtained with DMRG-TCCSD for 7 ≤ k ≤ 28 and for various DMRG

truncation error thresholds ωTr. The CCSD, CCSDT and CCSDTQ reference

energies are shown by dotted, dashed and dashed-dotted lines, respectively. The

DMRG energy with ωTr = 10−8 on the full space, that is, k = 28, is taken as

a reference for the FCI energy. For ωTr = 10−5 the reverse CAS extensions,

labeled by CAS↑, was additionally formed by taking k orbitals according to

increasing values of the one-orbital entropy.

we emphasize again that DMRG-TCCSD is fundamentally a single-reference method, as it was

formulated in (3.4), therefore, the choice of the reference determinant can effect its performance.

However, we have verified that for r ≲ 4.000 a0 and for all k values the weight of the Hartree–

Fock determinant was significantly larger than all other determinants. In chapter 4, based on

reference [Mát23], however, this multireference character is studied in terms of the weight of

determinants in wide range of nuclei distances.

4. In practice, we do not intend to carry out untruncated DMRG calculations, that is, exact

treatment of NN/2,N/2
Y↑,Y↓

space, thus usually a larger truncation error threshold is used. Therefore,

we have made calculations for larger truncation errors thresholds in the range of 10−4 and 10−8

to study its influence. Our results are shown also in figures 3.5, 3.6 and 3.7. For small k the

DMRG solution basically provides the exact limit since the a priori set minimum bond dimension

D̃min ≈ 64 already leads to a very small truncation by (2.42). (It is a common technique in
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Figure 3.7. Ground-state energy of the N2 molecule with bond length r =

3.600 a0, obtained with DMRG-TCCSD for 7 ≤ k ≤ 28 and for various DMRG

truncation error thresholds ωTr. The CCSD, CCSDT and CCSDTQ reference

energies are shown by dotted, dashed and dashed-dotted lines, respectively. The

DMRG energy with ωTr = 10−8 on the full space, that is, k = 28, is taken as

a reference for the FCI energy. For ωTr = 10−5 the reverse CAS extensions,

labeled by CAS↑, was additionally formed by taking k orbitals according to

increasing values of the one-orbital entropy.

numerical practice to set such a minimum D̃min to improve convergence.) Therefore, the error

of the DMRG-TCCSD is dominated by the methodological error discussed in section 3.4, and

the markers in the figures are on the top of each other for different truncation error thresholds

ωTr. For k > 15 the effect of the DMRG truncation error becomes visible, and for large k the

overall error ∆E is basically determined by the DMRG solution. For larger ωTr between 10−4

and 10−5, the DMRG-TCCSD error shows a prominent, clearly visible minimum with respect to

k. This is exactly the expected trend, since the CCSD method fails to capture static correlations

while DMRG requires large bond dimension, that is, a low truncation error threshold, to capture

dynamic correlations. In addition, the error minima for different truncation error thresholds ωTr

happen to be around the same k values. This has an important practical consequence: not just

the entropy profiles but also the best Y (k)| ¯Y (k) split can be determined by performing cheap

DMRG-TCCSD calculations using large DMRG truncation error threshold as a function of k.



3.7. ANALYSIS OF THE SPLITTING ERROR FOR THE NITROGEN DIMER 54

0 200 400

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 10 20

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3.8. (a) Sorted values of the two-orbital mutual informations obtained

by DMRG for 9 ≤ k ≤ 28 on a semi-logarithmic scale for N2 at r = 2.118 a0. (b)

Sorted 20 largest matrix elements of two-orbital mutual informations obtained

by DMRG for 9 ≤ k ≤ 28 on a lin-lin scale for N2 at r = 2.118 a0.

3.7.3. Numerical investigation on CAS-external correlations As we have seen, the

figures 3.5, 3.6 and 3.7 show that ∆E has a high peak for 9 < k < 16, where the DMRG is

close to the numerical exact solution. This indicates the methodological error of the method (see

section 3.1), that is, the Y -dependence of the energy. In order to demonstrate the importance of

the choice of the CAS orbitals, we also performed calculations with reverse CAS extension for

ωTr = 10−5. That is, we form Y (k) by taking k orbitals according to increasing values of the

one-orbital entropy values. The corresponding error profiles as a function of k are labelled by

CAS↑ in figures 3.5, 3.6 and 3.7. As expected, the improvement of DMRG-TCCSD is marginal

compared to CCSD up to a very large k ≈ 23 split.

Taking another look at figure 3.2 we can confirm that already for small k values the most

important orbitals, that is, those with the largest entropies, are included in the active ones. In

figure 3.8 the sorted values of the two-orbital mutual informations of system PCASHPCAS are

shown obtained by DMRG for 9 ≤ k ≤ 28. It is apparent from the figure 3.8 (b) that the

largest values of Ii|j change only slightly with increasing k, thus static correlations are basically

included for all restricted CAS. This verifies our claims about the CAS choice in section 3.5. The

exponential tail of Ii|j corresponding to dynamic correlations, however, becomes more visible
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Figure 3.9. (a) The active-orbital entropy S(ϱY (k)) as a function of k for r =

2.118 a0 obtained by DMRG with orbital ordering according to CAS extension

(3.17) and the reversed CAS extension, labelled by CAS and CAS↑, respectively.

(b) The amplitude expression e(ωTr) as a function of k for r = 2.118 a0 for

DMRG truncation error thresholds ωTr between 10−4 and 10−8.

only for larger k values, as figure 3.8 (a) shows. We conclude that for a given k split the DMRG

method computes the static correlations efficiently, and the missing tail of the mutual information

with respect to the full orbital set (k = 28) calculation is captured by the TCC scheme.

Correlations between the active and external orbitals can also be simulated by a DMRG

calculation on the full orbital set using an orbital ordering defined by our CAS extension method

according to (3.17). That is, the first k site in the DMRG chain represents orbitals Y (k) (for

k ≤ 7, that is, for the occupied HF orbitals Lo, the order is arbitrary). The correlation in

the pure ground state with respect to the bipartition Y (k)|Y (k) is twice the entropy of the

reduced state 2S(ϱY (k)) (see (2.27a)). The construction of the reduced state ϱY (k) is inherent

in the DMRG algorithm (2.51). The active-orbital entropy S(ϱY (k)), shown in figure 3.9 (a),

decays monotonically for k > 7, that is, the correlations between the active and external orbitals

vanish with increasing k. In contrast to this, when an ordering according to CAS↑ is used, the

correlation between CAS and external part remains always strong for k < 28, that is, some of

the highly correlated orbitals are distributed among the active and external ones. Nevertheless,

both curves are smooth and they cannot explain the error profile shown in figure 3.5.
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Since correlation analysis based on the entropic quantities cannot reveal the error profile

shown in figure 3.5, here we reinvestigate the error behaviour as a function of k but in terms of

the CC amplitudes. Let us write out more explicitly the amplitude expression in (3.16),

e(ωTr) =
∑
µ∈J̄1

(t̃CCSD(ωTr))
2
µ +

∑
µ∈J̄1∪J̄2

(t̃CCSD(ωTr)− t̃FCI)µ +
∑

µ∈J1∪J2

(s̃DMRG(ωTr)− s̃FCI)µ,

(3.18)

so e(ωTr) denotes the expression in the bracket in (3.16). Here we indicate the truncation error

threshold ωTr used in the DMRG calculation in the DMRG-TCCSD method. Since the FCI

solution is unknown, it is approximated by high-accuracy DMRG calculation for the full orbital

set k = 28, and the amplitudes t̃FCI and s̃FCI were obtained according to (3.10) and (3.3). In

figure 3.9 (b), the amplitude expression e(ωTr) is shown as a function of k for several DMRG

truncation error thresholds ωTr for the near-equilibrium geometry. Note that the quantitative

behaviour is quite robust with respect to the DMRG accuracy. We emphasize that the error

contribution in figure 3.9 is dominated by the second term in (3.18), which this is an order of

magnitude larger than the contribution from the first and third terms.D in (3.18), respectively.

The first term in (3.18) is furthermore related to the usual T1 diagnostic in CC [Lee89b], so it

is not a surprise that a small value, in order of 10−3, was found. Comparing this error profile to

the one shown in figure 3.5, we can understand the irregular behaviour and the peak in the error

in ∆E between k = 9 and 17, and the other peaks for k > 17, but the error minimum found for

k = 19 remains unexplained. Furthermore, we can conclude from figure 3.9 (b) that the quotient

∆E/e(ωTr) is not constant with respect to k. This indicates that the constant involved in (3.16)

is indeed Y (k)-dependent.

3.8. Summary

In this chapter, we presented a fundamental study of the DMRG-TCCSD method. We

showed formal properties, such as the energy size extensivity, and that, unlike the traditional

single-reference CC method, the linked and unlinked TCC equations are in general not equiv-

alent. We presented the mathematical error analysis of the DMRG-TCC method, performed

in the original work [Fau19a], with emphasizing the quantum chemistry perspective. We re-

called the local uniqueness and quasioptimality of the DMRG-TCC solution, and highlighted

the importance of the CAS-ext gap, that is, a spectral gap assumption allowing to perform the

analysis presented. Furthermore, the analysis resulted in a quadratic a priori error estimate for

the DMRG-TCC method, which aligns the error behaviour of the DMRG-TCC method with

variational methods except for the upper bound condition. The key point we emphasized is

the strong CAS dependence of the DMRG-TCC solution, which was neglected in the former

analysis [Fau19a] since the explicit consideration of this dependence carries many mathematical

challenges. Therefore we extended our work with a numerical study of the CAS dependence of

the DMRG-TCCSD error. We perform a systematic study on the nitrogen dimer with different

geometries by increasing the size of the CAS according to entropic quantities. Our computations

showed that these properties, for example, the one-orbital entropy and the two-orbital mutual
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information are qualitatively very robust. This means that their qualitative behaviour is well-

represented by means of an approximation with low bond dimension, which is a computational

benefit. Also, we could clearly observe that the error indeed first decays (for 7 ≤ k ≤ 9) and

then increases again (for 25 ≤ k ≤ 28) for low-rank approximations, that is, for truncation errors

10−4, 10−5. This oscillatory behaviour was not able to be answered so far using entropy based

measures but a similar irregular behaviour can be detected by a cluster amplitude error analysis.

An important feature that we would like to highlight here is that a small CAS (k = 9) yields

a significant improvement of the energy, and that the energies for all three geometries and all

CAS choices outrun the single-reference CC method. Although the computational costs of the

DMRG-TCCSD method exceed the costs of the CCSD method, this leads to a computational

drawback of the method only if the treatment of large CAS becomes necessary. In addition,

the DMRG-TCCSD method avoids the numerical breakdown of the CC approach even for multi-

reference (strongly correlated) systems and, using concepts of quantum information theory, allows

an efficient routine implementation. The practical result of our study is that we proposed a

protocol to find the best active orbitals for carrying out large-scale DMRG-TCCSD calculations.



4. CHAPTER

Compressing multireference character via fermionic mode

transformation

In this chapter, in section 4.1, we start with pointing out that the choice of orbital set for

the discretisation (and truncation) is crucial in quantum chemistry. Also there are situations,

for example, strongly open-shell systems, where the choice of a reference determinant becomes

ambiguous, therefore, methods based on single-reference formulation (CC, DMRG-TCC) could

potentially run into problems, and the choice of the reference is a bias in the method. Qual-

itatively we say that a many-body system is of multireference character if the single-reference

methods fail. In this chapter we investigate the multireference character quantitatively via the

tomography of the state. We demonstrate that orbital optimization based on entanglement local-

ization has the potential to compress the multireference character of the state vector. In sections

4.2-4.4, we discuss orbital optimization within mode transformation in TNS methods and the

numerical details of the joint optimization in the two-site DMRG framework. In sections 4.5-4.6,

numerical simulations are performed for the nitrogen dimer for the equilibrium and for stretched

geometries in the cc-pVDZ orbital set.

4.1. Orbital optimisation and multireference character

We recall concepts detailed in appendix C in the context of orbital optimisation. As we can

see in the formulation (C.9), the HF method can be viewed as an orbital optimisation, where

the cost function is the expectation value of the Hamiltonian with one Slater determinant. The

optimal orbitals can be written as the unitary transformation of some arbitrary orthonormal

orbital set, and the optimal energy is the HF energy. This optimization problem (C.9) leads

to the eigenvalue problem of the Fock operator (C.10), or in the LCAO scheme (C.11) to the

Roothan–Hall equation (C.12). In general, the optimization of the orbitals is not a new concept.

For example, the localized molecular orbitals (LMO) has a long history in quantum chemistry.

The aim of the localization of orbitals there is two-fold. On the one hand, localization leads to

chemically intuitive orbitals for rationalizing electronic structure of molecular systems. On the

other hand, LMOs has proven to be useful in making the high-level correlated quantum chem-

ical methods more tractable computationally [Pip89, Sto80, Sze03, Sir00, Smi85]. Among

many others, we can recall Foster–Boys localization [Fos60, Boy60], which minimizes the radial

extent of the localized orbitals, or Pipek–Mezey localization [Pip89], which is based on maxi-

mizing the charge of each orbital. Optimal modes can lead to localization of the correlation and

entanglement in the system [Fer14], so here we present an orbital optimization that is based

58



4.2. BASIS TRANSFORMATION ON MATRIX PRODUCT STATES 59

on the entanglement localization. Although only the quantum chemistry application is studied

here, this optimisation scheme is more general [Kru16, Kru21] and can be applicable also in

solid-state and nuclear physics.

In computational quantum chemistry it is of central importance how good a single-Slater-

determinant approximation is, and to how much extent does the accurate wave function (in the

FCI space) differs from it. In numerical methods the idea of the excitation operator is emerged

from the assumption that the correlation energy can be resolved by dealing with low excitation

ranks and using the HF Slater determinant as a reference (see the singe-reference CI and CC

methods in sections C.5 and C.6). In section 3.7 we demonstrated with the nitrogen dimer how

one can transfer the system from single- to multireference by stretching the geometry. In the

CC approach the T1 diagnostic (norm of the amplitude vector tµ with single excitation, µ ∈ J1)

was proposed to characterise the reliability of a single-reference calculation [Lee89a, Lee89b].

A TNS method provides an approximate solution of the Hamiltonian in the FCI space, and the

coefficients of the eigenstate can be obtained by the contraction of the tensor network. The full

tomography, that is, the calculation of all the coefficients are of exponential cost. Therefore, one

might interested in the profile of the coefficients with the highest weight, which can reveal the

multireference character of the system. So among other quantities this is used to monitor the

performance of the orbital optimization.

4.2. Basis transformation on matrix product states

The entanglement in a state vector |ψ⟩ for a given bipartition can be kept track easily in

the MPS language by taking advantage of the gauge invariance [Vid03]. If |ψ⟩ is in the mixed-

canonical MPS form and the in-between tensor is decomposed into left- and right-canonical ones

(see in (2.57)), the remaining tensor is diagonal and contains the Schmidt coefficients. From this,

the von Neumann entropy (2.20) can be calculated, which is the entanglement (2.27b) for this

bipartition. The Schmidt rank, which is the number of non-zero Schmidt coefficients in (2.18),

gives the size of the matrices in the truncation-free MPS form. In case of truncation, the sum of

the discarded squared Schmidt coefficients (2.41) provides a heuristic error measure. In (2.46),

in the computational point of view, we might take advantage of optimising over the underlying

basis too, resulting lower bond dimensions, therefore computational cost, for the description of

the system with the same accuracy.

Let us have a unitary basis transformation UL ∈ U(HL), which maps from the original tensor

product structure
⊗n

i=1 Hi ≡ HL to a new tensor product structure
⊗′n

i=1H′
i
∼= HL. We can

consider this unitary map as the transformations of the basis vectors, |χ′
α⟩ := UL|χα⟩, given for

each multiindex α = (α1, . . . , αn), where αi = 1, . . . , Di for i ∈ [n]. For simplicity, if the unitary

transformation does not change the dimensions of the factor spaces, dim(Hi) = dim(H′
i) = Di

for all i ∈ [n], we can write

|χ′
1,α1

⟩ ⊗′ . . .⊗′ |χ′
n,αn

⟩ := UL(|χ1,α1
⟩ ⊗ . . .⊗ |χn,αn

⟩). (4.1)
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Then, obviously, the transformed MPS in the new basis can be expressed with the same matrices,

UL|ψ⟩ =
∑

α1,α2,...,αn

A(1)
α1
A(2)

α2
. . .A(n)

αn
|χ′

1,α1
⟩ ⊗′ . . .⊗′ |χ′

n,αn
⟩ ∈ MD̃(UL), (4.2a)

however, we cannot say anything about the bond dimensions when writing it in the original basis,

UL|ψ⟩ =
∑

α1,...,αn

( ∑
β1,...,βn

(UL)β,αA
(1)
α1
A(2)

α2
. . .A(n)

αn

)
|χ1,β1⟩ ⊗ . . .⊗ |χn,βn⟩ /∈ MD̃(I), (4.2b)

where the matrix entries of the unitary are (UL)β,α = ⟨χβ|χ′
α⟩ (in both bases). For graphical

illustration see figure 4.1. Note that in terms of passive transformation, that is, expressing the

original vector in the new basis, we say |ψ⟩ /∈ MD̃(UL). One can get the new MPS form, and

find out the bond dimensions needed, again by the subsequent Schmidt decompositions (2.34).

We consider now basis transformations for identical particles, especially for fermions. Let

us have a mode transformations by unitary U on the one-orbital basis K. According to (2.79),

the N -particle occupation number space NN
[d] ⊂ N[d] is an invariant subspace of subspace of the

unitary g(U), and the tensor product structure of the MPSs is given by the whole occupation

number space, HL
∼= N[d]. The ground-state energy of the system within the MPS approximation

in an optimal basis is

ED̃,opt
0 =min

{
⟨ψ|H|ψ⟩

∣∣∣ |ψ⟩ ∈ MD̃

(
g(U)

)
, U ∈ U(K)

}
(4.3a)

=min
{
⟨ψ|g(U)Hg(U)†|ψ⟩

∣∣∣ |ψ⟩ ∈ MD̃(I), U ∈ U(K)
}
. (4.3b)

The optimization task (4.3a) can be seen as an optimization of |ψ(U)⟩ = g(U)†|ψ⟩, that is, finding
the minimal expectation value of the Hamiltonian H in the fixed bond dimension MPS manifold

over the arbitrary transformed basis. Or (4.3b) can be seen as an optimization of both the

transformed Hamiltonian H(U) = g(U)Hg(U)† and the state vector in the fixed bond dimension

MPS manifold. Obviously, by the optimization we have the inequality E0 ≤ ED̃,opt
0 ≤ ED̃

0 . In

the special case, for bond dimensions D̃ = (1, 1, . . . , 1) the optimization problem (4.3) reduces

to the Hartree–Fock approximation (C.9c). Or as we have seen in section 2.13, if we have

independent-particle model (2.90a), then the optimal unitary is the one that diagonalizes the

one-particle operator, and with this the solution (2.90b) is a product, that is, D̃ = (1, 1, . . . , 1).

On the other hand, there are lattice models which have product-state solutions in the momentum

basis, which means that the optimal unitary transformation is the Fourier transformation. We

note that an interesting result has been derived for N = 2 electron systems, namely, in the

Dmax = 3 manifold one can find an optimizer Uopt in (4.3) such that the exact (FCI) energy is

recovered, E0 = E3,opt
0 [Fri22a]. Determining the minimizers or approximate solutions of (4.3)

could provide information about the entanglement structure of quantum many-body systems.

Since (4.3) is a non-convex problem, approximate approach is needed.

4.3. Joint optimization of the matrix product state and the underlying basis

The optimal unitary U and MPS |ψ⟩ in (4.3) is approximated iteratively within the two-

site DMRG framework. First note that acting with an (arbitrary) operator on a MPS-based
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algorithm requires the MPO decomposition of the operator and the contraction of each physical

indices. (For example, a global unitary is acting on the MPS in figure 4.1 (a).) Or equivalently

in the s-site DMRG language (see figure 2.6), acting on the contracted MPS (2.50) requires

the effective operator of form (2.48), which can be a costly calculation on-the-fly. However,

the action of operators of type IX ⊗ OY ⊗ IZ can be easily performed, as it is illustrated in

figure 4.1. (The notations of section 2.6 is used, that is, at the ℓ-th cut we have the blocks

X = {1, . . . , ℓ} and Z = {ℓ+ s+1, . . . , n}, and Y = {ℓ+1, . . . , ℓ+ s}.) The subsequent action of

two-site operators on sites Y = {ℓ+1, ℓ+2} can be straightforwardly implemented in the two-site

DMRG framework because the algorithm is based on sweeping through the tensor network. Also

note that every unitary U ∈ U(K) in the one-particle space K can be written (non-uniquely) as

the product of two-mode unitaries with maximal number of factors d(d−1)/2, where d = dim(K)

[Li13]. Although there are unitaries in this decomposition acting on non-neighbouring orbitals,

but orbital permutations can also be decomposed into unitaries acting on neighbouring orbitals.

The two-mode unitaries are of the form u⊕ I{i,j}, with u ∈ U(K{i,j}), where i, j ∈ [d], and they

yield bilocal unitaries g(u⊕ I{i,j}) in the occupation number space NN
[d], which can be seen from

the explicit formula (2.79). So, in principal every U ∈ U(K) can be achieved in the two-site

DMRG algorithm.

Therefore, we use the following joint optimization strategy. First, as it is in a two-site DMRG

step (2.49), we considered the minimization of the energy expectation value

E0 = min
{
⟨ψMPS(x)|H|ψMPS(x)⟩

∣∣∣ x ∈ CD̃X×Dℓ+1×Dℓ+2×D̃Z , ∥x∥ = 1
}
, (4.4a)

and the state vector in terms of the minimizer coefficient tensor is |ψ∗⟩ = |ψMPS(x∗)⟩. As we

have seen in section 2.7, the two-site DMRG step leaves the fixed rank MPS manifold because

|ψ∗⟩ can have at most min{D̃XDℓ+1, Dℓ+2D̃Z} non-zero Schmidt coefficients for the bipartition

X ′|X ′, where X ′ = X ∪{ℓ+1}. When |ψ∗⟩ is truncated back into the MD̃max
manifold, we have

a truncation error ϵ(D̃max) given by (2.41). To reduce this error, the optimal two-mode unitary

U∗ = argmin
{
fX′(|ψ∗(U)⟩)

∣∣∣ U = u⊕ I, u ∈ U(K{ℓ+1,ℓ+2})
}
, (4.4b)

is determined, where fX′ is the cost function, and |ψ∗(U)⟩ = g(U)†|ψ∗⟩ is the transformed state

vector. The two-mode unitary in (4.4b) transforms “over the DMRG cut”, that is, transforms

the neighbouring modes ℓ + 1 and ℓ + 2, hence the Schmidt spectrum {√ωα}α with respect to

bipartition X ′|X ′ is modified. The cost function fX′ is chosen such that it takes its minimum

value when the truncation error ϵ(D̃max) is minimal, or in other words, when the sum of the

discarded squared Schmidt coefficients is minimal. For example, the one-norm of the Schmidt

spectrum

fX′(|ψ⟩) =
∑
α

(ωα)
1
2 (4.5)

is suitable. We note that this is a monotone function of the half-Rényi entropy (2.21) of the

reduced state ϱX′ , so by its minimization, the entanglement or correlation between X ′|X ′ is

minimized. With this mode transformation the energy expectation value (4.4a) is unchanged,

E0 = ⟨ψ∗(U∗)|H(U†
∗)|ψ∗(U∗)⟩. The optimization continues with this transformation on the

Hamiltonian, truncation on the MPS and step to the next bipartition, ℓ 7→ ℓ+1. The product of
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overlapping two-mode unitaries U∗ build up a global unitary. To avoid sticking in local minima,

we apply (global) reorderings during the optimization procedure. In this way we may converge

to the solution of (4.4), that is to an optimal Uopt and an opimal MPS in the MD̃

(
g(Uopt)

)
manifold.

4.4. Computational details of the orbital optimization

In the context of non-relativistic quantum chemistry, we have again the Schrödinger equation

(C.1), and the concepts in appendix C apply. In case of time-reversal symmetry, which our

presented system has, the problem can be solved over the field of real numbers. Therefore, a

single real parameter θ can parametrize the two-mode unitary (orthogonal operator) in the one-

particle space K, and the corresponding bilocal unitary follows from (2.79) in the occupation

number space N[d],

u(θ) =

[
cos θ sin θ

− sin θ cos θ

]
g
(
u(θ)⊕ I

)
=


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

⊗ I{ℓ+1,ℓ+2}, (4.6)

respectively. The analysis, again, begins with choosing the molecule and setting its geometry,

then HF calculation is performed with a chosen orbital set, resulting the HF canonical molecular

orbitals, and the integrals (C.7) of them are computed. Next, with the aid of the entropy

analysis (see section 3.5) and according to considerations from chemistry, the active space (3.1)

is formed, that is, the orbitals to be optimized are selected, while keeping the rest of the orbitals

unchanged. Here we give an overview of the computational details of the joint optimization

procedure described in the foregoing, namely, the simultaneous optimization of MPS matrices

and the underlying orbital basis.

In the DMRG iteration step we have a (leftward or rightward) step, as discussed in section

2.7, for the two-site case. That is, at cut ℓ the tensors at Y = {ℓ + 1, ℓ + 2} are optimized, so

we carry out the minimization of the energy expectation value (4.4a), then we decompose the

minimizer tensor and truncate the MPS matrices (2.58).

The micro-iteration step is a two-site DMRG iteration step with an extra two-site unitary

mode transformation on tensor spaces at Y = {ℓ+ 1, ℓ+ 2}. With this the DMRG step further

optimizes the eigenvector, and the mode transformation reduces the entanglement in the eigen-

vector with respect to the split X ′|X ′. That is, after optimizing the eigenvector in (4.4a), the

optimal two-mode unitary is determined in (4.4b). The new state vector g(U∗)
†|ψMPS(x∗)⟩ is

obtained by the transformation in terms of the coefficient tensor x∗. For graphical illustration

see figure 4.1. Then the decomposition and truncation of MPS matrices are carried out (2.58).

Accordingly, the new Hamiltonian g(U∗)
†Hg(U∗) is obtained by the transformation in terms of

the integrals (2.91).

A macro-iteration step consists of two parts. First, for a small number of sweeps, bare

DMRG iterations are performed to attain a sufficiently good tensor network approximation of

the system. Then, micro-iteration steps are performed to optimize the orbitals. In order to
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A(1) A(2) A(3) A(4) A(5)

. . .

. . .

A(d−1) A(d)

g(U)

A(1) . . . A(ℓ) x

g(u)

A(ℓ+3) . . . A(d)

a)

b)

Figure 4.1. Mode transformation in terms of transformation on the tensor

network. The global unitary g(U) is acting on the MPS (a), and the bilocal (or

two-site) unitary g(u) is acting on the DMRG state vector of form (2.55).

monitor the optimization and to avoid sticking local minima, several quantities are calculated

after the last micro-iteration, such as the one-orbital entropy (2.20), the two-orbital mutual

information (2.23a), the total correlation (2.25), the correlation distance Idist =
∑

i,j Ii,j |i− j|2,
the occupation number distribution ⟨ni⟩, and the one-particle reduced density matrix (2.84)

and its eigenvalues (natural occupation numbers) and eigenvectors (natural orbitals), where

i, j ∈ {1, . . . , d}. Also the CI coefficients (C.15) are calculated, depending on the dimension

of the FCI space NN
[d], at least for singles and doubles. As it was discussed in section 2.6 and

appendix B, to improve the convergence of the DMRG calculation, the DEAS procedure is

utilized, which takes the values of the one-orbital entropy Si and the new Hartree–Fock reference

configuration (calculated from the occupations ⟨ni⟩) as inputs. Also a new orbital order, that is,

the permutation U = Pσ is determined similarly as it is discussed in appendix A. These, together

with the transformed integrals of the Hamiltonian, are all used as inputs to the subsequent macro-

iteration.

4.5. Orbital optimization of the nitrogen dimer: small active space

In our numerical study we have the nitrogen dimer N2 for various bond lengths with the

cc-pVDZ orbital set [Dun89]. As it was discussed in 3.7, the HF calculation yields d = 28

canonical spatial orbitals with N = 14 electrons, so the FCI space is NN
L , where the L =

{(1, ↑), (1, ↓), . . . , (d, ↑), (d, ↓)}, with the notations of section C.3. We exploit the total spin

projection (Abelian) symmetry, that is, the ground state is searched in the subspace where

the total spin projection of the electron system is zero, NN/2,N/2
L↑,L↓

⊆ NN
L (where L↑ = {(1, ↑

), . . . , (d, ↑)}). To respect the total spin projection symmetry, the superpositions of modes with
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Figure 4.2. One-orbital entropy profiles {Si}, sorted values of the natural or-

bital occupation numbers {λi} and occupation numbers {⟨ni⟩}, and two-orbital

mutual informations {Ii,j} for the initial orbitals in CAS(6,14) (first row), and

after the 20th orbital optimization macro-iterations (second row) for the nitro-

gen dimer for bond length r = 2.118 a0 using bond dimension D̃ = 4096.

different spins are omitted, so we have ã†i,σ =
∑

j∈[d] Uj,i,σa
†
j,σ, for σ ∈ {↑, ↓}. We note that,

due to the structure of the Hamiltonian for this system, it is not necessary to use different

unitaries for spin up and down, Ui,j,↑ = Ui,j,↓, although the implementation is applicable for

the unrestricted case too. In the orbital optimization the bond dimension was systematically

increased, D̃max = 16, 64, 256, 512, 1024, 2048, 4096, for each we have used 9 DMRG sweeps and

20 orbital optimization macro-iterations. When D̃max ≤ 512 is used, after converging to Uopt,

large scale DMRG calculations are performed in MD̃

(
g(Uopt)

)
and also in the original basis

MD̃(I) with bond dimension D̃ = 4096. We note that, for large D̃max bond dimension, orbital

optimization converges already after 4-5 macro-iterations.

In earlier works, it has been demonstrated that DMRG calculations after orbital optimiza-

tion can lead to significantly more accurate results for the same computational complexity (for

example, for the same truncated bond dimension D̃), due to the tremendous reduction of the

entanglement in the system [Kru16, Kru18, Kru21]. Or one can say that the bond dimension

D̃ can be pushed to a much lower value while keeping the same accuracy. Here we focus on the

emerging orbitals and on the structure of the wave function. Therefore, first we choose a small

active space, namely, 6 electrons on 14 spatial orbitals, which we denote by CAS(6,14). Here,

we set the bond dimension to D̃max = 4096 to obtain numerically exact result (since x in (2.56)

is of dimension 46 × 4× 4× 46). The dimension of the subspace of zero total spin projection is(
14
3

)2 ≈ 105, hence it is feasible to calculate all the entries of the coefficient tensor.
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Figure 4.3. Similar to figure 4.2, but for a stretched geometry at r = 4.200 a0.

To monitor numerically the performance of the fermionic orbital optimization, a selected set

of quantities are shown in figure 4.2 for the equilibrium geometry with bond length r = 2.118 a0,

obtained in the initial orbitals (first row) and for the optimized orbitals (second row), that is, in

the MD̃(I) and MD̃

(
g(Uopt)

)
manifolds, respectively, with D̃ = 4096. Here it can clearly be seen

that the orbital optimization has no effect, except that the orbitals have been reordered along

the DMRG chain in order to reduce the correlation distance in the system (calculated from the

two-orbital mutual informations plotted also in figure 4.2), Idist = 18.8575 changes to 12.6095.

The ground-state energy E = −109.0931Eh is unchanged, the single-orbital entropy profiles

changed only marginally (plotted also in figure 4.2), so Itot, (calculated from the single-orbital

entropies) changes slightly from 1.3373 to 1.2696. Three orbitals are almost doubly occupied,

and the ⟨ni⟩ and λi fall on the top of each other for the initial and optimized orbitals, resembling

the characteristics of NO-like orbitals. The sharp Fermi edge indicates that the system is weakly

correlated, that is, of single-reference problem.

In contrast to this, for a stretched geometry r = 4.200 a0, the sharp drop off in ⟨ni⟩ and

λi at the Fermi edge disappears, see in figure 4.3. The corresponding six partially occupied

orbitals possess very large orbital entropies, indicating that these orbitals are in mixed states

and are highly entangled with the rest of the system. The two orbitals with occupation number

close to 1.5 and 0.5 are the σ bonding and antibonding orbitals, while the four orbitals with

0.5 ≤ ⟨ni⟩ ≤ 1.5 are orbitals with π symmetry. The underlying bond breaking effect has already

been analyzed in terms of entropies in reference [Bog13], however, such analysis depends on the

choice of the orbital set and on the orbital optimization, as will be addressed below. Carrying out

optimization, new orbitals are found, which are no longer natural-orbital-like (see the difference

between the profiles of ⟨ni⟩ and λi). Here, ⟨ni⟩ = 1 and Si ≈ 0.8 for four orbitals, that is,
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Figure 4.4. Absolute value of the 50 largest elements of the coefficient tensor

ψ in decreasing order for various bond lengths for the initial orbitals (red) and

for the optimized orbitals (blue), obtained by numerically exact calculations in

CAS(6,14). Here the relabelling ψa for a = 1, 2, . . . , 4d is used for the ψα1,...,αd

elements of the coefficient tensor, such that |ψa| ≥ |ψb| if a < b.

the electrons are uniformly distributed on the corresponding π orbitals. The orbital entropy for

the two σ orbitals remains close to one, which also signals that the π bonds break first. Note

that the results of this quantitative analysis in terms of orbital entropies are the opposite as

those in reference [Bog13], which demonstrates again that the entropic analysis depends on the

orbital set and the orbital transformation. Although the ground-state energy does not change

during the macro-iterations, E = −108.7935Eh, the orbital entropies are reduced. Therefore, the

overall quantum correlation encoded in the wave function, Itot, reduces from 7.3585 to 5.3188,

and Idist from 36.6702 to 28.3941. Further stretching the nitrogen dimer, the orbital entropies

of the partially occupied orbitals scale towards ln(4) ≈ 1.38 in the initial orbitals, while they

are reduced to ln(2) ≈ 0.69 in the optimized orbitals. For the optimized orbitals, ⟨ni⟩ takes

values very close to one or zero, that is, the six electrons are distributed uniformly on the six

partially occupied orbitals. Note that these six orbitals are almost uncorrelated with the rest

of the orbitals, that is, the problem reduces to CAS(6,6), as expected. In this almost half-filled

configuration, the empty and doubly occupied configurations provides no contribution for the

orbitals of CAS(6,6), giving Si ≈ {ln(2), 0}. For r = 20.000 a0, even the initial orbitals lead to

the latter configuration.

Besides the entropic quantities and occupation numbers, it is interesting to study the entries

of the coefficient tensor ψ in (2.28), extracted from the MPS wave function (2.35a) obtained

by the DMRG algorithm (2.55). Figure 4.4 shows the absolute value of the 50 largest elements

of the coefficient tensor ψα1,...,αd
in decreasing order, for various bond lengths. It is clearly

visible that at the equilibrium geometry (r = 2.118 a0) for the initial orbitals (red), there is

one determinant of weight almost one, and the remaining coefficients are smaller by at least an
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Figure 4.5. (a) Sum of the square of the absolute values of the 1000 largest

CI coefficients for the nitrogen dimer in CAS(6,14) for various bond lengths,

extracted from the MPS wave function, obtained by the DMRG algorithm, with

a bond dimension D̃ = 4096. (b) Similar to (a), but for the optimized orbitals.

order of magnitude. This single-reference property, however, changes as the nitrogen dimer is

stretched, and the leading coefficient gets smaller and smaller, until degenerate plateaus appear.

This multireference behaviour is in accordance with the entropic analysis discussed above. When

orbital optimization is also utilized, the resulting profile of the entries of the coefficient tensor

changes significantly with increasing bond length, compared to the initial orbitals, as is shown in

figure 4.4 by blue colour. For the equilibrium geometry at r = 2.118 a0, the difference between

the initial and optimized orbitals is negligible, as the initial orbitals already provides a single-

reference approach for the problem. In contrast to this, for r ≥ 3.600 a0, the effect of orbital

optimization becomes more drastic. For r ≥ 4.200 a0, the leading coefficients become two-fold

degenerate, corresponding to a determinant and its spin flipped component, and their weight

increase rapidly to the saturation value of 1/
√
2 with increasing bond length. The plateau

observed in the initial orbitals for r ≥ 10.000 a0 completely disappears. Along these lines, the

sum of the square of the absolute values of the largest coefficients also shows a more rapid

convergence to one in the optimized modes for the stretched geometries, as shown in figure 4.5.

The fast decay of the ψ tensor coefficients in the optimized orbitals leads to a more suitable basis

for DMRG, thus lower computational demands are needed to reach the same level of accuracy,

as mentioned before.
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Figure 4.6. One-orbital entropy profiles {Si}, sorted values of the natural or-

bital occupation numbers {λi} and occupation numbers {⟨ni⟩}, and two-orbital

mutual informations {Ii,j} for the initial orbitals in CAS(14,28) (first row), and

after the 20th orbital optimization macro-iterations (second row) for the nitro-

gen dimer for bond length r = 2.118 a0 using bond dimension D̃ = 4096.

4.6. Orbital optimization of the nitrogen dimer: full orbital set

Repeating the same analysis but for the full cc-pVDZ orbital set, namely, 14 electrons on 28

spatial orbitals, CAS(14,28), similar conclusions have been reached. Here, however, numerically

exact calculations could not be performed, thus the effects of bond dimension truncation also

influence the results. Also, since the number of the entries of the coefficient in the singlet sector

is
(
28
7

)2 ≈ 1012, only single and double CI coefficients are calculated. Similarly to the analysis of

the smaller active space, various selected quantities are shown in figures 4.6 and 4.7 for the full

orbital set, to monitor the performance of the fermionic orbital optimization procedure. While

figure 4.8 (a) shows the absolute value of the first 25 largest elements of the coefficient tensor

ψ up to double excitation levels in decreasing order for various bond lengths. The reference

determinant was obtained by the occupation number profile ⟨ni⟩.
Here, for the equilibrium bond length r = 2.118 a0, a sharp Fermi edge separates again the

almost doubly occupied seven orbitals from the remaining almost unoccupied orbitals for both

the initial and the optimized orbitals. For the stretched geometries, six electrons get again shared

among the six spatial orbitals that take part in the bond breaking, which get superposed under

the action of orbital optimization. Since these orbitals are only marginally correlated with the

rest of the orbitals, the previous analysis holds, the problem reduces to CAS(6,6).

For the initial orbitals, according to figure 4.8 (a), the absolute values of the leading ψα1,...,αd

coefficients of the tensor, together with the norm squares of the wave function components



4.6. ORBITAL OPTIMIZATION OF THE NITROGEN DIMER: FULL ORBITAL SET 69

0

0.5

1

0

0.5

1

1.5

2

0

0.2

0.4

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

0

0.2

0.4

Figure 4.7. Similar to figure 4.6, but for a stretched geometry at r = 4.200 a0.
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Figure 4.8. (a) Absolute values of the first 25 largest CI coefficients includ-

ing single and double excitation levels for the initial orbitals in CAS(14,28) for

various bond lengths of the nitrogen dimer, extracted from the MPS wave func-

tion, obtained by the DMRG algorithm, with a bond dimension D̃ = 4096. The

inscribed numbers are the norm squares of the wave function component cor-

responding to single and double excitations for the various bond lengths. (b)

Similar to (a), but for the optimized orbitals with D̃max = 512. (c) Convergence

of the absolute values of the first 25 largest CI coefficients including single and

double excitation levels for r = 4.200 a0 for the optimized orbitals, as a function

of the bond dimension D̃.
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corresponding to single and double excitation levels systematically decrease with r increasing

from 2.118 a0 to 10.000 a0, as expected. Thus, in the large r limit, higher level excitations besides

singles and doubles get more and more weight. Here, since the initial orbitals are HF orbitals,

we have used the original HF determinant as reference determinant, in which configuration

the first seven orbitals are doubly occupied. For the optimized orbitals, however, the leading

coefficient increases drastically, and, again, the fast decay of the values is observed, see in figure

4.8 (b). The two-fold degeneracy of the leading coefficient, on the other hand, is sensitive to

the bond dimension. This is illustrated in figure 4.8 (c) for r = 4.200, where the optimized

orbitals have been obtained with D̃max = 512, and the CI coefficients were extracted from

DMRG calculations in the MD̃

(
(g(Uopt)

)
manifold for different D̃ values. Here, two reference

determinants, given by the occupation number profile, connected by spin-flip transformation,

have been used. It is clear that for small bond dimensions, 16 ≤ D̃ ≤ 256, the problem looks like

a single-reference one in the optimized orbitals, while for larger D̃ values, the correct degeneracy

of the leading coefficient is recovered. In addition, for D̃ = 4096, the norm square of the wave

function component corresponding to single and double excitation levels gets close to one, see

in figure 4.8(b), indicating that orbital optimization has the potential to convert higher level

excitations to lower ones, that is, compressing multireference character of wave functions. This

provides a significantly more optimal orbitals for DMRG computation, which is also validated

by the resulting lower energies in the MD̃

(
g(Uopt)

)
manifold.

4.7. Summary

An optimization task was considered on a fixed rank MPS manifold and on the Stiefel

manifold over the space spanned by the initial sites. To obtain approximate solution, a joint

optimization procedure was utilized that fits to the TNS sturucture of the two-site DMRG, that is,

subsequent two-site tensor optimizations are carried out. The algorithm consists of bare DMRG

optimization steps, two-site unitary transformations and global reorderings. The method was

demonstrated for the nitrogen dimer in the cc-pVDZ basis for the equilibrium and for stretched

geometries. We analyzed the properties of the wave function, based on various entropic quantities,

and on the profile of the coefficient tensor, highlighting the basis and orbital transformation

dependent nature of such quantities. This orbital optimization has the potential to reduce

significantly the correlation and entanglement encoded in the quantum many-body wave function,

and to convert coefficients of higher level excitations to those of lower level ones, resulting in a

rapidly decaying entries of the coefficient tensor of the wave function. These all together provide

compression of the multirefernce character of wave functions, and significantly more optimal MOs

for TNS methods (such as DMRG and DMRG-RAS) and conventional multireference methods.



5. CHAPTER

The Hubbard wheel - a crossover between one- and infinite

dimensional models

In this chapter, we recall the challenges in the study of ultracold gases in section 5.1, espe-

cially the realization of the Bose–Einstein condensate. Then in section 5.2, we propose the

Hubbard wheel lattice model of hard-core bosons, which exhibits a crossover between quasi-

condensation and complete Bose–Einstein condensation. The model is studied both analytically

and numerically in sections 5.3 and 5.4, then a potential experimental realization is proposed in

section 5.4.

5.1. Quasi-condensation and Bose–Einstein condensation

After experimental realization of the Bose–Einstein condensation (BEC), the respective field

of ultracold gases has become one of the most exciting fields of research with a fruitful interplay

between theory and experiment. It allowed for the experimental verification of numerous other

theoretical predictions as well, stimulated further theoretical investigations of trapped particles

[Dal99] and even revealed phenomena not observed before such as the crossover from BEC-

superfluidity to Bardeen–Cooper–Schrieffer (BCS) superconductivity [Gre03, Bar04, Zwi04,

Bou04]. One of the most promising recent field has been the study of effectively one-dimensional

quantum systems [Gre01, Det01, G0̈1, Orz01, Par04b, Kin04, Stö04]. Their most striking

difference to three-dimensional systems is probably the absence of BEC. That is, already an

infinitesimally weak interaction between the N bosons leads to a sublinear behaviour of the

number of condensed bosons, N0(N) ∝ Nα, where 0 < α < 1 [Len64, Pop72], which holds even

at zero temperature, for homogeneous gases as well for gases in a harmonic trap and regardless of

the form of the interaction [Pop72, Wid73, Sch77, Gir01, For03, Gan04, Rig04b, Rig04a].

A prominent system giving rise to this phase called quasi-condensation [Pop72] is the Lieb–

Liniger model [Lie63c, Lie63a], a ring system with N spinless bosons interacting via a δ-

potential. Tuning the coupling constant to infinity leads to impenetrable bosons, called Tonks–

Girardeau gas [Gir60] with the proven scaling N0(N) ∝
√
N [Len64].

Thermodynamic phase transitions (at finite temperatures) in three dimensions have been

studied for more than a century. However, the study of quantum phase transitions (at zero tem-

perature) [Sac11], and particularly of the entanglement close to that transition [Ost02, Osb02]

have attracted much attention only in recent years. The latter studies were performed mostly for

low-dimensional lattice models. They have revealed a striking similarity between the behaviour

of the order parameter and of quantum informational quantities, like entanglement entropy. As

71
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discussed above, at zero-temperature an interacting Bose gas exhibits two qualitatively different

phases, a quasi-condensate in one dimension and a true Bose–Einstein condensate in three or

higher dimensions. Therefore, it is of interest to search for a model which exhibits a transition

(or a crossover) between these two phases, and in particular allows to check whether this special

transition has common properties with general quantum phase transitions.

The BEC was explored in cylindrical or torroidal trap geometries, both experimentally

[Gre01, Det01, G0̈1, Orz01, Par04b, Kin04, Stö04] and theoretically [Das02, Sal04,

Sal05]. But, changing the radial dimension of the confinement, neither the transition from the

sublinear N -dependence of N0(N) of the quasi-condensate to the linear dependence of the true

condensate, nor its entanglement properties have been investigated. The only systematic study

of such a transition was performed for a one-dimensional Bose gas in a harmonic trap [Pet00].

However, that transition occurs only at temperatures T > 0.

Here we investigate strongly interacting bosons in the hard-core limit and a lattice model,

consisting of a ring and a central site, which allows one to drive such a transition by changing just

a single parameter, s/t, which is the ratio of the hopping rate s between the ring and the center

site and hopping rate t between ring sites in the model, as explained below in section 5.2. One of

our major results is to establish by this model a mechanism which can generate “infinite”-range

hopping by increasing s/t. This is important since enhancing the mobility of bosons allows to

overcompensate the destructive effects of the repulsive interactions, leading finally to maximal

possible condensation, despite infinitely strong repulsion. A further important feature of the

model is the generation of an excitation gap in the N -particle spectrum for s/t > 0. This makes

BEC even robust to thermal noise and quantum fluctuations and thus may allow experimentalists

to overcome the typical obstacles faced while realizing BEC. The other important result concerns

the application of tools from quantum information theory. We show that the mutual information

possesses the qualitatively similar dependence on s/t as the number N0(N) of condensed bosons.

This supports the connection between the behaviour of an order parameter and of entanglement

at a quantum phase transition even for the transition (or crossover) from a quasi-condensate to

a true one.

All these key findings can be derived by analytical or exact numerical means despite the

nonperturbative character of the system [Mát21]. It is also worth noticing that various other

studies of BEC for inhomogeneous lattices differ significantly from the one presented below.

They either consider the rather trivial case of ideal bosons [Bur00, Bur01, Buo02, Bru04,

Vid11, Oli13, Lyr14] or restrict to the mean field regime [Buo04, Hal12]. At the same time,

our proposed model could be particularly appealing to experimentalists since the underlying

graph emerges from a Mexican hat potential (see in section 5.5) and hard-core bosons can be

realized experimentally [DeP99, Par04b] by tuning the interactions at the Feshbach resonance

[Blo08, Chi10, Wei11, Z1̈2].

5.2. The model: hard-core bosons on the Hubbard wheel

The lattice systems have the great advantage that the ratio between the kinetic energy and

the interaction energy can be manipulated by varying the hopping (range) between the lattice
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sites. The most prominent lattice model for (spinless) bosons is the widely studied Bose–Hubbard

model of interacting spinless bosons [Fis89]

HBH = −
d∑

i,j=1

ti,ja
†
iaj + UBH

d∑
i=1

a†iai(a
†
iai − I), (5.1)

where a†i and ai are the bosonic creation and annihilation operators of site i in the Jordan–Wigner

representation (2.75), and ti,j is the hopping rate between sites i and j, and UBH is the on-site

interaction between bosons. It was shown that the Bose–Hubbard model can be experimentally

realized by ultracold bosonic atoms in an optical lattice [Jak98]. In general, the occurrence

of the BEC also depends on the temperature and on the possible inhomogeneities or disorder,

for example, due to the presence of an external field, but here we restrict our discussion to the

interaction strength and the spatial dimensionality affecting the presence of the BEC.

Concerning the spatial dimensionality, that is, ti,j in (5.1), the effect of the interaction

on BEC is distinctively destructive in one-dimensional systems. At zero temperature even an

infinitesimally weak interaction already leads to a departure from BEC to the phase of quasi-

condensation. This raises a fundamental question which shall be answered in an affirmative and

constructive way: After having confined a three-dimensional Bose gas to one dimension, whether

it is possible to tweak in an experimentally feasibly way this one-dimensional system with the

effect of enhancing the mobility of the interacting bosons to reintroduce BEC. From a general

point of view, one is immediately tempted to negate this question. The hopping amplitudes ti,j

namely resemble the overlap of Wannier orbitals at sites i, j which in turn decays exponentially

as function of the spatial separation |i−j|. Screening effects reduce the hopping even further and

eventually motivate the common restriction of ti,j in the Bose–Hubbard model to just nearest

neighbours. The potential physical significance of long-range hopping has motivated experimen-

talists in recent years to realize, at least, effective hopping terms beyond nearest neighbours.

Despite a remarkable effort, the regime of infinite-range hopping has been out of reach but only

the typical decay of ti,j could be slowed down to algebraic dipolar- and van der Walls-type ones

[Gü13, Sch15]. It will be one of our key achievements to propose a model which eventually

would allow one to enhance the mobility even to infinite-range. In contrast to the rather in-

volved experimental realisation of algebraically decaying hopping rates our proposal to realize

“infinite”-range hopping will be surprisingly simple, namely introducing a central site to the ring

system.

Concerning the interaction strength, that is, UBH in (5.1), the conflict between interaction

and mobility is maximized in the limit of strong interactions UBH → ∞, in which the bosons

become hard-core [Mat56, Mat57]. Hard-core bosons were originally introduced as a model for

liquid Helium-II in order to investigate superfluidity [Mat56, Mat57]. The hard-core constraint

can be given by hard-core boson creation and annihilation operators, h†i and hi, which obey to

the mixed commutation relations,

[hi, h
†
i ]− = I, [hi, hi]− = 0, i ∈ [d], (5.2a)

[hi, h
†
j ]+ = 0, [hi, hj ]+ = 0, i, j ∈ [d], i ̸= j. (5.2b)
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c

Figure 5.1. Topology of the Hubbard wheel lattice model. An interpolation

between the one-dimensional regime and the star through the wheel with pa-

rameter s/t.

The first row shows a fermionic property, namely the maximal occupartion number of a site is one,

while the second row expresses a bosonic property on different modes, namely hard-core bosons

are symmetric under exchange. The defining mixed commutation relations (5.2) can be fullfiled

by the tensor product of two-by-two matrices similar to the Jordan–Wigner representation (2.75)

for fermions, but without the phases operator,

h†j =
(⊗
k<j

Ik
)
⊗
(
|ϕj,1⟩⟨ϕj,0|

)
⊗
(⊗
j<k

Ik
)
. (5.3)

In other words, the hard-core boson operators are obtained by the standard extension of the local

operators [Sza21]. This is, however, not a true second quantized formulation since there is no

first quantized picture behind, particularly an (2.72)-like isomorphism. Although, an interesting

connection was shown in one dimension, where the fermions and hard-core bosons have similar

phase-independent quantities, for example, similar energy spectra [Gir60]. So, in the hard-core

limit, the (5.1) takes the compact form

Hhc = −
d∑

i,j=1

ti,jh
†
ihj . (5.4)

Particularly the case of hard-core bosons makes clear the important role of the hopping range

since hard-core bosons exhibit BEC even at finite temperatures for infinite-range hopping (a kind

of mean field limit [Fis89]), despite their infinitely strong repulsion [Tót90, Pen91, Kir00].

The hard-core constraint itself results that there is a universal upper bound on the BEC,

Nmax
0 (N, d) = N(d−N + 1)/d, (5.5)

which is independent of the topology, encoded in ti,j [Ten17].

The Hamiltonian of the Hubbard wheel of hard-core bosons reads

H = −t
d∑

i=1

(h†ihi+1 + h†i+1hi)− s

d∑
i=1

(h†ihc + h†chi), (5.6)

where h†c, hc denote the operators corresponding to the central site, and the periodicity in the

peripheral sites can be expressed as hd+1 ≡ h1, as it is illustrated in figure 5.1. We consider N
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hard-core bosons on a lattice consisting of a ring with d sites, lattice constant a and one additional

site at its center. We assume that the particle number density or filling factor n = N/d < 1/2,

which is not a restriction due to the particle-hole duality. The ring gives rise to a hopping

between nearest neighbors at a rate t > 0. The crucial point is now that the topology of the ring

allows hopping between the central site and any ring site at a rate s ≥ 0. Accordingly, the central

site has an effect similar to an impurity, making the one-dimensional lattice inhomogeneous. We

also refer to the ring model, that is, (5.6) with s = 0, as the unperturbed system.

5.3. Analytical results

Our model (5.6) reduces to the pure ring model in casae of s/t→ 0 (left of figure 5.1), and to

the star model in the limit s/t→ ∞ (right of figure 5.1). The solutions of the eigenvalue problems

for these two limiting cases are known. In the ring limit, we have the one-dimensional system of

impenetrable bosons with periodic boundary condition, which exhibits only quasi-condensation

[Gir60, Lie63c, Lie63a]. The population of this quasi-condensation has scaling N0 ∝
√
N .

In the continuous ring limit, d → ∞ (with fixed ad, where a is the lattice constant), we have

the Tonks–Girardeau gas [Gir60] of impenetrable (spinless) bosons, which was experimentally

reallized with utracold gases [Par04a]. In the star limit, which is a model related to the infinite-

range hopping, the existence of the true BEC was proved [Ten17]. Moreover the theoretical

maximal possible number of condensed hard-core bosons (5.5) is attained. For intermediate

values of s/t, the Hamiltonian (5.6) interpolates between the ring lattice and the star lattice (see

figure 5.1). Hence, changing the single parameter s/t allows us to investigate in a systematic

way the crossover from the regime of quasi-condensation to maximally possible condensation,

eventually leading to a number of remarkable insights.

In the following only the crucial steps are mentioned. The technical details can be found

in reference [Mát21] and particularly in its “Supplementary Information”. The Hubbard wheel

consists of sites L = {1, . . . , d, c}, where the sites on the ring are [d] = {1, . . . , d} and a central

one is c. The central site couples the N - and (N − 1)-particle ring-states, that is, the state space

of N hard-core bosons on sites L can be partitioned into (N − 1)- and N -particle state space

on the ring, with the notation of (2.73b), NN
L = NN,0

[d],c ⊕ NN−1,1
[d],c . Hence we can express the

normalized state vector of the wheel by the superposition

|Ψ⟩ = α|Φ(N)⟩ ⊗ |ϕc,0⟩+ β|Φ(N−1)⟩ ⊗ |ϕc,1⟩, (5.7)

where the normalized ring-states are |Φ(N)⟩ and |Φ(N−1)⟩, and the orthonormal basis of the

central site is {|ϕc,ν⟩}1ν=0. The solution of the pure ring problem can be obtained by the Bethe

ansatz, yielding the eigenvectors |ϕ(N)
k ⟩ and |ϕ(N−1)

l ⟩. With these eigenbases we write the N -

and (N − 1)-particle ring-states in (5.7) as

|Φ(N)⟩ =
∑
k

A
(N)
k |ϕ(N)

k ⟩, |Φ(N−1)⟩ =
∑
l

A
(N−1)
l |ϕ(N−1)

l ⟩, (5.8)

where the summations run until
(
d
N

)
and

(
d

N−1

)
, respectively. This expansion allows one to

decouple the original eigenvalue problem. After implementing a number of steps, the eigenvalue
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Figure 5.2. Schematic representation of the unperturbed and perturbed spec-

trum for n ≤ 1/2 from [Mát21]. (a) The unperturbed band spectrum of (N−1)

hard-core bosons (red dashed lines) and N hard-core bosons (blue solid lines).

The crosses mark those levels which disappear under the perturbation. (b) The

perturbed spectrum consisting of the shifted unperturbed levels (dashed red and

solid blue lines) and the crosses mark those levels of the unperturbed (N − 1)-

particle spectrum which have disappeared. The open circles are the new levels

generated by the perturbation.

problem for Hamiltonian (5.6) can be rewritten in the general from

1 = s2F
(N)
d (E; {A(N)

k }), (5.9)

where a simple and fully analytic solution for the eigenvalue E does not exist.

Although (5.9) cannot be solved analytically for the entire regime of s, it allows us to derive

important qualitatively correct features of the spectrum in a nontrivial way. The unperturbed

(N−1)- andN -particle spectrum forms a band of discrete levels, illustrated in figure 5.2 (a), which

becomes continuous for d → ∞. The hopping between the central site and the ring introduces

a “hybridization” of these two spectra. This leads, on the one hand, to a shift of order 1/d of

the unperturbed band-levels, on the other hand, some energy levels (marked by crosses) of the

smaller (N − 1)-particle band are found to disappear. These levels, however, reappear as new

discrete eigenvalues symmetrically below and above the perturbed N -particle band (see open

circles in figure 5.2 (b)). The larger s and N are, the more of those new discrete energy levels

occur. As a matter of fact, they follow from the eigenvalues of an effective Hamiltonian for N

hard-core bosons with “infinite”-range,

Heff = s̃2
1

d

d∑
i,j=1

h†ihj , (5.10)



5.4. NUMERICAL RESULTS 77

where the parameter s̃ =
√
ds/t is the scaled dimensionless hopping rate. This mapping of the

original model (5.6) to the effective one (5.10) holds for two asymptotic regimes, the diluted and

the strong coupling regime. The system is diluted if n≪ 1 with s̃≫ 2
√
2 π/

√
d, and it is in the

strong coupling regime if s̃ ≫ (4/π)
√
d sin(πn)/

√
n(1− n) with 0 < n < 1. Energy gap opens

between the ground-state energy E0(N, d, s̃) of (5.6) and the unperturbed ground-state energy

E0(N, d, 0), that is, the lower edge of the N -particle band of the ring. The gap, in both the

diluted and strong coupling cases, can be approximated by

∆E :=E0(N, d, 0)− E0(N, d, s̃)

≈|EF/2|
[√

1 + s̃2dn(1− n)/(EF/2t)2 − 1
]
,

(5.11)

where EF := E0(N, d, 0) − E0(N − 1, d, 0) is the Fermi energy. Also the number N0 of the

condensed hard-core bosons can be approximated since it is related to the largest eigenvalue of

Heff. We obtain

N0 =
1

d
⟨ψ|

∑
i,j∈[d]

h†ihj |ψ⟩

≈N
[
(1− n)− |β|2(1− 2n)N−1

]
,

(5.12)

where the prefactor |β|2 of the 1/N -correction depends on (N, d, s̃) and is given in the “Supple-

mentary Information” of [Mát21].

5.4. Numerical results

In order to support and check the range of validity of the analytic results in the previous

section and to extend those for to undiluted densities n and for intermediate coupling strengths s̃,

large-scale DMRG computations have been performed. The DMRG calculations were performed

for d ≤ 199 and N ≤ 98 such that various densities n = N/d < 1/2 and couplings 10−3 ≤ s̃ ≤
10+3 were simulated for each system size. We have set a tight error bound on the diagonalization

procedure, that is, we set the residual error of the Davidson method to 10−9 and used 10 DMRG

sweeps. We have checked that the various quantities of interest are practically insensitive on

the bond dimension being larger than D̃ = 1024. Besides the energy eigenvalues, we have

calculated the one-site entropies (2.20), the two-site mutual informations (2.23a), the occupation

number distribution ⟨ni⟩ and the number of the condensed hard-core bosons (5.12), where i, j ∈
{1, . . . , d, c}. The corresponding results together with the analytical ones are presented in figures

5.3, 5.4 and 5.5.

In figure 5.3, the log-log plot of the gap ∆E in terms of s̃ reveals a distinctive crossover from

a s̃2-dependence for s̃≪ 1 to the linear dependence on s̃ for s̃≫ 1. For the diluted gas, that is,

n≪ 1, the analytical and DMRG results in the s̃2- and s̃-regime are in good agreement. When

the density is increased, this agreement remains excellent in the linear (strong coupling) regime,

while it gets worse in the complementary range.

Concerning figure 5.4, three main observations can be made. First, the DMRG-results for

fixed (N, d) values exhibit the crossover from quasi-condensate to BEC in all cases. Of course,

the transition from N0 ∝
√
N to N0 ∝ N becomes more pronounced with the increase of N .
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Figure 5.3. The log-log plot for the excitation gap as a function of s̃ for

d = 199 and various densities n. Results from DMRG calculations (symbols)

and the analytical result (5.11) (solid lines). The dashed-dotted and dashed

lines represent slopes two and one, respectively.

Second, in case of the quasi-condensation (log(s̃) < 0), the agreement between the DMRG-results

and the result for impenetrable bosons [For03] is very good in the diluted regime. This holds

because in the limit d→ ∞ with fixed N the ground state of hard-core bosons becomes identical

to that of the impenetrable bosons. In this case, N0(N) for small N follows from the numerical

exact computation of the Toeplitz determinant [For03], which is indicated by dotted lines. Yet,

in the limit N → ∞, d → ∞ with fixed n not in the diluted regime, the hard-core bosons

on the ring lattice differ from impenetrable bosons in one dimension. Third, in case of BEC

(log(s̃) > 0), that is, in the strong coupling regime, the DMRG results also fit well with the

analytical one (5.12) for all densities. Even the non-monotone s̃-dependence stemming from the

1/N -correction in (5.12) is reproduced for small N (see, for example, the result in figure 5.4 (a)

for d = 39, corresponding to N = 2). With increasing N the DMRG-result approaches the

maximally possible condensation (5.5), which is N0(N,n) ≈ N(1 − n) for large d system sizes,

which is indicated with full circles in figure 5.4 (b).

To explore a possible relation between BEC and the entanglement structure of the ground

state, we have used DMRG for calculating the mutual information between the central site c

and any ring site i ∈ [d], Ii|c, and between two ℓ-th nearest neighbour ring sites, Ii|i+ℓ. The

corresponding results for d = 199 and n ≈ 0.05 are shown in figure 5.5. The change in the

respective pattern related to the crossover from quasi-condensation to genuine BEC is clearly

visible through the mutual information, as well. The correlation between the central and any

ring site, Ii|c, vanishes for small s̃ while it saturates to a finite value in the limit of large s̃ when

the model exhibits “infinite”-range hopping. The correlation among ring-sites, Ii|i+ℓ, saturates
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Figure 5.4. The number of condensed bosons. (a) N0 as a function of log(s̃)

for fixed low density n ≈ 0.05 and various site numbers d. (b) N0 as a function

of log(s̃), various numbers of particles N , and fixed number of sites d = 199.

The dots on the vertical axis represent N(1−n). Symbols: Results from DMRG

calculations, dashed lines: guide for the eye, solid lines: analytical result. The

dotted lines mark the asymptotic values for finite N , s = 0, d→ ∞ obtained by

the exact numerical calculation of a Toeplitz determinant [For03].

also with increasing s̃ to a constant value for all ℓ, demonstrating the growth of long range

correlations. This relates to the generation of BEC. For s̃ = 0 the correlation Ii|i+ℓ decays

algebraically with increasing ℓ, which reflects the algebraic dependence of the quasi-condensate

on N . Whereas for non-zero values of s̃ its decay becomes exponential as the gap opens, and

saturates to a non-zero value for large ℓ→ d/2 values.

5.5. Potential experimental realization

As a possible experimental realization of our model (5.6) we propose in a first step to confine

N ultracold bosonic atoms into two dimensions subject to a Mexican-hat-type potential with d

local wells. For illustration, see figure 5.6 (a). This is in complete analogy to several experiments

from recent years [Ami05, FA07, Ram11, Ami14, Bel16]. Then, one may tune the interaction

at the Feshbach resonance to realize hard-core bosons in the same way as reported in reference

[Par04b] for a cigar-shaped confinement to realize quasi-condensation of hard-core bosons with

N0(N) ∝
√
N . Next, one may create a local well at the center of the hat, illustrated in figure

5.6 (b). Increasing its depth more and more would strongly enhance the mobility of the hard-core
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guide for the eye.

bosons due to their possible transitions back and forth between any ring-well and the central one.

This would significantly change the physical behavior, and BEC would occur withN0(N) ∝ N . In

order for this to happen already for finite and experimentally feasible d, it must be s/t≫ 2
√
2π/d

in case of a diluted gas (see previous section), which is the regime relevant for ultracold gases.

The hopping occurs due to the tunneling between the corresponding wells. Let (Vr, lr = a) and

(Vc, lc = ad/(2π)) denote the potential barrier and tunneling distance, respectively, between two

adjacent ring-wells and between a ring-well and the central one. Use of the WKB tunneling rate

yields the estimate s/t ≈ (γc/γr) exp[−
√
ma2/ℏ2(

√
Vcd/(2π)−

√
Vr)] with m the particle’s mass,

and γr and γc the so-called attempt frequency related to the zero-point oscillation frequency

in the corresponding ring and central well. For instance, if d = 79 and N = 4 (one data set

in figure 5.4 (a)), then BEC-like behavior should occur for s/t > 1. This can be satisfied if

Vc/Vr ≈ (2π/d)2 or if a compared to ℏ/
√
mmax{Vc, Vr} is small enough, provided γc/γr ≈ 1.

5.6. Summary

We proposed and comprehensively studied a physical model of strongly interacting bosons

which allows one to drive a non-trivial transition from quasi-condensation to maximal BEC. It

is particularly appealing that this necessitates the tuning of just a single control parameter, s/t,

which changes the underlying topology in such a distinctive way that the infinite-range hopping

model is simulated. Without solving the eigenvalue equation of the model exactly, we considered
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Figure 5.6. Illustration of the Mexican-hat-type trap potential from [Mát21].

(a) Realization of the ring lattice for d = 10 by a Mexican-hat-potential. (b)

Realization of the wheel lattice for d = 10 by a Mexican-hat-like potential with

a local well at its center. Loading hard-core bosons into the potential landscape

in (a) and creating a local well as shown in (b) generates a crossover from quasi-

to complete Bose–Einstein condensation.

effective model that is valid in the diluted and the strong coupling regime. This allowed us

to show on a qualitative level why an excitation gap occurs in the N -particle spectrum. The

transition is particularly pronounced for macroscopic N , however, the crossover already becomes

visible for small N , as clearly demonstrated by the large scale DMRG computations. As argued

above ultracold bosonic atoms in a Mexican-hat-like potential should allow the experimental

observation of this dimensional crossover for BEC.

It is worth highlighting the striking potential of our mechanism for generating BEC. As a

matter of fact, it is conceptually quite different to the well-known generation of BEC at finite

temperatures for non-interacting bosons. The latter is either merely due to the opening of a gap in

the “one-particle” spectrum or a deformation of the density of states (in analogy to the transition

from D ≤ 2 to D = 3) [Bur00, Bur01, Buo02, Bru04, Vid11, Oli13, Lyr14]. The same

effectively applies to the experimental [Gre01, Det01, G0̈1, Orz01, Par04b, Kin04, Stö04]

and theoretical studies [Das02, Sal04, Sal05] in which the cylindrical or torroidal confinement

is relaxed to reach the mean-field regime. In our system, however, it is the interplay between

mobility and interaction within the “non-perturbative” regime which generates genuine BEC.

The enhanced mobility of the bosons then compensates for the destructive effects of the strong

interaction to generate BEC.



6. CHAPTER

Conclusion and outlook

In this work strongly correlated systems were studied in the field of quantum chemistry

and ultracold physics, and also the supporting algorithmic developments were carried out. The

respective summaries of each study can be found at the end of chapters 3, 4 and 5. Here we give

an outlook and possible research topics originating from our studies.

Concerning the tailored coupled cluster method, since the numerical error study showed a

significant improvement for small CAS, we suspect the DMRG-TCCSD method to be of great use

for larger systems with many strongly correlated orbitals as well as many dynamically correlated

orbitals [Vei16, Vei18]. The oscillatory behavior of the error, however, remains unexplained

at this point. Nevertheless, we note that the error minima are fairly robust with respect to the

bond dimension. Hence, the DMRG-TCCSD method can be extended with a screening process

using low bond-dimension approximations to detect possible error minima. Our analysis is basis

dependent, thus there is a need for further investigations based on orbital optimizations. Also

the investigations of the influence of higher-rank excitations, such as CI triples and quadruples,

on the computed energies remain for future work. We note that the relativistic version of the

TCC approach was developed and presented on a standard benchmark system, TlH, and also

on more multireference systems such as AsH and SbH [Bra20]. The implementation, which was

carried out with interfacing the Dirac program [Sau20] and the DMRG, is capable of treating

systems which are of quaternion symmetry, that is, integrals for all spinors are present and are

complex-valued.

Concerning the mode optimization, we presented that the compression of the multireference

character yields significantly more optimal orbitals for the DMRG. Therefore, this orbital opti-

mization can be regarded as a natural extension of the order optimizations, briefly summarized

in appendix A. This numerical benefit can be understood, for example, by the initialization of

the DMRG, where the space of the approximated block is spanned by configurations obtained

from the CI expansion (see appendix B). Moreover, it can supply more optimal orbitals for al-

gorithms such as coupled cluster, tailored coupled cluster, DMRG with restricted active space

[Bar22, Fri23]. As it was noted in the TCC approach, its analysis and numerical study is basis

dependent, so the numerical study of the DMRG-TCCSD, presented in chapter 3, should be

extended with the orbital optimization. Since in the CI single and double excitations are con-

sidered, the compression of the multireference character is of central importance. We note that

similar conclusion has also been drawn for the two-dimensional spinless fermionic lattice models
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commonly studied in solid-state physics, where a single determinant is suitable for the descrip-

tion of the quantum many-body wave function for the non-interacting case, and for infinitely

large interaction [Kru21].

Concerning the Hubbard wheel of hard-core bosons, we showed the existence of an excitation

gap, which usually is highly demanding. Similarly to, for example, superconductivity, the quan-

tum Hall effect and the Haldane phase the existence of such a gap has an enormous influence

on the physical behavior, that is, making the BEC robust to thermal noise and perturbations

in general. The non-trivial influence of the interaction is also well-illustrated by the analytical

result for the ground-state gap (5.11), which in the regime of maximal BEC differs from the

one of non-interacting bosons by the crucial factor
√
1− n. Remarkably, 1 − n is nothing else

than the universal reduction of the maximal possible degree of condensation due to the hard-core

constraint [Ten17], which is the quantum depletion. In case of finite on-site interactions, this

depletion factor ν(n) is expected to interpolate between both extremal cases of hard-core and

ideal bosons, 1 − n ≤ ν(n) ≤ 1. This would provide a remarkable exact relation between the

ground-state gap, quantum depletion and the interaction strength of the ultracold atoms. Since

the latter can systematically be tuned at the Feshbach resonance [Blo08, Chi10, Wei11, Z1̈2],

this would open an avenue for steering ground-state gaps and controlling the number of bosons in

BEC. Finally, inspired by the fruitful interplay of theory and experiments in the field of ultracold

gases, our work based on analytical and exact large scale DMRG calculations shall be understood

as a proposal to the experimentalists as well. Our model could be particularly appealing since

the underlying graph can emerge from a Mexican-hat-type potential, and the entire transition

can be driven by tuning just a single control parameter. It is then exactly the respective central

site which can be probed to confirm that transition. At the same time, this would also exploit the

link [Ost02, Osb02] between quantum phase transitions and entanglement or related promising

quantum informational theoretical concepts.

Concerning algorithmic developments, the DMRG-TCCSD protocol was implemented, in

which the selection of the active space orbitals and the detection of the error minima are fairly

robust with respect to the bond dimension. For the efficient calculation of the CI coefficients,

both for the tailoring in the DMRG-TCCSD and the monitoring of the performance of the mode

optimization, MPS routines were implemented and optimised. Although one can get insights

into the entanglement structure of the system, the orbital optimization is also proposed to be

a routinely used preliminary process, therefore low numerical cost is required. Also, it remains

to investigate the influence on convergence of different admissible cost functions of the mode

optimization.



A. APPENDIX

Order optimization

The DMRG was developed for the simulation of one-dimensional systems, where the order

of sites is obvious. Namely, neighbourhooding physical objects, for example, spins in a lattice,

should be also neighbourhooding in the tensor network, here in the MPS. On the other hand,

the numerical renormalization group (NRG) method was developed for impurity models in which

the logarithmic discretization of the spectrum results in a semi-infinite chain with exponentially

decaying couplings [Wil75, Bul08]. However, in two- or higher dimensional models one should

take care of the mapping because nearest neighbour couplings (for example, hopping or repulsion)

in the physical space inevitably yields some long-range couplings in the one-dimensional MPS

chain.

In quantum chemistry the simulated systems do not indicate a natural order of orbitals,

moreover, the Hamiltonian of a general interacting many-body system is of the form (2.89),

that is, all sites are coupled. Finding the optimal order among the d! permutations is a hard

task, and it is based on numerical experience [OA15, Sza15]. In case of Hartree–Fock orbitals,

the simplest guess is the ordering according to the HF energy [Whi99]. A genetic algorithm

was proposed for the finding the optimal order with respect to the energy, which, however,

requires low-cost but many subsequent DMRG runs [Mor05]. Another strategy is determining

the optimal order from the minimising the bandwidth of an adjacency matrix with the reverse

Cuthill–McKee algorithm. The adjacency between orbitals might be defined as having one-

electron integral above a threshold [Cha02], or one can use the one-electron integrals and also

the exchange terms from the two-electron integrals [Mor05]. The more subtle algorithms utilize

correlation measures, which, however, require the knowledge of the approximate state vector.

(See figures 3.2, 3.3 and 3.4 that demonstrate the roboustness of the entropy profile with respect

to the bond dimension.) Ordering highly entangled sites (that is, with high one-site entropy Si)

to the middle of the MPS chain leads to faster convergence [Leg03b]. A heuristic cost function

is considered [Ris06] to minimize the correlation in the tensor network,

min
σ∈Sd

∑
ij

I(ϱij)|σi − σj |2, (A.1)

that is, the distance of the sites are weighted with the mutual information. To find the optimal

(or at least a good) σ ordering permutation in (A.1), first, we apply the Fiedler vector approach

as an initial guess, then, a genetic algorithm is utilized [Bar11]. A better ordering can result in

a better approximation to the state vector, by which more accurate correlation measures can be

obtained. Therefore, in practice, sequence of low-cost DMRG calculations are performed, each

followed by ordering algorithms.
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Initialization of the MPS tensors

In section 2.6, a generic DMRG iteration step was described, which was assumed to be well

after the initial steps of the run. Here we consider the initialization of the MPS tensors. Note that

poorly initialized tensors can result DMRG converging to a local minimum [Leg03a, Leg03b,

Mor06]. (See section 3.2.2 in [Kru18] for a toy example and mode details.)

The traditional strategy is the infinite lattice DMRG algorithm [Sch11], and the rigor-

ous method for many-body systems is the dynamically extended active space (DEAS) algorithm

[Cha02, Leg03b, Mor06, Bar11, Sza15]. In the infinite lattice DMRG algorithm, the tensor

network is built up by the systematic increase of the system size. For example, to initialize a sys-

tem with 8 sites, the subsystem labels (X,Y, Z) evolve as ({1}, {2, 7}, {8}), ({1, 2}, {3, 6}, {7, 8}),
({1, 2, 3}, {4, 5}, {6, 7, 8}). At each iteration step, the corresponding renormalized operators of

the extended subsystems, H̃X′,k and H̃Z′,k, are generated according to (2.52).

In the DEAS algorithm, the tensor network is built up by a “warm-up” sweep, in which

operators of the right bolck H̃Z,k are approximated. For example, to initialize a system with

8 sites, the subsystem labels (X,Y, Z) evolve as ({1}, {2, 3}, {4, . . . 8}), ({1, 2}, {3, 4}, {5, . . . 8}),
({1, 2, 3}, {4, 5}, {6, . . . 8}). The first rows of figure 2.5 illustrates also this case. To be more

precise, let us write out the relevant subspaces in the quantum chemistry context. In case of

particle number conservation, the DMRG subspace is H̃X ⊗HY ⊗ H̃Z ⊆ NN
[d]. In the warm-up

sweep, which is a rightward sweep, the left subspace H̃X is obtained via the renormalization

(2.52a), the HY is written without approximation. Using the notations of section 2.9 as well as

(2.73), we can write the decomposition of the N particle subspace of d modes with respect to

the bipartition Z̄|Z as

NN
[d] =

Mmax⊕
M=Mmin

NN−M,M

Z̄|Z , (B.1a)

where the minimum and maximum occupation numbers in subsystem Z areMmin = max{0, N−
|Z̄|} and Mmax = min{N, |Z|}, respectively. The subspaces are spanned by the basis vectors

with the given occupation number restrictions,

NN−M,M
Z̄|Z = Span

{
|ϕν⟩

∣∣∣ ∑
i∈Z̄

νi = N −M,
∑
i∈Z

νi =M
}
. (B.1b)

The basis vectors can be written as the tensor product of the component basis vectors [Sza21],

|ϕν⟩ ≡ |ϕνZ̄νZ
⟩ = |ϕνZ̄

⟩ ⊗ |ϕνZ
⟩, where we separate the occupation numbers νZ̄ ∈ ν

(
I∧N−M (Z̄)

)
and νZ ∈ ν

(
I∧M (Z)

)
. Having no prior knowledge of the MPS tensors of the right block, the right

block H̃Z is defined as the span of some occupation number basis vectors |ϕνZ
⟩. That is, some
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νZ indices are considered, taking into account the occupation number restrictions (B.1b), until

the dimension of the right block reaches the predefined maximum bond dimension. A possible

approach is to prioritize such νZ indices in which the low-energy HF orbitals are occupied,

and because of the discarded configurations it was advantageous to add a small noise to the

density matrix [Cha02]. It is better in terms of convergence to add first Slater determinants

consisting of highly entangled orbitals [Leg03b, Mor06]. A more sophisticated approach is

the configuration interaction based DEAS (CI-DEAS) [Bar11, Sza15]. As it was noted in

section 2.6, the CI-DEAS is closely connected with the restricted active space (RAS) method

[Bar22]. The DMRG-RAS algorithm iterates in a similar way as the DMRG (see figure 2.5

for the illustration of sweeping). The difference is that the sweeping is carried out along the

sites {1, . . . , dCAS} only, and the sites {dCAS + 1, . . . , d} are treated by the CI-DEAS procedure

[Bar22].



C. APPENDIX

Single-reference methods in quantum chemistry

In this chapter, we start with the problem of the Schrödinger equation in non-relativistic

quantum chemistry. Since, in this work, we do not intend to analyse such kind of elliptic differ-

ential equation [Bre10, Ree78, Ree80, Kat51], we turn in sections C.1-C.2 to the Galerkin

discretisation by choosing a finite orbital set, which defines the full configuration interaction

(FCI) space. We deal with methods that approximate the solution of the Schrödinger equation

in the FCI space (without semiempirical considerations), in quantum chemistry named as ab

initio and wave-function-based methods. Other broad fields, not considered here, are the density

functional theory based methods [DSS09], which circumvent the curse of dimensionality, and

quantum Monte Carlo [Boo09, Poz13, Vei18]. Our aim here, and also in the next chapter, is

to approach the energy in the FCI space. Another direction is the extrapolation to the complete

basis limit [Fri22b]. To provide context for the present work, in sections C.4-C.6, we recall the

Hartree–Fock, configuration interaction and coupled cluster (CC) methods.

C.1. Schrödinger equation and Galerkin–Ritz approximation

In chapter 2, the general form of the Hamiltonian of interacting identical particles (2.89) was

recalled, based on the one-particle Hilbert space K of finite modes. To formulate the Hamiltonian

for physical models, especially interacting electrons in external potential, one usually work on

the configuration space X = R3 × {± 1
2}, that is, the x = (r, s) ∈ X is the composite variable of

the spatial- and spin variables of an electron, r and s, respectively. Alternatively, with Fourier

transformation, the momentum-space representation is more useful in many cases, which is given

by the same continuous configuration space.

Here we consider the non-relativistic system of electrons in the Born–Oppenheimer approx-

imation for modelling molecules. So the problem of N interacting electrons in the external

potential of the nuclei is described by the Schrödinger equation

(H(N)Ψ)(x1, . . . , xN ) =

[
N∑
r=1

(
−ℏ2

2mel
∇2

r + U(xr)

)
+

N∑
r,r′=1
r<r′

V (xr, xr′)

]
Ψ(x1, . . . , xN )

= EΨ(x1, . . . , xN ).

(C.1)

Partial differential equations of this type are elliptic, and the solutions are in the W1,2(XN )

Sobolev space [Eva10, Ree78, Ree80, Bre10], moreover, to respect the antisymmetrization

postulate, the solution is searched in the space L∧N := W1,2(XN )∩L2(X )∧N . The Schrödinger

operator H(N) is self adjoint [Neu30, Kat51], and its spectrum can be characterised by the
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Hunziker–van Winter–Zhislin theorem [Hun66, VW64, VW65, Zhi60]. This tells us that

below the ionization energy the spectrum is discrete, the solutions correspond to the bound

states of the system, and above the ionization energy there is the essential spectrum of the

Schrödinger operator.

In quantum chemistry, the bound states, especially the ground state are of interest. The

min-max theorem provides a variational characterization of the essential and discrete spectrum

of a compact self-adjoint operator [Ree78]. Accordingly, the Rayleigh–Ritz variational principle

states that the lowest eigenvalue E0 of self-adjoint operator H(N) bounded below can be given

by the minimum of the Rayleigh quotient
⟨Ψ,H(N)Ψ⟩

⟨Ψ,Ψ⟩ , or with normalized vectors,

E0 = min
{
⟨Ψ, H(N)Ψ⟩

∣∣∣ Ψ ∈ L∧N , ∥Ψ∥ = 1
}
. (C.2a)

The Ritz–Galerkin method is a general framework in numerical analysis that discretizes the

problem of a continuous (differential) operator by examining the problem in a subspace spanned

by finite number of orthonormal vectors. That is, let {φi}i∈[d] be an orthonormal system in

W1,2(X ) and the spanned subspace Ld := Span{φi}i∈[d], then the approximate solution of the

Schrödinger equation in this subspace is

EFCI
0 = min

{
⟨Ψ, H(N)Ψ⟩

∣∣∣ Ψ ∈ L∧N
d , ∥Ψ∥ = 1

}
(C.2b)

The following fundamental result of the Galerkin scheme formulates the approximation of (C.2a)

by (C.2b). Let {Ld}d∈N be a dense family of subspaces in W1,2(X ), therefore {L∧N
d }d is dense in

L∧N , furthermore Ψ0 and ΨFCI
0 be the normalized minimizers of (C.2a) and (C.2b), respectively,

with the corresponding non-degenerate energies E0 and EFCI
0 , then

∥Ψ0 −ΨFCI
0 ∥ ≤ C inf

Φ∈L∧N
d

∥Ψ0 − Φ∥, (C.3a)

0 ≤ EFCI
0 − E0 ≤ C∥Ψ0 −ΨFCI

0 ∥2, (C.3b)

with some constant C. This result is often cited as the quasioptimal convergence of the eigen-

function and the quadratic convergence of the eigenvalue compared to the eigenfunction [Yse03].

C.2. Full configuration interaction space

To be able to use formalism of section 2.8, we make correspondence between vectors of two

d dimensional Hilbert spaces |ψ⟩ ∈ K and ψ ∈ Ld. To this end, for an arbitrary |ψ⟩ ∈ K let us

have the formal definition

⟨ex|ψ⟩ =: ψ(x). (C.4)

Here the left-hand-side is not an inner product just a pairing because {|ex⟩}x∈X is not in the

Hilbert space K, but rather in the space of distributions. The right-hand-side is the pointwise

definition of the function ψ ∈ W1,2(X ), also called orbital or one-particle wave function. The

inner product in Ld is

⟨ψ|κ⟩ = ⟨ψ, κ⟩ =
∫
X
dxψ(x)

∗
κ(x) =

∑
s=± 1

2

∫
R3

dr ψ(r, s)
∗
κ(r, s). (C.5)



C.2. FULL CONFIGURATION INTERACTION SPACE 89

For N particles, for an arbitrary elementary symmetric and antisymmetric vector |ψ1⟩ ∨
∧ . . .

∨
∧

|ψN ⟩ ∈ K∨
∧N let us have the formal definition

⟨ex|(|ψ1⟩ ∨∧ . . . ∨∧ |ψN ⟩) =:

(ψ1
∨
∧ . . .

∨
∧ ψN )(x1, . . . xN ) =

1√
N !

∑
σ∈S[N]

(±1)Par(σ)Rσ(ψ1 ⊗ . . .⊗ ψN )(x1, . . . xN )

=
1√
N !

∑
σ∈S[N]

(±1)Par(σ)ψσ(1)(x1) . . . ψσ(N)(xN ).

(C.6)

Here, again, the left-hand-side is not an inner product just a pairing because {|ex⟩ := |ex1⟩ ⊗
. . . ⊗ |exN

⟩}x∈X×N is not in the Hilbert space K∨
∧N , but rather in the space of distributions,

The right-hand-side is the pointwise definition of the N -variable function ψ1
∨
∧ . . .

∨
∧ ψN ∈ L∨

∧N
d

also called N -particle fermionic/bosonic wave function. If the one-particle wave functions φi

are orthonormal, then the N -particle fermionic wave function φi = φi1 ∧ . . . ∧ φiN it is called

Slater determinant. We note that ψσ(1)(x1) . . . ψσ(N)(xN ) = ψ1(xσ−1(1)) . . . ψN (xσ−1(N)), that is

R†
σ = Rσ−1 .

With this identification between Ld and K, the N -particle Schrödinger operator in (C.1)

is H(N) = ι1,N (H1) + ι2,N (H2). The one-particle operator H1 = −ℏ2

2mel
∇2 + MU contains the

kinetic and the external potential term, and the two-particle operator H2 = MV describes the

permutational invariant interaction, where M is the multiplication operator. For clarity, we use

the term “wave function” for the elements in Ld and “state vector” for the kets in the general K.

In the sequel, the space of operators are not indicated, because it will be clear from the vector

it acts on. That is, the bare form is used for the wave function space, ψ ∈ Ld, and the bracket

formalism for the abstract space, |ψ⟩ ∈ K. The second quantized vectors and operators are

obtained in the same way as in section 2.9, particularly with the isomorphism (2.72) we have the

second quantized Hamiltonian (2.89) H = F (ι1(H1)+ ι2(H2))F
−1. In this chapter only fermions

are considered.

In conventional quantum chemistry calculations the number of electrons N is fixed, therefore

we only deal with the subspace of N electrons on d = dim(K) orbitals, NN
[d] = FK∧N ⊂ N[d],

which is commonly named as full configuration interaction (FCI) space in quantum chemistry

community. Note that “configuration” does not refer to the configuration space X , but rather

to an index i = (i1, . . . , iN ) and the corresponding Slater determinant |φi⟩ = |φi1⟩ ∧ . . . ∧ |φiN ⟩;
and the “interaction” refers to that all the Slater determinants are included in the method, in

this sense it is “full”, that is, Span{|φi⟩}i∈I∧
N
= K∧N indeed. The solution of the minimization

problem (C.2b) can be obtained by the diagonalization of the matrix ⟨φi, H(N)φj⟩ for i, j ∈ I∧N ,

or in the second quantized framework (2.89), where the one-electron integrals are

⟨φi, H1φj⟩ =
∫
X
dxφi(x)

∗
( −ℏ2

2mel
∇2 + U(x)

)
φj(x), (C.7a)

and two-electron integrals are

⟨φi1 ⊗ φi2 , H2φj1 ⊗ φj2⟩ =
∫
X

∫
X
dxdx′ φi1(x)

∗
φi2(x

′)
∗
V (x, x′)φj1(x)φj2(x

′), (C.7b)
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where i, j, i1, i2, j1, j2 ∈ [d]. The calculations in this space, having dimension
(
d
N

)
, is feasible for

only small molecules. One can further reduce the dimension, therefore computational cost, for

example, by freezing the low lying core orbitals or exploiting symmetries, such as searching the

solution in a total spin projection subspace of the electrons. The selection and the restriction of

the orbital set {φi}i∈[d] is a crucial task and of central importance in computational chemistry

[Hel00, Leh19]. Within the chosen d orbitals the exact FCI calculations for small molecules

can serve as a reference for benchmarking other numerical methods.

C.3. Spatial orbitals

We emphasize here, the methods in this work are discussed with spin-orbitals for clarity,

however, in the non-relativistic theory, spatial orbitals are more useful in applications (see, for

example, sections 3.7, 4.5 and 4.6). In the spin-orbital formulation we have modes, which can

be empty or occupied. We have the ordered set L = {1, . . . , d}, and the corresponding one-

mode Hilbert spaces Ni for i ∈ L. So when turning to applications, for example, with DMRG

algorithm, the elementary factor spaces in (2.28) are simply Hi
∼= Ni. We say that a spin-

orbital can be empty or occupied. In the spatial orbital formulation, the spin part is separated

from the configuration space. On the one hand, since the spin part of the configuration space

X = R3 × {± 1
2} is two dimensional, one can choose an orthonormal basis {φspin

↑ , φspin
↓ }. Then

every orbital φ ∈ L2d can be written as φ(r, s) = φspat
↑ (r)φspin

↑ (s) + φspat
↓ (r)φspin

↓ (s), where we

indicate the arguments of the functions for clarity. On the other hand, in the non-relativistic

Schrödinger equation (C.1) the spin part and the spatial part is not coupled, hence they can be

factorized [Hel00]. So the spin-orbital corresponding to the (j, σ) composite index is the product

of the j-th spatial orbital and the σ-th spin function, φ(j,σ)(r, s) = φspat
j (r)φspin

σ (s), where the

spatial part has no spin dependence any more. By this, in the spatial orbital formulation, we

have composite indices of spatial orbitals and spin projections, that is, the ordered set L = {(1, ↑
), (1, ↓), . . . , (d, ↑), (d, ↓)}, and the corresponding one-mode Hilbert spaces Ni for i ∈ L. So in

the spatial orbital implementation, the elementary factor spaces in (2.28) are the product that

of the spin-up and spin-down pairs, Hj
∼= N(j,↑) ⊗ N(j,↓), We say that a spatial orbital can be

empty, singly occupied with either a spin-up or spin-down electron, or doubly occupied with

opposite-spin electrons. By this, the Jordan–Wigner representation of the creation operators

(2.75) become

a†j,↑ =
(⊗
k<j

P(k,↑) ⊗ P(k,↓)
)
⊗
(
|ϕ(j,↑),1⟩⟨ϕ(j,↑),0| ⊗ I(j,↓)

)
⊗
(⊗
j<k

I(k,↑) ⊗ I(k,↓)
)
,

a†j,↓ =
(⊗
k<j

P(k,↑) ⊗ P(k,↓)
)
⊗
(
P(j,↑) ⊗ |ϕ(j,↓),1⟩⟨ϕ(j,↓),0|

)
⊗
(⊗
j<k

I(k,↑) ⊗ I(k,↓)
)
.

(C.8)

C.4. Hartree–Fock method

On the contrary to the exact diagonalization of the Hamiltonian in the FCI space, one

of the simplest approximate solution of the interacting Schrödinger equation (C.1) is given by

the Hartree–Fock method, in which the best Slater determinant is searched for [Sza96]. The
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ground-state energy in the Hartree–Fock approximation is

EHF
0 = min

{
⟨φi|H(N)|φi⟩

∣∣∣ |φi⟩ = |φ1⟩ ∧ . . . ∧ |φN ⟩, {|φ1⟩, . . . , |φN ⟩} orthonormal
}

(C.9a)

or we can express as the minimization among orbital transformations for a fixed Slater determi-

nant, |φ′
i⟩ ∈ K∧N , as

EHF
0 =min

{
⟨φ′

i|U⊗NH(N)(U
⊗N )†|φ′

i⟩
∣∣∣ U ∈ U(K)

}
(C.9b)

=min
{
⟨Fφ′

i|g(U)Hg(U)†|Fφ′
i⟩
∣∣∣ U ∈ U(K)

}
, (C.9c)

see section 2.9. The minimization (C.9a) leads to an effective one-electron non-linear Schrödinger

equation, namely the eigenvalue problem of the one-particle Fock operator F1,

F1|φir ⟩ = H1|φir ⟩+
N∑

r′=1

(
Tr2

((
I⊗ |φir′ ⟩⟨φir′ |

)
H2

)
|φir ⟩ − Tr2

((
I⊗ |φir ⟩⟨φir′ |

)
H2

)
|φir′ ⟩

)
= ϵir |φir ⟩,

(C.10)

showing that the electron-electron interaction is treated by a mean-field approach. The first part

of the sum in (C.10) is the Coulomb operator and the second is the exchange operator.

For numerical reasons, mainly for the evaluation of the integrals (C.7), the orbitals are

expressed as the linear combination of atomic orbitals,

|φi⟩ =
d∑

j=1

cj,i|φAO
j ⟩ (C.11)

where the atomic orbitals {|φAO
j ⟩}j∈[d] are usually Slater-type orbitals, Gaussian-type orbitals

or numerical atomic orbitals [Leh19]. When the (C.11) is determined or optimized according

to some considerations in a molecule, the |φi⟩ orbitals are called molecular orbitals. With this,

equation (C.10) can be formulated in terms of the coefficients ci,j , yielding the Roothan–Hall

equation,

d∑
j=1

⟨φAO
ir |F1({c})|φAO

j ⟩cj,ir = ϵir

d∑
j=1

⟨φAO
ir |φAO

j ⟩cj,ir r = 1, . . . , N, j = 1, . . . , d (C.12)

Since the Fock operator depends on the coefficients ci,j , this non-linear generalized eigenvalue

problem is solved numerically in an iterative self-consistent manner. The N solution of (C.12) are

the coefficients of the N HF occupied orbitals {|φjr ⟩}r∈[N ]. This can be completed with d−N HF

virtual orbitals to form the HF canonical molecular orbitals {|φi⟩}i∈[d] with the corresponding

HF orbital energies ϵir . It is important to say that the natural orbitals (2.84) of the HF state

|φi⟩⟨φi| are the canonical HF molecular orbitals {|φi⟩}i∈[d] themselves with natural occupations

λi = 1 for i ∈ i, and λi = 0 for the rest. That is, the HF canonical orbitals are obtained by such

a mode transformation (2.77) where the unitary is the one which diagonalizes the one-electron

reduced state. From this point of view, the Hartree–Fock method is an orbital optimization

yielding the HF canonical molecular orbitals, therefore it is a common starting point for many

other quantum chemistry methods. The interpretation of the HF orbital energies ϵj is given
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by the Koopmans theorem. Let |φi⟩ be the minimizer of (C.9a) with energy EHF
0 , then we get

ϵj = EHF
0 − ⟨φi\{j}|H(N−1)|φi\{j}⟩, which is the ionization energy (in the HF approximation) of

orbital j ∈ i, that is, the energy needed to remove an electron from the system form the j-th

orbital. If j /∈ i, then ϵj = EHF
0 − ⟨φi∪{j}|H(N+1)|φi∪{j}⟩ is the electron affinity [Sza96]. As a

result, the total HF energy ⟨φi|H(N)|φi⟩ ≠
∑

r ϵir since in the sum of the orbital energies the

electron-electron interaction is counted twice. In the context of solid-state physics, this fact is

known as that the total ground-state energy of an interacting system is the sum of the energies

of the quasiparticles corrected by subtracting half of the self-energies [Sól11].

Another important property of the HF solution is the Brillouin theorem. This says that the

matrix elements of the Hamiltonian between the HF solution |Fφi⟩ and a “singly excited” Slater

determinant is zero, ⟨Fφi|Ha†iaj |Fφi⟩ = 0, where j ∈ i and i /∈ i. This follows from taking the

derivative of g(U) (2.79) in terms of the matrix entries of the anti-Hermitian matrix (lnU)i,j . So

the condition of the minimum of (C.9c) is ⟨Fφi|[H, a†iaj ]+|Fφi⟩ = 0. The Brillouin theorem is

often interpreted as that the HF solution is stable with respect to “single excitations”. This serves

the motivation of the configuration interaction (CI) and coupled cluster (CC) parametrizations.

C.5. Configuration interaction method

In section 2.8 by fixing single mode basis vectors |φi⟩ ∈ K, where i ∈ L = {1, . . . , d}, the
(2.64) basis vectors |φi⟩ ∈ F in the Fock space and the (2.65b) labelling i ∈ I∧N (L) in the first

quantized scheme arises in the standard way, and, in section 2.9, the occupation number space

accordingly. The parametrization of the configuration interaction (CI) and the coupled cluster

(CC) scheme is based on the fact, that the creation and annihilation operators (corresponding to

the fixed one mode basis) transforms basis vectors |φi⟩ into each other up to a −1 phase factor.

The HF calculation is a common starting point of many other quantum chemistry methods,

and the resulting Slater determinant |φi⟩ = |φi1⟩ ∧ . . . ∧ |φiN ⟩ is the best independent-particle

approximation of the system, so it can serve as a reference state vector,

|ΦHF⟩ = F (|φi1⟩ ∧ . . . ∧ |φiN ⟩) ∈ NN
L , i1, . . . , iN ∈ Lo, (C.13)

where Lo ⊆ L is the index set of the |Lo| = N occupied orbitals, the rest Lv = L \ Lo is that of

the d − N virtual orbitals (which, of course, should not to be confused with the virtual indices

of tensor networks in section 2.4). To obtain all the other N -electron Slater determinants the

one-electron excitation operator Xj
i := a†jai is considered, where Xj

i |ΦHF⟩ is non-zero if i ∈ Lo

and j ∈ Lv, therefore, only this type of index pairs are considered. ForM electrons the excitation

operator is Xµ ≡ Xj1,...,jM
i1,...,iM

:= XjM
iM
. . .Xj1

i1
, where Xµ|ΦHF⟩ is non-zero, if the excitation index

µ = (i, j) ∈ JM (Lo, Lv) := I∧M (Lo)× I∧M (Lv), (C.14)

that is, we excite from occupied to virtual orbitals, and both index tuples are ordered increasingly.

The |µ| = M is the excitation rank (not to be confused with other ranks, for example, that of

the linear operators, Schmidt rank), where M = 1 stands for singles, M = 2 for doubles,

and so on. For M = 0, there is only one element of J0, which is the pair of empty indices,

and we define the corresponding excitation operator as the identity operator. The maximal
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excitation rankMmax := min{N, d−N} is reached when we excite from all occupied or we excite

to all virtual orbitals. In general, let a set of excitation indices be the subset of all possible

excitation indices, J(Lo, Lv) ⊆ J1(Lo, Lv) ∪ . . . ∪ JMmax
(Lo, Lv). It follows from the canonical

anticommutation relations (2.76) that the excitation operators with respect to the same reference

(C.13) commute, [Xµ,Xν ]+ = 0 for all µ, ν ∈ J(Lo, Lv). In the sequel the argument of the index

sets may be omitted if it does not lead to confusion. For more details on the algebra of the

excitation operators, see [Sch09].

The CI parametrization of the state vector in NN
L is

|ΦCI⟩ = (I + C1 + C2 + . . .)|ΦHF⟩, CM =
∑

µ∈JM

cµXµ, (C.15)

where CM is the configuration interaction operator of rank M , and cµ ∈ C numbers are the

configuration interaction coefficients. Note, that this parametrization results the convenient

intermediate normalization, ⟨ΦHF|ΦCI⟩ = 1. Substituting this ansatz (C.15) to the Rayleigh

quotient in (C.2b) and taking derivative in the variational parameters c∗µ gives{
ECI = ⟨ΦHF|H|ΦCI⟩,

0 = ⟨XµΦ
HF|(H − ECII)|ΦCI⟩, µ ∈ J,

(C.16)

which is nothing else than the eigenvalue problem
∑

µ∈J0∪J Hν,µcµ = ECIcν of the Hamilton-

ian matrix Hν,µ = ⟨XνΦ
HF|H|XµΦ

HF⟩. Note that same system of equations can be obtained

by projecting the Schrödinger equation H|ΦCI⟩ = ECI
0 |ΦCI⟩ with vectors ⟨XµΦ

HF|. That is,

the CI approach is a variational method in which the problem is restricted to the subspace

Span{|XµΦ
HF⟩ | µ ∈ J0 ∪ J} ⊆ NN

L . For example, in the CI single and double (CISD) approx-

imation the excitation index is restricted to µ ∈ J = J1 ∪ J2. If all the possible excitaions are

taken into account, µ ∈ J = J1 ∪ . . . ∪ JMmax , then the system of equations (C.16) is the full

CI (FCI) problem of the system. This approximation, being a dimensional reduction, yields

a computationally more feasible method, which is, however, no longer size-extensive [Hel00].

This means the following. Consider the bipartition of the orbitals LA ⊂ L and LB = L \ LA,

and the corresponding occupied and virtual orbitals, LA,o := LA ∩ Lo and LA,v := LA ∩ Lv,

respectively; and similarly for subsystem B. Let the Schrödinger equation (C.16) for subsys-

tem A with the Hamiltonian HA be fulfilled by |ΦA,CI⟩ = (I + CA
1 + CA

2 + . . .)|ΦHF⟩, where
CA

M =
∑

µ∈JM (LA,o,LA,v)
cµXµ, that is, excitaion indices are only in subsystem A; and simi-

larly for subsystem B. If the subsystems are independent, the Hamiltonian can be written

as H = HA + HB , then the Schrödinger equation (C.16) for H = HA + HB is fulfilled by

|ΦCI⟩ = (I+CA
1 +CA

2 + . . .)(I+CB
1 +CB

2 + . . .)|ΦHF⟩. However, if |ΦA,CI⟩ is obtained with max-

imized excitations rank, for example, CISD, that is, µA ∈ J1(LA,o, LA,v) ∪ J2(LA,o, LA,v), and

similarly for B, then |ΦCI⟩ is not of the form CISD, that is, µ ∈ J1(Lo, Lv)∪J2(Lo, Lv), because

higher extitaions, triples and quadruples, appear. In the CI approach the size-extensivity can be

restored only if all the possible excitaions are taken into account, which is again the FCI problem

of the system. This impractical property, being the consequence of the linear parametrization

(C.15), can be resolved by the coupled cluster parametrization, which is of an exponential form.
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C.6. Coupled cluster method

The CC parametrization [Hub57, Hug57, Bar07] of the (intermediately normalized) state

vector in NN
L is

|ΦCC⟩ = eT |ΦHF⟩ = eT1+T2+...|ΦHF⟩, TM =
∑

µ∈JM

tµXµ, (C.17)

where TM is the cluster operator of rank M , which is of the same form as that of the CI

operator CM in (C.15), and tµ ∈ C numbers are the coupled cluster amplitudes. We note

that there is a one-to-one correspondence between state vectors in NL and cluster operators

T [Živ78, Sch09], which also holds in the infinite dimensional case L∧N [Roh13]. System of

equations are obtained by projecting the Schrödinger equationH|ΦCC⟩ = ECC|ΦCC⟩ with vectors

⟨XµΦ
HF| or ⟨XµΦ

HF|e−T yielding the unlinked or linked CC equations, respectively. They are

equivalent in the CC approach [Hel00], however, not in the tailored CC formalism [Fau19b],

which is discussed in the next section. The linked CC equations are{
ECC = ⟨ΦHF|e−THeT |ΦHF⟩,

0 = ⟨XµΦ
HF|e−THeT |ΦHF⟩, µ ∈ J(Lo, Lv),

(C.18)

Because of the exponential parametrization, the treatment of the CC ansatz in the variational for-

malism (by the derivatives of the Rayleigh quotient) is untractable, since all Slater determinants

in the FCI space are present in the system of equations [Hel00, Lae19]. The approximation in

the CC approach is the restriction of the excitation indices in (C.18). For example, in the CC

single and double (CCSD) approximation the excitation index is restricted to µ ∈ J = J1 ∪ J2.
But contrary to the CI method, this does not restrict the problem to a subspace. Therefore,

the CC method is not variational, that is, the CC energy is in general not equal to the expec-

tation value of the Hamiltonian, so it is neither an upper bound to the FCI energy (C.2b) nor

to the exact ground-state energy (C.2a). If all the possible excitaions are taken into account,

µ ∈ J = J1 ∪ . . . ∪ JMmax
, then the system of equations (C.18) is the FCI problem of the system

[Živ78, Sch09]. The CC method is size-extensive, which follows from the exponential param-

etisation (C.17) of the state vector [Č́ıž66, Č́ıž69, Pal72]. In computational sense, this is a

favourable property, which can and will be shown in the tailored CC formalism in the section

3.2.:wq

The CC energy in (C.18) can be expressed [Hel00] as

ECC = ⟨ΦHF|H
(
I + T2 +

1

2
T 2
1

)
|ΦHF⟩. (C.19)

It follows from the Slater–Condon rules (which are the consequences that the Hamiltonian (2.89)

is a linear combination of monomials of form a†a and a†a†aa) that amplitudes with rank higher

that two not contribute. The fact that the pure rank-one excitations with respect to the HF

reference do not contribute is the consequence of the Brillouin theorem [Lev68]. This obviously

does not mean that the CCSD suffices for the energy calculation because the amplitudes in

(C.18) are optimized simultaneously. In the Baker–Campbell–Hausdorff (BCH) expansion of

the similarity-transformed Hamiltonian e−THeT , the series of inner products with the nested
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commutators [·, ·](k) terminates after the quartic term [Hel00],

⟨XµΦ
HF|e−THeT |ΦHF⟩ = ⟨XµΦ

HF|
4∑

k=0

1

k!
[H,T ](k)|ΦHF⟩, (C.20)

independently of the truncation of the excitation rank of the cluster operator. This makes the

projected equations tractable. One can derive equations by the BCH expansion, and matching

the terms according to the excitation rank, yielding a non-linear system of equations f(t)µ =

⟨XµΦ
HF|e−THeT |ΦHF⟩ = 0 in terms of the amplitude vector (t)µ := tµ for all µ ∈ J . In

applications it is usually solved by quasi-Newton method, which uses an approximate Jacobian

with the HF energies (C.10),

tµ 7−→ tµ − ε−1
µ f(t)µ, εµ ≡ ε(i,j) :=

M∑
m=1

(ϵjm − ϵim). (C.21)

This requires a sufficiently large energy gap between the highest occupied molecular orbital and

the lowest unoccupied molecular orbital (HOMO-LUMO gap),

∆(Lo, Lv) := (min
j∈Lv

ϵj)− (max
i∈Lo

ϵi) = min
µ
εµ (C.22)

in the spectrum of the Fock operator for convergence stability [Sch09, Hel00, Roh13]. This

requirement can fail in case of multireference systems, and this is one of the motivations for our

tailored coupled cluster approach. Assuming that we have less occupied than virtual orbitals,

N < d−N , which is the common case in practice, the computational cost of the CCSD, CCSDT

and CCSD(T) methods scale as O(N2(d−N)4), O(N3(d−N)5) and O(N3(d−N)4), respectively

[Pur82, Rag89, Hel00].
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I. Bloch. Tonks–girardeau gas of ultracold atoms in an optical lattice. Nature, 429 (6989), 277, 2004.

ISSN 1476-4687. doi:10.1038/nature02530

[Par04b] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch,
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[Vei16] L. Veis, A. Antaĺık, J. Brabec, F. Neese, Ö. Legeza, J. Pittner. Coupled cluster method with single and

double excitations tailored by matrix product state wave functions. The Journal of Physical Chemistry

Letters, 7 (20), 4072, 2016. doi:10.1021/acs.jpclett.6b01908
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One-page summary

Although the density matrix renormalization group (DMRG) method was developed to simu-

late one-dimensional strongly correlated systems in solid-state physics, it also shows its potential

in higher-dimensional as well as in many other strongly correlated many-body problems. In my

thesis, I investigate the application of DMRG in quantum chemistry and in ultracold physics,

and study numerical methods that are supported by DMRG.

First, the coupled cluster method tailored by DMRG (DMRG-TCC) was investigated theoret-

ically and exemplified numerically by the nitrogen dimer for different geometries. We perform a

systematic study on the error of the DMRG-TCC, in particular when the system become strongly

correlated. We showed the strong dependence of the DMRG-TCC solution on the choice of the

active orbitals. We show the robustness of the entropic quantities, which are the guides in de-

termining the optimal basis splitting, with respect to the DMRG accuracy. In order to minimize

the energy error and carry out large-scale DMRG-TCCSD calculations, we developed a rigorous

routine procedure to determine the optimal basis splitting.

Second, the orbital optimization based on entanglement minimization within the framework

of two-site DMRG was studied and exemplified numerically by the nitrogen dimer for different

geometries. The analysis, based on the tomography of the state, occupation numbers and entropic

quantities, shows that the developed joint optimization of the basis and the matrix product state

(MPS) has the potential to compress the multireference character of the wave function. The

optimized orbitals provide significantly more optimal orbitals for tensor network state methods

and other conventional quantum chemistry methods.

Third, the Hubbard wheel lattice model of hard-core bosons was proposed and investigated

theoretically and numerically. The tuning of just a single control parameter allows a crossover

from one- to “infinite”-dimensionality, which also drives a transition from quasi-condensation to

complete Bose–Einstein condensation. Our numerical simulations showed that the mutual infor-

mation possesses the qualitatively similar dependence on the control parameter as the number

of the condensed bosons. We showed the existence of an excitation gap, which is usually highly

demanding, and a possible experimental realization was also proposed.

As outcomes of the projects, several algorithmic developments have been implemented, such

as MPS-based routines and interfacing with standard quantum chemistry program packages.



Egyoldalas összefoglaló

Bár a sűrűségmátrixos renormálásicsoport (DMRG) módszert egydimenziós, erősen kor-

relált rendszerek szimulálására fejlesztették ki a szilárdtestfizikában, a megfelelő fejlesztésekkel

lehetőség nýılt a magasabb dimenziós rendszerek, valamint sok más, erősen korrelált soktest-

rendszerek vizsgálatára is. Dolgozatomban a DMRG alkalmazását vizsgálom a kvantumkémiában

és az ultrahideg fizikában, valamint DMRG által támogatott módszerek tanulmányoztam.

Először, aDMRG által szabott csatolt klaszter (DMRG-TCC) módszert elméletileg vizsgáltuk,

és numerikusan demonstráltuk a nitrogén dimeren különböző geometriákra. Szisztematikus

vizsgálatot végzünk a DMRG-TCC módszer hibájára vonatkozóan, különösen akkor, ha a rend-

szer erősen korrelált. Megmutattuk, hogy a DMRG-TCC által adott megoldás erősen függ

az akt́ıv pályák megválasztásától. Megmutattuk az entropikus mennyiségek robusztusságát a

DMRG pontosságára nézve, ezért ez alapján az optimális pályafelosztás meghatározható. Az

energiahiba minimalizálása és a nagyskálájú DMRG-TCCSD számı́tások elvégzése érdekében,

egy rutin eljárást dolgoztunk ki az optimális pályafelosztás meghatározására.

Másodszor, az összefonódás minimalizációján alapuló pályaoptimalizációt tanulmányoztuk

a két rácspontos DMRG-algoritmus keretében, valamint numerikusan demonstráltuk a nitrogén

dimeren különböző geometriákra. A betöltési számok, az entropikus mennyiségek és az állapot

tomográfiája alapján végzett elemzés azt mutatta, hogy a bázis és az mátrixszorzatos állapot

(MPS) együttes optimalizációja során lehetőség nýılik a hullámfüggvény multireferenciás jel-

legének tömöŕıtésére. Az ı́gy nyert optimalizált pályák lényegesen optimálisabb pályákat biz-

tośıtanak a tenzorhálózat-alapú és más hagyományos kvantumkémiai módszerek számára.

Harmadszor, a keménymagú bozonok Hubbard-kerék rácsmodelljét mutattuk be, valamint

elméletileg és numerikusan is vizsgáltuk. Egyetlen paraméter hangolása lehetővé teszi az átme-

netet az egydimenziósról a
”
végtelen” dimenziós rendszerre, ami egyben átmenetet is eredményez

a kvázi-kondenzációról a teljes Bose–Einstein-kondenzációra. Numerikus szimulációink azt mu-

tatták, hogy a kölcsönös információ a paraméter függvényében minőségileg hasonlóan viselkedik,

mint a kondenzált bozonok száma. Megmutattuk, hogy létezik egy gerjesztési energiarés, amely

ḱısérletekben általában kulcsfontosságú, valamint egy lehetséges ḱısérleti megvalóśıtást is java-

soltunk.

A projektek folyományaképpen számos algoritmikus fejlesztés valósult meg, mint például az

MPS-alapú rutinok és a standard kvantumkémiai programcsomagokkal való interfészelés.
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