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If we want to compute the coe�cients of a quadratic background within RMC we would calculate χ2

from the following expression:

χ2 =
N∑

i=1

Ni∑
p=1

(
Fi(Qip)− αiS(Qip)−

2∑
j=0

aijQ
j
ip

)2

σ2
i (Qip)

, (1)

where we sum over the N sets of experimental results and the points of Qip (modules of each scattering
vector). Fi is the scattering function from the i th experiment and S is the same function calculated
from the con�guration. αi denotes the normalisation, and aij denotes the j-th order coe�cient of the Q
dependent polynomial background.

In the next two section; I am describing a computation method to calculate these coe�cients and (1).

1 Calculation of the coe�cients
Since coe�cients of one experiment are independent from another one's and in the actual version of RMC
it is not possible to de�ne Q-dependent standard deviation1, we consider the simpli�ed version of (1) as
follows:

χ2 =
N∑

i=1

χ′2i
σ2

i

χ′2 =
Ni∑

p=1


Fp − αSp −

2∑

j=0

ajQ
j
p




2

(2)

Let's look for the values of coe�cients for which this expression will be minimal, we will able to get
them if we choose them so that the �rst derivatives of this expression by each coe�cient will be equal to
zero:

0 =
∂χ′2

∂ak
=

Ni∑
p=1


αSpQ

k
p +

2∑

j=0

ajQ
k+j
p − FpQ

k
p


 · 2

0 =
∂χ′2

∂α
=

Ni∑
p=1


αS2

p +
2∑

j=0

ajQ
j
pSp − FpSp


 · 2 (3)

These equations are linear equations which can be solved by Gauss elimination2. The general form of
the matrix equation can by written in this form, where the capitals are the matrix elements:

( A B C D E ) ⇒ A · a2 + B · a1 + C · a0 + D · α = E (4)
In the next part, I am discussing the cases of �xing and/or �tting these coe�cients.

1In this case it is taken into account a wp weight factor in (1).
2The calculation of the coe�cients of more than two order polynomial will be faster if you use an iteration method.
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1.1 Trivial case � all coe�cients to be �xed
This is the simplest case � the coe�cients are:

α = 1.0 , a0 = 0.0 , a1 = 0.0 , a2 = 0.0 (5)

1.2 Calculation of one coe�cient
This occurs in four cases:

α :
( ∑

p
S2

p

∑
p

FpSp

)

am :
( ∑

p
Q2m

p

∑
p

FpQ
m
p −∑

p
SpQ

m
p

)
, (6)

So we can obtain:

α =

∑
p

FpSp

∑
p

S2
p

, a0 =

∑
p

Fp −
∑
p

Sp

Ni
,

a1 =

∑
p

FpQp −
∑
p

SpQp

∑
p

Q2
p

, a2 =

∑
p

FpQ
2
p −

∑
p

SpQ
2
p

∑
p

Q4
p

(7)

1.3 Calculation of two coe�cients simultaneously
These calculation occur in six cases. Equations could be written in the following form (m > l):

am, α :




∑
p

Q2m
p

∑
p

SpQ
m
p

∑
p

FpQ
m
p

∑
p

SpQ
m
p

∑
p

S2
p

∑
p

FpSp




am, al :




∑
p

Q2m
p

∑
p

Qm+l
p

∑
p

FpQ
m
p −∑

p
SpQ

m
p

∑
p

Qm+l
p

∑
p

Q2l
∑
p

FpQ
l
p −

∑
p

SpQ
l
p


 (8)

The determinant of the generalised form of these systems of equations is:
∣∣∣∣

A B C
B D E

∣∣∣∣ (9)

Solving this equation (by Cramer-method), we can get:

y =
AE −BC

AD −B2

x =
C −By

A
(10)

Substituting the terms from table 1, solutions are found.

1.4 Calculations of three coe�cients simultaneously
If we �t three coe�cients at the same time, we will solve the next systems of equations (m > l):

am, al, α :




∑
p

Q2m
p

∑
p

Qm+l
p

∑
p

SpQ
m
p

∑
p

FpQ
m
p

∑
p

Qm+l
p

∑
p

Q2m
p

∑
p

SpQ
l
p

∑
p

FpQ
l
p

∑
p

SpQ
m
p

∑
p

SpQ
l
p

∑
p

S2
p

∑
p

FpSp




a2, a1, a0 :




∑
p

Q4
p

∑
p

Q3
p

∑
p

Q2
p

∑
p

FpQ
2
p −

∑
p

SpQ
2
p

∑
p

Q3
p

∑
p

Q2
p

∑
p

Qp

∑
p

FpQp −
∑
p

SpQp

∑
p

Q2
p

∑
p

Qp Ni

∑
p

Fp −
∑
p

Sp


 (11)
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Table 1: Substitution values of the elements of the general determinant to eq. (10) in the case of two
coe�cient �tting.

x a2 a2 a2 a1 a1 a0

y a1 a0 α a0 α α

A
∑
p

Q4
p

∑
p

Q4
p

∑
p

Q4
p

∑
p

Q2
p

∑
p

Q2
p Ni

B
∑
p

Q3
p

∑
p

Q2
p

∑
p

SpQ
2
p

∑
p

Qp

∑
p

SpQp

∑
p

Sp

C
∑
p

FpQ
2
p −

∑
p

SQ2
p

∑
p

FpQ
2
p −

∑
p

SpQ
2
p

∑
p

FpQ
2
p

∑
p

FpQp −
∑
p

SpQp

∑
p

FpQp

∑
p

Fp

D
∑
p

Q2
p Ni

∑
p

S2
p Ni

∑
p

S2
p

∑
p

S2
p

E
∑
p

FpQp −
∑
p

SQp

∑
p

Fp −
∑
p

Sp

∑
p

FpSp

∑
p

Fp −
∑
p

Sp

∑
p

FpSp

∑
p

FpSp

The determinant of the generalised form of this system of equations is:



a b c d
b e f g
c f h i


 (12)

We substitute:

A = ae− b2

B = af − bc

C = ag − bd

D = ah− c2

E = ai− cd (13)

Performing the �rst steps of the Gauss elimination in eq. (12) we can get the matrix in the following form:



a b c d
0 A

ab
B
ab

C
ab

0 B
ac

D
ac

E
ac


 (14)

Because of the multiplication of one row of the matrix by the same number doesn't change the value
of coe�cients, we can multiply the second row by ab and the third one by ac. If we are looking at this
result, we could observe that this is the same as eq. (9). So we could get the values of coe�cients using
eq. (10) and :

Z = y

Y = x

X =
d− cZ − bY

a
(15)

Finally, substituting the terms from table 2, we are obtaining the solutions.

1.5 Fitting the coe�cients of the second order polynomial and the renormal-
isation coe�cient

First, we write the matrix of the systems of equations, after that it will be originated in the solution of
(12) using the Gauss elimination procedure.

The matrix is: 


∑
p

Q4
p

∑
p

Q3
p

∑
p

Q2
p

∑
p

SpQ
2
p

∑
p

FpQ
2
p

∑
p

Q3
p

∑
p

Q2
p

∑
p

Qp

∑
p

SpQp

∑
p

FpQp

∑
p

Q2
p

∑
p

Qp Ni

∑
p

Sp

∑
p

Fp

∑
p

SpQ
2
p

∑
p

SpQp

∑
p

Sp

∑
p

S2
p

∑
p

FpSp




(16)
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Table 2: Substitution values of the elements of the general determinant to eq. (12) in the case of three
coe�cient �tting.

X a2 a2 a2 a1

Y a1 a1 a0 a0

Z a0 α α α

a
∑
p

Q4
p

∑
p

Q4
p

∑
p

Q4
p

∑
p

Q2
p

b
∑
p

Q3
p

∑
p

Q3
p

∑
p

Q2
p

∑
p

Qp

c
∑
p

Q2
p

∑
p

SpQ
2
p

∑
p

SpQ
2
p

∑
p

SpQp

d
∑
p

FpQ
2
p −

∑
p

SpQ
2
p

∑
p

FpQ
2
p

∑
p

FpQ
2
p

∑
p

FpQp

e
∑
p

Q2
p

∑
p

Q2
p Ni Ni

f
∑
p

Qp

∑
p

SpQp

∑
p

Sp

∑
p

Sp

g
∑
p

FpQp −
∑
p

SpQp

∑
p

FpQp

∑
p

Fp

∑
p

Fp

h Ni

∑
p

S2
p

∑
p

S2
p

∑
p

S2
p

i
∑
p

Fp −
∑
p

Sp

∑
p

FpSp

∑
p

FpSp

∑
p

FpSp

We would like to trace it back to (12), so we ought to reduce matrix (16) to the following form by
Gauss elimination:




∑
p

Q4
p

∑
p

Q3
p

∑
p

Q2
p

∑
p

SpQ
2
p

∑
p

FpQ
2
p

0 a∑
p

Q4
p

∑
p

Q3
p

b∑
p

Q4
p

∑
p

Q3
p

c∑
p

Q4
p

∑
p

Q3
p

d∑
p

Q4
p

∑
p

Q3
p

0 b∑
p

Q4
p

∑
p

Q2
p

e∑
p

Q4
p

∑
p

Q2
p

f∑
p

Q4
p

∑
p

Q2
p

g∑
p

Q4
p

∑
p

Q2
p

0 c∑
p

Q4
p

∑
p

SpQ2
p

f∑
p

Q4
p

∑
p

SpQ2
p

h∑
p

Q4
p

∑
p

SpQ2
p

i∑
p

Q4
p

∑
p

SpQ2
p




(17)

It is possible, of course, so that we should use the next substitution:

a =
∑

p

Q4
p

∑
Q2

p −
(∑

p

Q3
p

)2

b =
∑

p

Q4
p

∑
Qp −

∑
p

Q3
p

∑
p

Q2
p

c =
∑

p

Q4
p

∑
SpQp −

∑
p

Q3
p

∑
p

SpQ
2
p

d =
∑

p

Q4
p

∑
FpQp −

∑
p

Q3
p

∑
p

FpQ
2
p

e =
∑

p

Q4
pNi −

(∑
p

Q2
p

)2

f =
∑

p

Q4
p

∑
Sp −

∑
p

Q2
p

∑
p

SpQ
2
p

g =
∑

p

Q4
p

∑
Fp −

∑
p

Q2
p

∑
p

FpQ
2
p

h =
∑

p

Q4
p

∑
S2

p −
(∑

p

SpQ
2
p

)2

i =
∑

p

Q4
p

∑
FpSp −

∑
p

FpQ
2
p

∑
p

SpQ
2
p (18)
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Finally, the substitution below is needed to be taken into account for obtaining the coe�cients:

α = Z

a0 = Y

a1 = X

a2 =

∑
p

FpQ
2
p − α

∑
p

SpQ
2
p − a0

∑
p

Q2
p − a1

∑
p

Q3
p

∑
p

Q4
p

(19)

2 Calculation of χ2

Knowing the values of the coe�cients, the calculation of χ2 is an easy task, just we should extract its
form in the case when the uncertainty is Q-independent3:

χ2 =
N∑

i=1

1
σ2

i

{∑
p

F 2
ip + α2

∑
p

S2
ip + a2

0Ni +
(
a2
1 + 2a0a2

)∑
p

Q2
ip + a2

2

∑
p

Q4
ip+

+ 2

[
α

(
a0

∑
p

Sip + a1

∑
p

SipQip + a2

∑
p

SipQ
2
ip −

∑
p

FipSip

)
+

+a0

(
a1

∑
p

Qip −
∑

p

Fip

)
+ a1

(
a2

∑
p

Q3
ip −

∑
p

FipQip

)
− a2

∑
p

FipQ
2
ip

]}
(20)

3If not, each term should be multiplied byw2
ip so that

Ni∑
p=1

w2
ip = Ni will be. In this case we should substitute the mean

uncertainty σ̄2
i instead of σ2

i
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