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The following discussion is based on the speed tests made for RMC_POT. The program 

were tested first on the following machines:  

� Computer (A) 2 cores: AMD Athlon(tm) 64 X2 Dual Core Processor 4600+ models 

(64-Kbyte 2-Way Associative ECC-Protected L1 Data Cache/core with Two 64-bit 

operations per cycle, 3-cycle latency; 64-Kbyte 2-Way Associative Parity-Protected 

L1 Instruction Cache/core with advanced branch prediction; 512 Kbytes 16-Way 

Associative ECC-Protected L2 Cache/core; Core Speed 2400 MHz, System bus 

speed 2000 MHz). GNU Linux reports cache alignment 64, so cache line size is 

supposed to be 64 Byte, but no definite information was found about this. 

� Computer (B) 2 cores: Pentium(R) Dual-Core  CPU E5200  @ 2.50GHz, Core speed 

2500 MHz, Bus speed 800 MHz, no L1 instruction or data cache, 2 MB L2-cache 

� Computer (C) 8 cores: Intel(R) Xeon(R) CPU E5345 2.33GHz computer containing 

2 quad-core E5345 processors, so having the total number of 8 cores. One quad core 

processor is one physical package containing inside 2 dies, 2 cores/die with 8-way 

associative 32 KB L1 data and 32 KB L1 instruction cache/core and 16-way 

associative 4MB L2 cache/die. 

�  

The speed of the programs was tested the following way: the simulation was always started 

from the same initial configurations using the same parameters, and _TEST_MODE command 

line option was switched on for the compilation (the random number generator started with the 

same seed, and the number of generated steps were the same) so the final configuration was the 

same as well. The total running time in the loop reported in the *.hst file was compared, the 

efficiency was calculated according to the formula: 
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= , where C1 is the running time of the program using consecutive 

execution, Cp is the running time of using p threads, where each thread is executed by its on 

processor core. The basic structure of RMC for multi-threading is that it has a main thread 

which creates the auxiliary threads not far from the beginning of the program and gives task to 

them, where it is possible. The main thread handles the tasks, like the parameter reading and 

smaller calculations, which could not be or was not worth splitting among the threads. The 

farm algorithm was used for splitting the work among the threads for the computationally 

heavy parts of the program, and the main thread always takes equal share in these calculations 

as well. To avoid excessive mutex usage, the size of some arrays (as the histogram ptotal and 

pcounts and the coordnumbs and nsatisfy arrays) were multiplied by the number of threads, so 

each thread had its own segment to write parallel, and when each thread finished with the 

calculation of its own segment, the results is combined and the main thread’s segment 

(representing the complete array) is updated. 

Speed loss due to false sharing 

In the case of the 8-processor system, quite substantial speed loss was experienced using 

higher number of threads >4, if the segments of the different threads followed consecutively 

each other due to ‘false sharing’. False sharing happens, when the different threads are trying 

to write different memory locations, but these location’s addresses are close to each other and 

they are cached together forming the same cache line. Lets assume as an example, that 



ThreadA (executed by CoreA) wants to update the array elements [0-99], ThreadB (CoreB) 

[100-199], ThreadC (CoreC) [200-299] of the same array referred to as Tarray. The cache 

strategy of different processors can be different, but for the used Quad-core Intel(R) Xeon(R) 

CPU E5345 processor the cache line is 64 bytes for all caches. Always a full cache line is 

cached at a time, regardless the size of the given variable to be modified, and the processor 

always starts a cache line beginning on a 64-byte boundary (64 aligned cache, where the 

beginning address' 6 least significant digits are 0), so the desired memory location might be in 

the middle of the cache line. That means, that variables having the neighboring addresses will 

be cached together with the desired variable. After modifying the desired variable, the whole 

cache line, and not just the modified part of it is flushed (written back) to the memory, so that 

part of the memory is locked for the time of the writing. Lets assume, that Tarray is an integer 

array with the usual integer size of 4 bytes, so 24 integer elements are cached together. Lets 

also assume, that the beginning of the array, Tarray[0] starts at a 64-byte boundary. When for 

example Tarray[97] is changed in the L1 cache of CoreA and simultaneously CoreB in its own 

L1 cache modifies Tarray[105] than both of them wants to write back the same whole cache 

line (containing Tarray[96]-[119]) to the same place in the memory, and they are holding up 

each other. The actual picture is even more complicated, because if this would happen simply, 

than the core (lets say Core B) updating the memory after the first core (CoreA) finished with 

its own update would write back the original, unmodified value of Tarray[97] overwriting the 

already updated value. This will not happen, because snooping occurs, meaning, that if the 

same cache line can be found in different core’s cache, then if one modifies one part of the 

cache line, then the other will update its own cache with the modified data coming from the 

other core before further updating it itself or the memory. It has to be emphasized, that 

snooping provide cache consistency, if different parts of the same cache line are modified by 

different processors, but the programmer has to make sure, that different threads of the 

program will not try to update the same variable in the same time, because in this case the 

result is unpredictable! 

Obviously false sharing will only become a problem, if it happens very often during 

program execution. 

False sharing can be avoided by cache padding, which means that dummy elements has to 

be introduced between the array segments of the different threads to prevent the elements of 

different threads being cached in the same cache line. As we do not know beforehand, where 

the cache alignment boundaries will be situated inside the array, we have to make sure, that 

even in the most unfortunate case there are enough dummy elements to separate the elements 

of the different threads. The following formula will safely give the number of dummy elements 

to separate the thread segments for Tarray: 

(CACHE_LINE_SIZE – size_of(*Tarray))/size_of(*Tarray), where size_of (*Tarray) is the 

number of bytes occupied by one element of the array. 

It has to be noted, that on some platforms not only one cache line is cached for a desired 

memory location, but due to pre-fetching policy a sector (for example two consecutive cache 

line). It also depending on the platform, whether a cache line or the whole sector is flushed 

back to the memory if one variable was modified. The CACHE_LINE_SIZE has to be the size 

in bytes, which is flushed back to the memory after one variable, is modified.   

Cache padding was used in RMC_POT for HistoSet::pcounts and ptotal arrays and in 

CoordNumConst::nsatisfy, and the large speed difference disappeared among the threads for 

the multi-threaded program parts, and the performance improved.  

 



Length of some integer variables 

In some cases, if the system size and/or the number of steps is large, it can be necessary to use 

8-byte integers for certain variables. The size of the integer variables declared as int is usually 

4 byte, but the size of the long int varied for the different computers, it was 4 byte on a 

Intel(R) Pentium(R) 4 CPU 3.00GHz hyper-threading computer using Windows and Microsoft 

Visual C++, but it was 8 byte on the computers A-C used for the speed tests having Linux 

operation system and using Debian gcc 4.3.2 compiler. Therefore those integer variables, 

where it can be necessary to change their size easily were declared with the custom type 

longint, and its actual size depends on the compilation. If _USE_INT64 compiler option is 

switched on, (I64=0) is passed to Linux make). 

Speed test results 

Normal RMC run 
The test system was a rather large configuration containing 114240 atoms of one type with 

ρ=1.2148·10-
6
 number density, and used an S(Q) data set with 190 points and a coordination 

constraint with 13 sub-constrains. 

The 2-threaded efficiency was 88 % on the 2-processor system (B) regardless int or long int 

was used for typedef longint. 

The 2-threaded efficiency was 81 % on the 2-processor system (B) regardless int or long int 

was used for typedef longint.  

The result for the 8-porcessor computer system (C) was ~98 % for the 2-threaded and 77-81 

for the 8-threaded efficiency, see Table 1 for details. 

 

System B conse-

cutive 

parallel 

Nthreads 1 1 2 3 4 5 6 7 8 

t (s) longint=int 1146 1143 580 401 308 259 226 196 177 

E(p) (%)  100 98.6 95.0 92.8 88.3 84.3 83.3 80.7 

t (s) longint=long int 1142 1143 581 402 314 264 230 204 186 

E(p) (%)  100 98.4 94.8 91.0 86.6 82.8 80.0 76.8 

Table 1: The speed test for the 8-processor computer using integer or long integer for the typedef 

longint variables. 

Local invariance 
The speed-up with the usage of local invariance calculation was tested on System (C). The 

test system consisted of 4000 atoms and had an S(Q) data set with 228 points a coordination 

constraint with 13 sub-constraint and an average coordination constraint and the local 

invariance was calculated as well, see Table 2. 

System B parallel 

Nthreads 1 2 4 8 

t (s) longint=int 1873 883 441 240 

E(p) (%) 100 106 106 98 

t (s) longint=long int 1875 877 442 106 

E(p) (%) 100 107 106 97 

Table 2: The speed test for a local invariance calculation for the 8-processor computer using integer or 

long integer for the typedef longint variables. 



Non-bonded potential  
The speed-up with non-bonded potential calculation was tested on System (C) for the same 

large (114244 atoms) system as for normal RMC simulation test with the same data set and 

constraints using neutral particles with 30 A for the vdW cutoff. 

 

System B conse-

cutive 

parallel 

Nthreads 1 1 2 3 4 5 6 7 8 

t (s) longint=int 1184 1213 597 410 320 268 233 204 184 

E(p) (%)  100 101.6 98.6 94.8 90.5 86.8 84.9 82.4 

t (s) longint=long int 1230 1188 601 414 323 274 238 211 189 

E(p) (%)  100 98.8 95.7 92.0 86.7 83.2 80.4 78.6 

Table 3: The speed test for a non-bonded potential using simulation for the 8-processor computer using 

integer or long integer for the typedef longint variables. 

Summary 
Large speed up can be expected with larger system sizes (where the histogram calculation 

would amount for a considerable time of the total running time, lots of coordination constraint 

(sub-constraints), which is parallelised as well, or more large data sets, because the Fourie-

transformation is parallelised as well, so it is very much depending on the applied simulation 

system. As the speed test showed, even for the same test system and same code the speed-up 

can strongly depend on the computer architecture as well, so writing a code, that would 

perform equally well on different platforms might not even be possible. It is worse trying to 

compile the code and run some speed test with increasing the 

NUMBER_OF_CACHE_LINES_TO_FETCH parameter in the units.h, especially if you are 

not sure in your architecture specifications. The difference can be substantial usually in case of 

using >4 processors. 


