COMPOSITIONAL INHOMONOGEITY IN MIXED-METAL MOFS

<u>Harry Geddes</u>¹, Adam Sapnik¹, Edwina Donlan¹, Hanna Boström¹, Emily Reynolds¹, Hamish Yeung¹, Andrew Goodwin¹ ¹Department of Chemistry, University of Oxford, Oxford, United Kingdom E-mail: harold.geddes@chem.ox.ac.uk

Compositional heterogeneity is an essential ingredient in a number of functional materials,^[1] with mixed-metal and mixed-linker metal–organic frameworks (MOFs) emerging as an important class of compositionally-complex materials. Making use of a wide range of complementary techniques (variable-temperature X-ray powder diffraction, scanning electron microscopy (SEM) and a combination of infrared spectroscopy, non-negative matrix factorisation (NMF) and reverse Monte Carlo refinement) we show that two MOF families support inhomogeneous distributions of cations – mixed-metal formate perovskites with general formula $[C(NH_2)_3]M_{1-x}Cu_x(HCOO)_3$ (M = Mn, Zn, Mg)^[2] and Zn_{1-x}Cd_x(mIm)₂ (HmIm = 2-methylimidazole).^[3]

For the formate perovskites we have studied, the observation of Cu clustering has important implications for the formation of polar nanoregions and hence relaxor behaviour. Cd doping in the ZIF-8 framework drives a fivefold reduction in the magnitude of thermal expansion behaviour. We interpret this effect in terms of an increased density of negative thermal expansion modes in the more flexible Cd-rich frameworks.

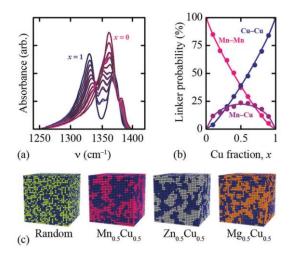


Figure 1. (a) Normalised IR absorption spectra of $[C(NH_2)_3]Cu_xMn_{1-x}(HCOO)_3$ in the formate C–O stretching region (coloured lines) with NMF fits in black. (b) NMF linker distributions (data points) with equilibrium fit $(\Delta_{Hmix} = 3.1 \text{ kJ mol}^{-1})$ as a solid line. (c) Representative x = 0.5 RMC configurations for M = Mn, Zn, and Mg, showing nanoscale clustering of Cu-rich regions (dark blue).

REFERENCES

- [1] E. Dagotto, *Science*, **2005**, 309, 257–262.
- [2] E. A. Donlan, H. L. B. Boström, H. S. Geddes, E. M. Reynold, A. L. Goodwin, *Chem. Comm.* **2017**, *53*, 11233–11236.
- [3] A. F. Sapnik, H. S. Geddes, E. M. Reynolds, H. H.-M. Yeung, A. L. Goodwin, *Manuscript in preparation*.