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Abstract

Spin ice materials are rare-earth compounds where the Ising-like magnetic mo-
ments form a lattice of corner-shared tetrahedra (pyrochlore lattice), and the spin
configurations at low temperatures follow the 2-in/2-out ice rule. The degeneracy of
the ground-state ice manifold increases algebraically with the number of spins, pro-
viding a finite residual entropy, just like in the water ice. The ice manifold supports
magnetic monopole-like excitations. The spin ice physics also arises in artificial spin
ices, where single-domain nanomagnets are arranged in specific structures and cou-
pled by their dipolar magnetic fields. Recently, a lattice of coupled superconducting
flux qubits [1] realized a new type of artificial systems, where quantum effects are
also present.

Inspired by this quantum artificial spin ice system, I study the phase diagram of
the “anisotropic” quantum six-vertex model on the square lattice. The six vertices
represent the 2-in/2-out configurations in the spin ice. In the model, the two types
of vertices have a different energy, quantum fluctuations are taken into account by
off-diagonal terms flipping the arrows along the sides of a square plaquette, and
a corresponding diagonal part extends the Hamiltonian to a Rokhsar-Kivelson-like
model. In the absence of the quantum flipping term, the classical phase diagram
consists of three phases – a 2-fold degenerate totally flippable phase, a 4-fold de-
generate phase optimizing for the energy of the vertices, and a manifold with non-
flippable states. The introduction of the flipping terms leads to a plaquette phase
of arrows resonating on alternating squares [2]. I determined phase boundaries for
the quantum model analytically using variational and perturbational techniques
and numerically by exact diagonalization of clusters having up to 72 spins.
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1 Introduction

1.1 The water and spin ice
In the water ice crystal, the O2− ions form a lattice of coordination four, and between

each nearest neighbor pair of oxygen ions is a proton (H+). Because of charge neutrality,
two of the neighboring hydrogen ions are near their oxygen ion, and two are further away
– this condition is called the ice rule or Bernal–Fowler rules [3]. In 1935, Pauling noted
that the number of configurations WN conforming to ice rule grows exponentially with
the number of oxygen ions N [4]. He estimated WN ≈ (3/2)N , leading to a residual
entropy S = kB · lnWN = kBN ln (3/2). Therefore we can define the zero-temperature
entropy as an extensive quantity.

In 1956, Anderson proposed that the charge frustration in magnetite, given by the
chemical formula [Fe3+]A[Fe3+Fe2+]BO4, leads to a ground state degeneracy that is also
governed by the ice rule [5]. The subscript A denotes the tetrahedrally, and B the
octahedrally coordinated lattice sites of AB2O4 the spinel. The ions on the B sites form
a pyrochlore lattice, which is a lattice built from corner-shared tetrahedra. The charge
frustration can be modeled by antiferromagnetically coupled Ising spins on a pyrochlore
lattice. The Ising spins stand for the deviation from the charge neutrality. A further
example is the recently discovered spin ice, where the role of the Ising spins is played by
the anisotropic magnetic moments of the rare-earth ions forming the pyrochlore lattice
[6].

In 2020, King et al.[1] realized a new type of artificial spin ice made by a radio-
frequency superconducting flux qubits system. They checked the validity of the ice rule at
finite temperatures and experimentally investigated magnetic monopole-like excitations.
Their setup allows studying quantum phenomena, which encourages further research
and potential applications. Here I present a minimal model, which introduces the basic
features of their system.

1.2 Quantum six-vertex model and square lattice
The displacement of the H+ ions from the center of the bonds in water ice can be

represented by arrows emanating into and from the lattice points standing for the O2−

ions. The ice rule is equivalent to having six possible configurations of 2-in/2-out arrows.
The ice rule expressed with such arrows is the six-vertex model.

The two-dimensional six-vertex model is called the square ice model. In 1967, Lieb
found the exact solution of the residual entropy for the square ice S = kBN ln (4/3)3/2 [7].
The six-vertex model can be extended by dynamics arising from quantum phenomena,
and we get the so-called quantum six-vertex model (Q6VM). Here the quantum effect is
manifested by a finite-amplitude flipping term in the Hamiltonian. This term reverses the
arrows on a plaquette, where arrows are joined nose to tail. For the square lattice, this
type of dynamics is shown in Fig. 1 in different types of representations (see Appendix
A).
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(a) (b) (c)

Figure 1: The act of the quantum flipping on a flippable plaquette of the square lattice
(a) in the arrow representation, (b) in the flipping representation, and (c) in the fully
packed loop representation.

In 2004, Shannon et al. [2] considered the frustrated Ising model on the checkerboard
lattice, which can be mapped to the Q6VM on the square lattice. They used the following
Hamiltonian to describe the system:

HQ6VM = Ht +HV ,

Ht = −t
∑

plaquettes

(
|	〉〈�|+ |�〉〈	|

)
, (1)

HV = V
∑

plaquettes

(
|	〉〈	|+ |�〉〈�|

)
,

where the sum is over the squares (plaquettes) of the lattice. Here Ht is an off-diagonal
term presenting the quantum flipping of the arrows, and HV is a diagonal term measuring
the number of the flippable plaquettes.

They found three phases for different V/t ratios. For V < Vc ≈ −0.3437t, we find
the “totally flippable” states, where every plaquette in the lattice is flippable – for spin
systems, it is named Neél phase. In contrast, the flippable plaquettes are suppressed for
V > t. This will result in a phase consisting of isolated states, with no flippable plaquettes.
These are exact eigenstates of the Hamiltonian (1) with 0 energy. The V/t = 1 realizes the
quantum critical point of Rokhsar-Kivelson (RK point), where all classical configurations
have the same amplitude in the ground state. For Vc/t < V/t < 1, there is a two-fold
degenerate ground state as a consequence of the quantum flipping term, what we call the
“plaquette phase”.

The plaquette phase is a key concept in the Q6VM. The states of the plaquette phase
contain flippable corner-shared plaquettes which resonate independently from each other,
see Fig. 2. Hence we can distinguish two corresponding states, whose wave functions I
denote by |Ψ〉AD and |Ψ〉BC, as shown in the figure. The |Ψ〉AD can be approximated by
the following variational wave function:

|Ψ〉AD = 1
2 |	 + �〉A |	 + �〉D , (2a)

|Ψ〉BC = 1
2 |	 + �〉B |	 + �〉C , (2b)

where |	 + �〉A represents the resonating flippable plaquettes in cells A, introducing a
notation used throughout this paper.
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Figure 2: The square lattice can be divided into quadripartite cells. In the plaquette
phase, the flippable states on the corner-shared plaquettes (e. g. A and D) resonate
independently from each other. The two possible choices of the resonating plaquettes are
highlighted with colors: A and D with pink, and B and C with white. Thus the plaquette
phase has 2-fold degeneracy.

In my research, I apply an extended version of the Q6VM motivated the artificial
spin ice of King et al. [1]. It turns out that distinguishing between the energy levels
of the allowed vertex configurations affects the classical and quantum phase diagram
significantly. The six possible vertex configurations of Q6VM can be divided into two
types, as shown in Fig. 3. Let us denote the operator that measures whether a vertex
belongs to Type I or to Type II by |κI〉 〈κI| or |κII〉 〈κII|. If a Type I vertex has εI energy
and a Type II vertex has εII energy, the energy difference is J = εII−εI. As a consequence,
a new term (HJ) appears in the effective Hamiltonian H. I call this extended model the
anisotropic quantum 6 vertex model, with the Hamiltonian

H = HV +Ht +HJ , (3)
HJ =

∑
vertices

J |κII〉 〈κII| .

Type I

Type II

Figure 3: The two types of possible vertex-configurations in Q6VM.
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2 Classical phase diagram
In this section, I will investigate the properties of the square lattice using analytical

and numerical tools. In section 2.1, I prepare the finite size cluster to compute, define
topological sectors and use them to classify the states. Following this, in section 2.2, I
will construct the classical phase diagram and characterize its phases.

2.1 The construction and the topology of the lattice
I construct clusters with periodic boundary conditions generated by two lattice vec-

tors, as shown with green arrows in Fig. 4(a) for the cluster made of 16 vertices. To
characterize a cluster, I use its symmetries and its system size N . System size indicates
the number of vertices, thus the system contains 2N spins represented by arrows. I gen-
erate the ice rule configurations starting from a reference state containing only flippable
plaquettes, as shown in Fig. 4(a). It is easy to see that by flipping a (flippable) plaquette,
or bonds along a random closed-loop built by interlocking arrows, we generate a new
state that satisfies the ice rule. Therefore I implemented a random algorithm to find all
or almost all possible six-vertex configurations of a given cluster. These configurations
span the Hilbert space.
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Figure 4: (a) A finite size cluster with periodic boundary conditions and system size
N = 16, defined by green arrows. The vertices (sites) are shown by red points. All
the plaquettes are flippable, this is the reference state used to construct the six-vertex
configurations. In this case, the point group symmetries of the cluster are the same as of
the original square lattice. (b) The number of states in each topological sector for this
cluster.

The configurations can be divided into topological sectors. Two configurations are in
the same topological sector if they can be transformed into each other only by flipping
plaquettes. In general, for a cluster with periodic boundary conditions (isomorphic to
a torus), topological sectors are described by two indices representing the signed sum
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of the directed bonds crossing the two boundaries (or any horizontal and vertical line).
The periodic condition and the ice rule guarantee the unique value of the indices. As
an example, Fig. 4(b) presents the topological (sector) map of a 16-vertex system. A
special property of the square lattice is that in the inner part of the topological map, all
states with the same indices are connected by flipping plaquettes (they are in the same
topological sector). Whereas, at the border, an index pair covers several sectors separated
from each other. On this lattice, it is precisely the states without flippable plaquettes
that form a sector alone – these are the isolated states.

2.2 Analytic description of the classical case
In the classical case corresponds to t=0, when the off-diagonal terms in the Hamilto-

nian are absent and only the diagonal terms remain,

HCl = HV +HJ =
∑

plaquettes
V
(
|	〉〈	|+ |�〉〈�|

)
+

∑
vertices

J |κII〉 〈κII| . (4)

The energy of a state is determined only by the number of the flippable plaquettes (nV )
and the second-type vertices (nJ). Therefore, the energies of each state can be compared
using only these two numbers for given values of V and J . For a finite system with
periodic boundary conditions, the energy of a given state Φ is

E = 〈Φ|HCl|Φ〉 = V nV (Φ) + JnJ(Φ) . (5)

Hence, to sketch the classical phase diagram it is enough to know the possible values of
(nV (Φ), nJ(Φ)) pairs. According to this, I noted three constraints – derived in Appendix
B:

nJ ≤ N , (6a)
2nV + nJ ≤ 2N , (6b)
N ≤ nV + nJ , (6c)

for a cluster formed by N vertices. The six-vertex states can be characterized by their
(nV (Φ), nJ(Φ)) pairs, as shown Fig. 5(a) for the cluster with system size N=16.

Based on these findings, I found 3 possible phases, and the classical phase diagram
is presented in Fig. 5(b). One of these is the 2-fold degenerated totally flippable phase
containing states that have only flippable plaquettes and Type I vertices (nV = N ,
nJ = 0). The classical state can be written in the following form:

|TF1〉 = |	〉A |	〉D ≡ |�〉B |�〉C , (7)
|TF2〉 = |�〉A |�〉D ≡ |	〉B |	〉C .

The remaining two phases contain only Type II vertices (nJ = N). The second one,
called the square phase, maximizes the number of flippable plaquettes (nV = N/2) and it
is 4-fold degenerate. The third one is the isolated phase with non-flippable configurations
(nV = 0). It is a subextensive manifold.
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Figure 5: (a) The possible (nV , nJ) pairs for system size N=16. (b) The classical phase
diagram of the square lattice. Every individual phase has a characteristic (nV , nJ) value
pair, structure, and degeneracy – the latter is shown on the diagram. The slope of the
boundary line between the totally flippable and square phase is 1/2, between the totally
flippable and isolated phase is 1.

Of these, the appearance of the square phase is new compared to previous findings.
Its four classical states motivate the quadripartite decomposition of the square lattice,
which can be used to establish a connection with the plaquette phase that will appear
in the quantum case. The visual representation of these remarks is in Fig. 6. The wave
functions of the four classical square states are

|SqA〉 = |	〉A |�〉D , (8a)
|SqD〉 = |�〉A |	〉D , (8b)
|SqB〉 = |	〉B |�〉C , (8c)
|SqC〉 = |�〉B |	〉C , (8d)

where the states are indexed by the counterclockwise oriented flippable plaquettes. Inter-
estingly, in both the fully packed and flipping representations, the classical square states
actually show up as squares.

(a) (b) (c)
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D C D
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Figure 6: The classical square state |Ψ〉Sq1 in the quadripartite lattice (a) in the ar-
row representation, (b) in the flipping representation, and (c) in the fully packed loop
representation.
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3 Quantum phase diagram
Having constructed the classical phase diagram, we turn our attention to quantum

effects with a finite value of t. I will apply different analytical and numerical methods to
draw a J/t− V/t diagram.

3.1 Symmetries and order parameters
To determine and describe the different phases in the quantum mechanical case, I

shall find their order parameters and the symmetries that they break, characterizing the
long-term order. To achieve this, I have to find out the symmetry properties of the lattice.

All of the known phases of the (0,0) topological sector (totally flippable, plaquette,
and square) are compatible with the quadripartite decomposition of the lattice – they
are invariant with respect to translations by (2, 0) and (0, 2) lattice vectors. Thus I have
drawn the vertex configuration shown in Fig. 7, whose symmetries are the same as those
of the finite periodic lattice and are also valid in the infinite limit.

1 33

87

4

5

6

7
25

2

Figure 7: A four-site unit cell containing eight enumerated bonds.

The following four elementary transformations generate the symmetry group of the
four-site cluster: a translation τx along the horizontal direction, a translation τy along the
vertical direction, a 4-fold rotation C4, and an reflection σ in the vertical plane. Using
cyclic permutations they are written as

σ = (2, 5)(4, 6) , (9a)
C4 = (1, 4, 8, 6)(2, 7, 5, 3) , (9b)
τx = (1, 3)(2, 5)(4, 6)(7, 8) , (9c)
τy = (1, 8)(2, 4)(3, 7)(5, 6) . (9d)

To investigate this problem, it is convenient to choose the fully packed loop representation
(see Appendix A). In the reference state, the horizontal bonds are charged, the vertical
ones are not. Here flipping a plaquette corresponds to rotating the position of the charged
bonds by 90◦ – the uncharged bonds become charged and vice versa. It is shown in
Fig. 1(c), where the purple color stands for charged bonds, the green color for uncharged
bonds. The fully packed loop representation is closely related to the quantum dimer
model of Rokhsar and Kivelson [8].
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The advantage of this representation is that it converts the direction of a bond to a
scalar quantity (charge) which is more easily treated to define order parameters. Conse-
quently, I can interpret quantities in the four-site unit cell presented as functions of the
charge of the bonds. The order parameters are also such quantities. From the unit cell,
most of these can be generalized also to the finite, periodic lattice.

The irreducible representations of the symmetry group of the four-site unit cell can
be used to identify the order parameters. After calculations, it turns out, there is an
order parameter transforming as a one-dimensional, and three pairs transforming as a
two-dimensional irreducible representation. Fig. 8 visually presents them.

Figure 8: The non-zero order parameters of the system. The red and green colors measure
the charge of the bonds with opposite signs. The weights on the grey bonds are 0.

These order parameters distinguish the totally flippable and the square phases. They
can also be used to identify the order of the phase transitions. For this, we should
construct the Landau free energy. This is under investigation, as I will mention in section
4.2.

Furthermore, we shall be careful when we extend the translation operator to the lattice
in each representation. This is because, in the arrow and flipping representations, the
translations of the arrows by unit lattice vectors result in the conjugation of the reference
state, whereas in the fully packed loop representation the reference state is invariant
under τx and τy. In the arrow and flipping representations, the conjugation C means we
reverse the direction of all arrows. It is worth noting that C commutes with all generators
of the symmetry group and the Hamiltonian. Furthermore, C2=1. In the fully packed
loop representation, the C makes the uncharged bonds charged and vice versa. Therefore
we define the operators Tδ and T̃δ of translation with δ = (δx,δy) for the arrow and the
fully packed loop representation:

Tδ =
∑

Unit cells
τ δx
x τ

δy
y C , (10a)

T̃δ =
∑

Unit cells
τ δx
x τ

δy
y . (10b)

These operators leave the reference state unchanged in both representations, to ensure
the consistency of the used representations. Consequently, let us see how the classical
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states of the totally flippable and the square phases transform under the elementary
translations in the arrow or flipping representation:

T(1,0) |TF1〉 = T(0,1) |TF1〉 = |TF1〉 , (11a)
T(1,0) |TF2〉 = T(0,1) |TF2〉 = |TF2〉 , (11b)
T(1,0) |SqA〉 = |SqB〉 , T(0,1) |SqA〉 = |SqC〉 , (11c)
T(1,0) |SqB〉 = |SqA〉 , T(0,1) |SqB〉 = |SqD〉 , (11d)
T(1,0) |SqC〉 = |SqD〉 , T(0,1) |SqC〉 = |SqA〉 , (11e)
T(1,0) |SqD〉 = |SqC〉 , T(0,1) |SqD〉 = |SqB〉 . (11f)

3.2 A simple phase diagram by a variational method
Based on the previous results and the classical phase diagram, there are at least

four phases (totally flippable, square, isolated, and plaquette) that should appear in the
quantum phase diagram. I will sketch a variational phase diagram by comparing the
expectation values of the Hamiltonian for the wave function of different phases.

For the totally flippable, the square, and the isolated classical states 〈Ψ|Ht|Ψ〉 = 0,
becauseHt contains only off-diagonal terms. Their energies are the same as in the classical
limit, see equation (5). In the case of the plaquette phase, I should calculate probabilities
to determine the expected value of the number of the flippable plaquettes and the Type
II vertices, derived in the following (|ΨPlaq〉 is one of wave functions from equation (2)):

EPlaq = 〈ΨPlaq|H|ΨPlaq〉 = 〈ΨPlaq|HV |ΨPlaq〉+ 〈ΨPlaq|HJ |ΨPlaq〉+ 〈ΨPlaq|Ht|ΨPlaq〉 ,

EPlaq =
(
N

2 + N

2 ×
2
24

)
V + 2

22 ×NJ −
N

2 × t = N ×
(9V

16 + J

2 −
t

2

)
. (12)
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Figure 9: The quantum phase diagram of the variational approximation.
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Comparing the energies I can identify the phase of the ground state at every point.
Hence, I get an approximate phase diagram in Fig. 9.

This simple variational approximation fails to reproduce the precise phase boundaries
on the isotropic (J/t = 0) line: the boundary between the plaquette and isolated phase
is at V/t = 8/9, instead of the exact V/t = 1 (the Rokhsar-Kivelson point) [2]. It is the
consequence of the variational approximation overestimating the energy of the plaquette
phases. In addition, each isolated state is an exact eigenstate of the Hamiltonian with
energy EIso = NJ . Hence this particular boundary point is larger than V/t = 8/9,
reconciling with the previous works.

3.3 Ground states and phase boundaries with exact diagonal-
ization

Based on the discussion above, we may assume that the totally flippable, square and
plaquette phases appear in the quantum phase diagram, but do they exhaust all the
possibilities? And what are the precise transitions between them? To characterize and
localize these phase boundaries I use two methods. The first one is the numerically exact
diagonalization (ED) for finite clusters with the Lánczos method. This will provide the
energies of the ground and low-lying excited states. The second one is the comparison
of the ground state energies obtained from fourth-order perturbation theory, detailed in
section 3.4.

Firstly, I checked for the smaller system size N = 16 to which topological sectors the
ground states belong. The classical states of the totally flippable, square phases and the
plaquette phases are in the topological sector (0,0), while for the isolated states at least
one of their topological indices must be extremal. From the variational approximation,
we expect to see only these two types of topological sectors. The results are surprisingly
different because other sectors also appeared in the diagram at the boundary between the
totally flippable and the isolated phase, as is shown in Fig. 10. For bigger system sizes
(N=20, 32, 36), I obtained similar results. Their origin is currently under investigation,
as will be mentioned in section 4.2. In this paper, I will not deal with this part of the
phase diagram.

Knowing the symmetry properties of the classical states of the totally flippable and
square phases, we can construct states that transform according to the irreducible repre-
sentations of the translation group, using equations (7) and (8):

|TF(0,0)e〉 = |TF1〉+ |TF2〉 , (13a)
|TF(π, π)o〉 = |TF1〉 − |TF2〉 , (13b)
|Sq(0,0)e〉 = |SqA〉+ |SqD〉+ |SqB〉+ |SqC〉 , (13c)
|Sq(π,π)e〉 = |SqA〉+ |SqD〉 − |SqB〉 − |SqC〉 , (13d)
|Sq(π,0)o〉 = |SqA〉 − |SqD〉 − |SqB〉+ |SqC〉 , (13e)
|Sq(0,π)o〉 = |SqA〉 − |SqD〉+ |SqB〉 − |SqC〉 . (13f)
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Figure 10: The topological sectors of the ground states in the quantum phase diagram,
with system size N=16. Started from the Rokhsar-Kivelson point other unexpected
sectors appear in the phase diagram.

They are at the k=(0,0), (π,0), (0, π), and (π,π) points in the Brillouin zone. The sub-
scripts e and o denote whether the wave functions are even or odd under the application
of conjugation C. Using exact diagonalization for several system sizes (N=16, 20, 26, 32),
I check that these states indeed appear in the ground states of the totally flippable and
square phases.

The Lánczos method is an iterative procedure that calculates a spectrum starting from
an initial state by applying the Hamiltonian successively. It preserves the symmetry,
i. e. the momentum of the state in the Brillouin zone, of the initial state, or in other
words, does not leave the symmetry sector. As a result, we obtain the ground and low-
lying excited states in the symmetry sector determined by the initial state. Therefore I
initialized the Lánczos method from the states given by equation (13). Fig. 11 presents
results for a system N=32.

There are several things I need to clarify or at least note about the results. The first
one is the energy levels of |Sq(π, 0)o〉 and |Sq(0,π)o〉 are the same with high precision.
Since these belong to the same irreducible representation of the space group (D4 × T ),
this result is as expected.

The second one is related to the states at the momentum (π, π) of the Brillouin
zone. Here the spectra of the Lánczos ED starting from |TF(π, π)o〉 and |Sq(π, π)e〉 were
distinct. Its reason is that they have different symmetry properties, namely respect to
the conjugation C, preserved by the Lánczos method.
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Figure 11: The energy levels in different symmetry sectors for a cluster with system size
N=32. The circles are labeled by the initial wave functions defined by equations (13),
and the radii of the circles denote their overlap with the particular state.

For large negative values of V/t, we recognize four low-lying states separated by a gap
from the rest of the spectrum. These belong to the square phases, which split because of
the finite size of the system. As V/t approaches zero, the two odd states are separated
by an increasing gap from the two even states. These two even states make the plaquette
phase [2]. Therefore it is a suitable approximation to consider the crossing point of the
levels of |TF(π, π)o〉 and |Sq(π, 0)o〉 (or |Sq(0, π)o〉) as the boundary between the square
and plaquette phases.

Similar observations can be made for the large positive values of V/t, where there are
two finite-size split states of the totally flippable phase. Here the crossing point of the
levels of |TF(π, π)o〉 and |Sq(π, π)e〉 is the boundary between the totally flippable and
plaquette phases. We note that for all three phases in the (0,0) topological sector the
ground state has the same momentum (π, π)e.

In my experience, this method worked well only over a certain range. For values
of V/t below the point where all three phases of the topological (0, 0) sector meet, the
order of levels changed and the spectrum looked different. Therefore it was difficult
to identify the phase boundary between the totally flippable and square phases from the
data. For 0.37 < V/t < 1 and negative values of J/t, the appearance of the isolated phase
makes the search for the crossing of the levels of |Sq(π, 0)o〉 and |TF(π, π)o〉 meaningless.
Furthermore, we should take care for the appearance of the other (unexpected) topological
sectors for J/t > 0 and V/t > 1. Hence I investigated only in the range V/t ≤ 1.

In the end, this allowed to meaningfully define parts of the upper and lower boundaries
of the plaquette phase. The calculations were mainly performed for a system size ofN=32.
At some points, I repeated the procedure forN=16,20,26,36 system sizes to perform finite-
size scaling – a procedure that has been successfully applied in the isotropic limit case
[2]. However, the results showed that the finite-size scaling is not well defined.
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As a next step, we focus on the boundary of the isolated phases for J/t ≤ 0. The
problem here is much simpler than in the (0,0) topological sector because the ground
state energy of the isolated states is exactly EIso = NJ (see the discussion of the equation
(5)). Comparing this value with the numerically calculated ground state energy (using
ED on the Hamiltonian) I read off the boundaries. As a check, I can simply calculate
the eigenfunction of the ground state to see whether it really contains only the classical
isolated states.

Finally, I could draw a phase diagram for −1.75 < V < 1 using exact diagonaliza-
tion. The result is shown in Fig. 12.
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Figure 12: The explored phase diagram for system size N=32 with exact diagonalization.

3.4 Phase boundaries from perturbation theory
In this section, I approach the problem of finding the phase boundary by using fourth-

order perturbation theory in Ht analytically. I calculated the energy corrections of the
ground state for the square and totally flippable phases. Comparing these two energies
we obtain the first-order boundary between the corresponding phases. Similarly, we may
get the boundary between the isolated states and the squares phases as well (in this case,
the ground state energy of the isolated states is known exactly). The textbook of Messiah
gives [9] the nth order correction of the ground state energy:

ε(n) = Tr
(n−1)∑

k1,k2,...kn+1=0
gk1V gk2V..V gkn+1 , (14)

where V is the perturbation operator (here V=Ht) and g is an operator defined by the
ground state wave function |0〉, ground state energy E0, unperturbed Hamiltonian H0

13



(now H0 = HCl) and its orthonormal basis {ϕ}:

gk =


− |0〉 〈0| k = 0 ,∑
ϕ6=|0〉

1− |0〉 〈0|
(E0 − 〈ϕ|H0|ϕ〉)k

k ≥ 0 . (15)

Since HCl is diagonal for the classical states, the calculation of the perturbation series is
straightforward for the square and totally flippable phases. Let us choose |0〉 as one of
the classical states given in equations (7) and (8). It is easy to see that the first- and
third-order corrections vanish, and we are left with the following formulas for the second
and fourth orders corrections (see Appendix C):

ε(2) =
∑
X

1
E0 − EX

〈0|Ht |X〉 〈X|Ht |0〉 , (16)

ε(4) =
∑
X

∑
YX

1
(E0 − EX)2(E0 − EYX

) 〈0|Ht |X〉 〈X|Ht |YX〉 〈YX |Ht |X〉 〈X|Ht |0〉

−
(∑

X

1
(E0 − EX)2 〈0|Ht |X〉 〈X|Ht |0〉

)(∑
X

1
E0 − EX

〈0|Ht |X〉 〈X|Ht |0〉
)

(17)

where |X〉 is a classical state available by a single flip from the classical ground state |0〉,
|YX〉 6= |0〉 is also a classical state available by the flipping of only one plaquette from
|X〉.

Let us start with the case of the totally flippable phase. I illustrated the possible |X〉
and |YX〉 states in Fig. 13. From the equations above, we obtain the following corrections
to the energy:

ε
(2)
TF = Nt2

4(V − J) ,

ε
(4)
TF = Nt2

16(V − J)2

[
4× 2

6(V − J)t
2 + 4× 2

7V − 8J t
2 + (N − 13)× 2

8(V − J) t2
]

− Nt2

16(V − J)2
Nt2

4(V − J) = Nt4

16(V − J)2

[
8

7V − 8J −
23

12(V − J)

]
.

Similarly, I can repeat the same steps for the square phase. The possible |X〉 and
|YX〉 states is shown in Fig. 14, and its corrections are

ε
(2)
Sq = N

2 ×
1

4J t
2 = Nt2

8J ,

ε
(4)
Sq = N

2 ×
t2

16J

[
4× 2

8J − V t
2 + 4× 2

6J t2 + (N/2− 9)× 2
8J t2

]

−
(
N

2

)2
× t2

16J2 ×
t2

4J = Nt4

16J2

[ 4
8J − V −

11
24J

]
.
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Figure 13: The excited states |X〉 and |YX〉 appearing in the equation (17) for the fourth-
order correction of the ground state energy of the totally flippable phase. I noted the
ground state energy (E0), the excitation energies of the different states, and the number
of possible transitions between them.
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Figure 14: The excited states |X〉 and |YX〉 appearing in the equation (17) for the fourth-
order correction of the ground state energy of the square phase. I noted the ground state
energy (E0), the excitation energies of the different states, and the number of possible
transitions between them.
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The ground state energies up to the fourth-order in the flipping amplitude t are

E
(4)
TF = NV + ε

(2)
TF + ε

(4)
TF , (20)

E
(4)
Sq = NV

2 +NJ + ε
(2)
Sq + ε

(4)
Sq . (21)

Solving E
(4)
TF = E

(4)
Sq we can draw the phase boundary between the corresponding

phases. Its analytic form is

J = V

2 + t2

4V + t4

48V 3 +O(t6) . (22)

Similarly, with EIso = E
(4)
Sq the phase boundary of the square and the isolated phases

is
V = − t2

4J + t4

192J3 +O(t6) . (23)

I plotted these curves in Fig. 15 together with their Padé approximants and with the
numerical results of the ED calculation. The Padé approximants allow estimating the
convergence of the perturbation series. The results are reinforcing each other: the curves
meet at two triple points to two decimal places. It is worth noting that the boundaries
of the isolated and square phases from the ED and the fourth-order perturbation agree
to two decimal places.
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Figure 15: Comparing the phase boundaries calculated by ED and fourth-order perturba-
tion. We show the direct perturbational series together with their Padé approximants to
estimate the convergence of the series. (a) The perturbational curve gives the boundary
between the totally flippable and the square phases. It meets the lines (TF-Pl and Sq-Pl)
from the ED at triple point V/t ≈ −1.75 and J/t ≈ −1.01. The Padé approximants do
not deviate significantly in the relevant range. (b) The perturbational curve shows the
boundary of the square and the isolated phases and the results of the ED near to the
triple point V/t ≈ 0.37 and J/t ≈ −0.72. For V/t < 0.37, the results of the ED and the
perturbational approach are the same to two decimal places.
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4 Summary

4.1 Interpretation of the results
First, I focused on the classical case, where I identified the classical states that will

be important later on, introduced their topological properties, and defined the classical
states. I studied the problem computationally by generating finite-size clusters with
periodic boundary conditions and system sizes N=16,20,26,32 and 36.

After that, I used a simple variational approximation to sketch a quantum phase
diagram for t 6= 0. I found four different phases which can be characterized by their
symmetries, topological sectors, and degeneracy of the ground state manifold – Tab. 1
summarizes the two last properties.

Phase name Ground state degeneracy Topological sector(s)
Totally flippable 2 (0,0)

Plaquette 2 (0,0)
Square 4 (0,0)
Isolated ∼ 2

√
N Sectors with extremal indices

Table 1: The basic properties of the explored phases.

For system size N=16 I checked whether other phases or sectors appear in the phase
diagram or not. It turned out that the variational approach gives a qualitatively correct
picture, except for the range enclosed by lines V/t > 1 and J/t > 0, where other topo-
logical sectors appear as a ground state (see Fig. 10). In this paper, I did not consider
this part of the phase diagram.

To determine the phase boundaries approximately, I used exact diagonalization with
the Lánczos method for a cluster with system size N=32 and calculated the fourth-
order energy corrections of the phases analytically by perturbation theory. The different
approaches nicely agreed. The different parts of the explored phase diagram are shown
by Fig. 12 and 15.

4.2 Open questions
Many questions remain open in this model. One of the interesting questions is the

order of the phase transitions. We hope to get an answer by constructing Landau free
energy following the symmetry classification of the phases and order parameters. This
would be particularly important for the plaquette phase boundaries. Furthermore, the
order parameters may help in numerical calculations as well. It seems that one of these
quantities is proportional to the number of Type II vertices nJ , and can be used to
effectively determine the boundary between square and totally flippable phases. The
preliminary results were in agreement with the fourth-order perturbation calculation to
several decimal places. In the near future, we hope to be able to develop the theory in
more detail and to perform further more accurate calculations.
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Another promising idea is to refine the variational Ansatz we used. The variational
wave function of the plaquette phase (see equation 2) can be generalized as the following
forms:

|Ψ′(q)〉AD = 1
2 + 2q2 |(1 + q) 	 +(1− q) �〉A |(1 + q) 	 +(1− q) �〉D , (24a)

|Ψ′′(p)〉AD = 1
2 + 2p2 |(1 + p) 	 +(1− p) �〉A |(1− p) 	 +(1 + p) �〉D , (24b)

It is easy to see that for q=p=0 these expressions give back |Ψ〉AD. For q=1, we get as a
result |Ψ′(1)〉=|TF1〉, and for q=−1 |Ψ′(−1)〉=|TF2〉 – this suggest that the parameter
q proportional to the order parameter of the totally flippable phase. Similarly, since
|Ψ′′(1)〉=|SqA〉 and |Ψ′′(−1)〉=|SqD〉, the parameter p is connected to the order parameter
of the square phase. As a result, we can determine the phase boundaries of the phase in
the (0,0) topological sector more precisely. In addition, expanding the expectation value
of the Hamiltonian in q and p will provide us with hints about the order of the phase
transitions.

We can also design a wave function

|Φ(r)〉 = 1√
2 + 2r2

|	〉A |(1− r) 	 +(1 + r) �〉D . (25)

which interpolates between the wave functions of the totally flippable and the square
phases, |Φ(0)〉 = |TF1〉 and |Φ(1)〉 = |SqA〉. This can be a third way to determine this
boundary.

As a next step, we shall understand how the totally flippable phase turns into the
isolated phase in the range V/t > 1 and J/t > 0. The problem is caused by the emergence
of new topological sectors whose symmetries have not yet been identified and whose
ground state wave functions have not yet been identified analytically. While this is
a tractable problem numerically, it is highly desirable to construct a theory for this
transition. The classical states on the line nV + nJ=N in Fig. 5(a) could be a suitable
starting point for further theoretical investigations. It is conceivable that the quantum
term and the numerical investigations on finite-size clusters cause the energy levels of
these states to split the classical degeneracy at the phase boundary.

Finally, we shall calculate the dynamical structure factor and describe the possible
excitations. The dynamical structure factor could help to compare our results with
experimental findings at low temperatures. However, to access higher temperatures we
should extend our model with states showing magnetic monopole-like behavior, because
these do not obey the ice rule.
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A Representations of quantum 6-vertex model
There are many possibilities to represent a classical state in six-vertex models. Here

I summarize four representations that are common in the literature.
Arrow representation: Here we show the direction of the bonds between vertices, just

like the displacement vectors of the H+ ions in the water spin ice.
Flipping representation: Similar to the notation of Baxter’s textbook [10], I have arbi-

trarily chosen a totally flippable state as a reference, and I have colored gray or
blue a bond depending on whether it is still the same as in the reference or not. In
Fig. 16, the grey background shows the reference state.

Fully packed loop representation: It is connected to Anderson’s paper on charge frus-
tration in magnetite [5]. A loop segment represents a charge. Here a plaquette
is flippable if its two opposite sides are colored, or in other words, charged. Its
dynamic is that a flippable plaquette rotates by 90◦, as it was shown in Fig. 1. A
remarkable fact is the colored bonds must form continuous loops in the quantum
six-vertex model. This representation is related to the quantum dimer models.

Height representation: The ice rule implies that the divergence of a vertex vanishes.
Therefore we can arbitrarily choose a plaquette as a reference “height”, and decrease
or increase the height of the plaquettes around it by one, depending on the direction
of the arrow between them.
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Figure 16: The representations of the totally flippable (first 2 columns) and square states
(last 4 columns). Row-by-row they are the arrow, the flipping, the fully packed loop, and
the height representation.
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B Geometrical constraints of the classical states
The number of possible configurations in the ice rule manifold (W ) grows exponen-

tially with the system size (N). These configurations are identified as the classical states
and thus form the basis of the Hilbert space. In table 2, I collect the size of the (0,0)
topological sector (W(0,0)) and the possible six-vertex configurations for the used clusters.

N W(0,0) W

16 990 2970
20 5416 16248
26 73036 219108
32 962734 2891562
36 5482716 16448400

Table 2: The size of the (0,0) topological sector (W(0,0)) and the Hilbert space for a cluster
with system size N .

To calculate the energy of the classical states, we shall count the number of the flip-
pable vertices (nV ) and the Type II vertices (nJ) (see equation (5)). Here too, the ice rule
restricts the available (nV , nJ) pairs. For these, I have made the following observations:

1. The maximum number of nJ is N , this is equation (6a). It is easy to see that if all
of the horizontal or vertical lines in the lattice are directed nose to tail, all vertices
are Type II, i. e. the isolated and the square states. Therefore, this estimation is
sharp.

2. Out of the four plaquettes around a Type II vertex, at most two are flippable (see
Fig. 3). Since each plaquette contains four vertices, for fixed value of nJ , in the
most optimal case the number of flippable plaquettes nV ≤ N − 2nJ/4. It leads to
equation (6b).

3. There is no other configuration on the line 2nV +nJ = 2N connecting the square and
the totally flippable states besides them. Reaching equality implies if a plaquette
contains a Type II vertex, all of its vertices must be Type II. Therefore I fix a
flippable plaquette with Type II vertices then it generates the whole lattice. Thank
to the periodic boundary conditions, it is possible with proper layout, and they are
called square states. In other cases there would be such states which would have
less than four Type II vertices, thus they cannot satisfy the equality.

4. For a significant fraction of the ice-rule obeying states the equation nV + nJ=N
holds – these states show up on the line defining the lower boundary of the “triangle”
in the Fig. 5(a). I have not been able to construct a state, even by computer, for
which this sum would have been less than N . Although I have not found an exact
proof, I write the equation (6c) as an empirical constraint.
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C Detailed calculations for the fourth order pertur-
bation

In this section, I will derive for the special cases of the totally flippable and the square
phases that the first- and third-order corrections vanish, and the second- and fourth-order
corrections can be written in the forms of equations (16) and (17).

From the definition of Ht (see equation 1), if |0〉 is a classical state, we get:

Ht |0〉 = −t
∑

X∈{X}
|X〉 (26)

where {X} is the set of the classical states which is available from |0〉 with the flipping
of a single plaquette. Therefore we can easily calculate the following expressions using
the definition of g (see equation (15)):

〈0|Ht|0〉 = 0 , (27a)

gHt |0〉 =
∑
X

1
E0 − EX

|X〉 〈X|Ht |0〉 , (27b)

Let us express the correction to the fourth order - from equation (14) with substituting
V=Ht and using the lemmas (27). The first two order corrections are

ε(1) = 〈0|Ht|0〉 = 0 , (28a)

ε(2) = 〈0|HtgHt|0〉 =
∑
X

1
E0 − EX

〈0|Ht |X〉 〈X|Ht |0〉 . (28b)

At the third-order correction, we should note that two different classical states of {X}
are not connected with a simple plaquette flipping. Therefore we can write

ε(3) = 〈0|HtgHtgHt|0〉 − 〈0|Ht|0〉 〈0|Htg
2Ht|0〉 =

=
∑

X1,X2∈{X}

1
(E0 − EX1)(E0 − EX2) 〈0|Ht |X1〉 〈X1|Ht |X2〉 〈X2|Ht |0〉 = 0 (29)

Finally, we can write the fourth-order correction in the following form:

ε(4) = 〈0|HtgHtgHtgHt|0〉 − 〈0|HtgHt|0〉 〈0|Htg
2Ht|0〉 =

=
∑
X

∑
YX

1
(E0 − EX)2(E0 − EYX

) 〈0|Ht |X〉 〈X|Ht |YX〉 〈YX |Ht |X〉 〈X|Ht |0〉 (30)

−
(∑

X

1
(E0 − EX)2 〈0|Ht |X〉 〈X|Ht |0〉

)(∑
X

1
E0 − EX

〈0|Ht |X〉 〈X|Ht |0〉
)
,

where |YX〉 is a classical state which is available from |X〉 by a single plaquette flipping,
and |YX〉 6= |0〉.
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