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åkermanites
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Chapter 1

Introduction

Based on electronic transport properties –from an oversimplified point of view– materials
can either be conductors or insulators. Several types of insulators can be distinguished,
band insulators where the valence band is filled and the conduction band is empty and
they are separated by an energy gap, Anderson insulators where disorder localizes the
electrons and Mott insulators where electron-electron interactions prevent conductance.
In the following we will be concerned about Mott insulators and their magnetism.

The simplest model of electron-electron correlations in crystals is the acclaimed Hub-
bard model [1, 2, 3] introduced in the early sixties

HHubbard = −t
∑
〈i,j〉

(
ĉ†iσ ĉjσ + h.c.

)
+ U

∑
i

n̂i↑n̂i↓. (1.1)

This lattice model (with lattice sites i, j representing atomic orbitals) takes into account
three basic concepts: (i) The fermionic nature of electrons with spins σ = {↑, ↓}, i.e. the
Pauli principle (ii) The quantum mechanical tendency of electrons to delocalize, described
by the kinetic energy term and quantified by the real hopping amplitude t between adjacent
pairs of sites 〈i, j〉, and (iii) Electron-electron repulsion given by the onsite Coulomb energy
U > 0 responsible for correlations.

At exact half-filling –when the average number of electrons per site is one– increasing
the parameter U/t the electrons localize on the lattice sites and the itinerant (metallic)
system transforms to an insulator, a phenomenon dubbed as the Mott transition. In the
limit U/t→∞ the model can be mapped to the pure spin-Hamiltonian1

HHeisenberg = J
∑
〈i,j〉

Si · Sj, (1.2)

where J = 4t2/U > 0 is the effective exchange interaction between the spins, the re-
maining degrees of freedom of the localized electrons. This is a result of second order
perturbation theory. The model (1.2) is called the Heisenberg model 2 and it will be the
starting point of every calculation in this thesis. Going further in perturbation theory, tak-
ing into account multiple orbitals per site or spin-orbit coupling, playing with the filling,

1Sometimes stated poetically as “The charge degrees of freedom are frozen.”
2A positive J > 0 prefers an antiparallel alignment of neighboring spins, hence this model is called

antiferromagnetic. Up to my knowledge, there is no such simple way of deriving the ferromagnetic model
with J < 0 from an electronic lattice Hamiltonian similar to (1.1).
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introducing further neighbor hoppings or extending the range of the Coulomb repulsion
may lead to more and more complicated lattice spins models, but one usually takes a more
practical approach. One assumes that a magnetic insulator can be described by a lattice
spin model, and takes into account all the necessary and symmetry-allowed terms required
to describe the physical system at hand.

In what follows we give a brief introduction to Heisenberg models with a special focus
on their ground states, e.g. the possible magnetic orderings. Afterwards we introduce the
notion of geometric frustration and its consequences on the ground states of magnets. The
last part of the introduction is concerned about magnetoelectric phenomena and how they
can be understood based on spin models.

1.1 The Heisenberg model
The most famous model of magnetic insulators is the celebrated Heisenberg model

H =
∑
i,j

JijSi · Sj, (1.3)

that since its introduction almost a century ago [4] is still a subject of active research in
its several incarnations. Here we have presented the model in one of its simplest forms:
H is the Hamiltonian, i, j are points of some lattice, and Jij are the exchange constants
measuring the interaction strength between the spins Si sitting on the lattice, and we assume
translational and spin rotational invariance (and a finite range of interactions). Note that a
negative value of J favors parallel alignment of the spins (ferromagnetism) while a positive
one antialigns the spins, favoring antiferromagnetism. In the quantum version of the model
Si are vectors of spin operators of some spin-length S = 1/2, 1, 3/2, . . . . In the extreme
quantum case S = 1/2 the spin components are just one half of the Pauli matrices, in
the other extreme limit S → ∞ the spins can be thought about as three-dimensional unit
vectors |Si| = 1, resulting the classical Heisenberg model. The latter is frequently called
the O(3)-model referring to its symmetry under global O(3) rotations, and the spins are
called O(3) spins, or simply Heisenberg spins. We can generalize the classical model by
changing the dimension of the spin vectors resulting in the O(n) models, where for n = 2
we arrive at the so-called planar or XY model, and for n = 1 the spins simply become
Si = {±1} yielding the Drosophila melanogaster of statistical physics: The Ising model.

We can generalize the model in several ways, i.e. by defining anisotropic exchanges,
where Jij is promoted to a 3×3 real matrix (this matrix can represent symmetric exchanges,
and also antisymmetric ones called the Dzyaloshinskii-Moriya interactions):∑

i,j

JijSi · Sj  
∑
i,j

STi · Jij · Sj. (1.4)

Another type of anisotropy is of the form

Han =
∑
i

STi ·Λi · Si, (1.5)
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this is the so-called on-site or single-ion anisotropy (for S = 1/2 the on-site anisotropy is
missing). We will study models for S = 3/2 spins containing both types of the aforemen-
tioned anisotropies in Chapter 4 to describe the multiferroic antiferromagnet Sr2CoSi2O7,
with a simple easy-plane on-site anisotropy of the form

∑
i Λ(Szi )2, with Λ > 0, that wants

to lay the spins in the xy-plane. Finally one can add an external magnetic field h to the
system described by the Zeeman-term:

HZ = −
∑
i

hT · gi · Si, (1.6)

where we assume a homogeneous field, but let the gyromagnetic factor become a site de-
pendent matrix (g-tensor anisotropy). In what follows we will mostly consider isotropic
antiferromagnets, but we will consider the concrete dependence of Jij on the lattice points
in Eq. 1.3 in some detail.

1.1.1 Ordering in Heisenberg magnets
Here we very briefly describe the possible orders present in magnets described by the clas-
sical isotropic Heisenberg model (1.4) in real and Fourier space, give some illustrative
examples on the square lattice and some real world examples (mostly face-centered cubic
antiferromagnets). Afterwards we introduce the notion of geometric frustration and some
of its consequences, and we briefly mention the closely related and very actual topic of spin
liquids. We rewrite the Heisenberg Hamiltonian in a little more convenient form

H =
1

2

∑
i,δ

JδSi · Si+δ = N
∑
q∈BZ

J(q) Sq · S−q , (1.7)

where i ≡ Ri are points of some lattice withN sites and periodic boundary conditions, and
i+ δ is a shorthand for Ri + δ, and the δ-s are the lattice separation vectors Rj −Ri. By
lattice translation invariance the exchange couplings Jδ are independent of i, and 1/2 stands
against overcounting the bonds. We sort the Jδ-s by the increasing length of δ leading to
the common notation of first-, second-, third-, . . . neighbor exchanges as J1, J2, J3, . . .,
respectively. Conventions for the Fourier transforms and the derivation of Eq. (1.7) are
given in Appendix A. The Fourier transform of the exchange coupling is defined as

J(q) =
1

2

∑
δ

Jδe
−iq·δ , (1.8)

and BZ stands for Brillouin zone in Eq. (1.7). We are interested in the ground state of the
system (magnetic order). When we cool down the system starting from the high temper-
ature, paramagnetic phase we usually observe anomalies in the thermodynamic properties
at some finite temperature (dubbed as TC for Curie temperature in ferromagnets and TN
for Néel temperature in antiferromagnets): We see a sharp cusp in the heat capacity C
(and in the magnetic susceptibility χ) signaling a sudden loss of entropy, i.e. ordering.3

In Fig. 1.1(a) we show heat capacity measurements from 1928 [5] on three different kinds
of manganese oxides: The most pronounced cusp is observed for MnO around 120 K (the
other two compounds presented are MnO2 and Mn3O4). The inverse of the magnetic sus-

3The temperature dependence of the entropy is given as S(T ) =
∫ T

0
C(T ′)/T ′dT ′.
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Figure 1.1: (a) Temperature dependence of the heat capacity of MnO, MnO2 and Mn3O4.
The most pronounced cusp is observed for MnO at about TN ≈120 K signaling the phase
transition to an antiferromagnetically ordered state [5] (a small cusp at about 90 K can
be seen for MnO2, and there is no apparent sign of a phase transition for Mn3O4). (b)
Neutron scattering on MnO [6]. Lower panel: Bragg peaks of the underlying lattice in the
paramagnetic phase at 293 K. Upper panel: Additional magnetic Bragg peaks appearing in
the antiferromagnetically ordered state, measured at 80 K.

ceptibility at high temperature follows the Curie-Weiss law: χ−1 ∝ T − ΘCW , with ΘCW

being the Curie-Weiss temperature. The magnitude and sign of this quantity is character-
istic of the magnitude and sign of the exchange interactions (in ferromagnets and simple,
nonfrustrated antiferromagnets): kBΘCW ≈ −zJS2, where kB is the Boltzmann constant
and z is the coordination number. For simple antiferromagnets TN ≈ −ΘCW , meaning
that the exchange energy and the ordering temperature are roughly the same. For a sketch
of the inverse susceptibility of an unfrustrated antiferromagnet see Fig. 1.4(a). We will see
that the situation is quite different for frustrated systems.

More detailed information about magnetic ordering can be gained by neutron scatter-
ing: Fig. 1.1(b) shows the appearance of extra reflections (the magnetic Bragg peaks) in
the neutron diffraction pattern below the ordering temperature signaling the enlargement
of the unit cell by the magnetic order in MnO (taken from [6] from 1951, Shull has earned
the Nobel prize for this work four decades later in 1994).4 This is a quite typical situation:

4MnO crystallizes in the rock salt structure, where both the Mn2+ and O2− ions form face-centered cubic
(fcc) lattices, the magnetic ions Mn2+ have spin S = 5/2. The magnetic ordering associated with the scatter-
ing picture presented in Fig. 1.1(b) consists of 〈111〉 planes ordered ferromegnatically, with the consecutive
planes having antiparallel magnetizations. We will dub an order like this as a single-Q, L

(
1
2 ,

1
2 ,

1
2

)
-type or

Type II ordering and explain it in detail in Section 2.5.3. Many other metal oxides crystallize in the same
rock salt structure and are fcc antiferromagnets at a sufficiently low temperature, namely FeO, NiO, CoO and
CuO [7], another such an example is the sulfide MnS. This abundance of fcc magnets motivated us to study
the J1 − J2 − J3 Heisenberg model on the fcc lattice, see Chapter 2 (we found that this model besides being
important and interesting was not analyzed before). Another example is GdPtBi [8], a Weyl semimetal, half-
Heusler compound, with the magnetic Gd3+ ions (S = 7/2) forming an fcc lattice: Here all the J1−J2−J3’s



6 Chapter 1. Introduction

The appearance of magnetic Bragg peaks in elastic neutron scattering is a signal of mag-
netic ordering, and the peak positions are related to the type of order (neutron scattering
measures the Fourier transform of the spin-spin correlations).5 Now we examine and il-
lustrate the correspondence between the real space spin patterns and their Fourier pictures
(the magnetic Bragg peak positions) in some simple models on the square lattice.

We consider the bipartite6 square lattice with primitive lattice translations a1 = (1, 0)
and a2 = (0, 1) and corresponding reciprocal lattice vectors b1 = (2π, 0) and b2 = (0, 2π).
We define the model (1.7) for O(3) spins on the lattice up to fourth neighbor interactions
to show a variety of different ordering patterns together with their Fourier pictures (for the
neighbor bonds see Fig. 1.2(a)). We denote the ground space spins by Si, and we Fourier
expand it as

Si =
∑
Q

S0
Qe
−iQ·Ri , (1.9)

where S0
Q ∈ C3 is a complex Fourier amplitude vector, and Q is the ordering vector of the

pattern. We will show later (see Subsection 2.3) that the set of possible ordering vectors
{Q} correspond to the set of points in Fourier space where the Fourier transform of the
interactions J(Q) achieves its minimum, and we denote this set as MGS and call it the
ground state manifold. Usually this manifold is just a handful of points in the Brillouin
zone (BZ), i.e. the actual Bragg peaks. Conditions of having a ground state manifold of
higher dimensionality and its consequences on the physics of the system will be a recurrent
topic of this thesis.

Before introducing some selected orders, we have an important remark: Every magnetic
order breaks the global O(3) symmetry (a three-parameter Lie-group) of the Hamiltonian
(1.7), a phenomenon called spontaneous symmetry breaking. In a ferromagnet the ground
state energy is independent of the direction of magnetization, and the system randomly
picks one of these equivalent directions. The ground state has a remnant symmetry of a
global U(1) about the magnetization direction, and the degeneracy of the possible ground
states can be parameterized by the unit sphere S2. Similar considerations apply to all
the states considered below. This type of degeneracy related to the symmetry breaking
is called trivial in the context of frustrated systems (not surprisingly we will find other
types of degeneracies unrelated to the symmetries of the model). We just mention one dire
consequence of the spontaneous breaking of a global continuous symmetry (for interactions
of sufficiently short range), the celebrated Goldstone theorem: This theorem guarantees the
appearance of gapless bosonic quasiparticles in the spectrum, the magnons. Now we turn

are needed to describe the magnon spectrum (the order is L
(

1
2 ,

1
2 ,

1
2

)
-type or Type II).

5The question arises: Why are the intensities of the nuclear and magnetic Bragg-peaks comparable (see
the upper panel of Fig. 1.1(b))? Nuclear neutron scattering is mediated by the very short-ranged and strong
nuclear forces between the neutron and the nuclei, and magnetic scattering is governed by the long-ranged but
very weak dipole-dipole interactions between the magnetic moment of the neutron and the magnetic moments
of the electrons. There is no apparent reason why these two different mechanisms would produce scattering
intensities of the same magnitude, and up to my knowledge this is sheer accident.

6A lattice is bipartite if it can be divided to two sublattices A and B where all the neighbors of the points
inA belong toB and vice versa. The cubic lattices in any dimensions are bipartite, just like the body-centered
cubic lattice, or the diamond and honeycomb lattices. Non-bipartite lattices are e.g the triangular (hexagonal)
lattice or its three dimensional analogue the fcc lattice and the kagome and pyrochlore lattices.
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J1 J2

J3

J4

qx

qy

-π

-π

π

π
AFM

Stripe SpiralFM

(a) (b)

1D manifold

Figure 1.2: (a) The first four nearest neighbor sets of the square lattice, lighter colors indi-
cate further bonds. (b) First Brillouin zone of the square lattice together with the ground
state manifolds of different Heisenberg models on the lattice. Magnetic Bragg peaks appear
at these points in neutron scattering. The manifolds belong to orders shown in Fig. 1.3. The
ground state manifold of the ferromagnet is the zone center, that of the antiferromagnet is
the zone corner, spin stripes correspond to manifolds at the midpoints of the zone bound-
aries, incommensurate spirals have manifolds in general points of the Brillouin zone. The
zone boundary corresponds to the one dimensional degenerate ground state manifold of the
model with parameters J1 = 2J2 = 1.

to the examples on the square lattice.
The square lattice with the first four nearest neighbor bond-sets is shown in Fig. 1.2(a).

We consider orderings with zero dimensionalMGS’s, the Brillouin zone of the square lat-
tice with the ground state manifolds corresponding to the selected orderings is presented
in Fig. 1.2(b). Fig. 1.3 illustrates the selected orderings and here we describe it in detail.
The picture consists of two columns, in the first column we give figures of J(q) over the
first BZ shown in Fig. 1.2(b), and the contour plot of J(q) in the BZ is also shown. Red
dots denote the minima {Q} (ordering vectors) of J(q), i.e. theMGS in the first BZ. In the
second column we give the real space picture of the corresponding spin patterns. Because
of the isotropy of the model the global orientation of the spins is arbitrary, and we chose
it by aesthetic considerations, color coding of the arrows corresponds to their orientation.
The details of the four figures follow, where (i, j) are Cartesian coordinates of the lattice
sites:

(a) Ferromagnet Nonvanishing interactions are: J1 = −1, with Fourier transform of
the exchanges J(q) = − cos(qx) − cos(qy). The ordering vector (the wholeMGS)
is Q = (0, 0), and the real space spin pattern is S(i, j) = S0 = (1, 1, 0)/

√
2. Every

ferromagnetic bond can be simultaneously optimized by aligning all the spins, and
this is independent of the type of the underlying lattice. The order is commensurate
sinceMGS is a special point in the BZ. Up to the trivial degeneracy due to the O(3)
symmetry breaking, the ground state is unique.

(b) Antiferromagnet Nonvanishing interactions are: J1 = +1, with Fourier transform
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Antiferromagnet

Stripe

Spiral

(c)

(d)

Ferromagnet
(a)

(b)

Figure 1.3: Illustration of different spin orderings on the square lattice. The first column
shows pictures of J(q) over the BZ (the BZ corners are indicated in (a)), red dots show the
minima of J(q) on a contour plot. The second column shows the appropriate spin patterns
on the square lattice. For details see the main text.
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of the exchanges J(q) = + cos(qx) + cos(qy). The ordering vector (the wholeMGS)
is Q = (π, π), and the real space spin pattern is S(i, j) = (−1)i+jS0. Every anti-
ferromagnetic bond can be simultaneously optimized by antialigning the spins in a
checkerboard pattern, but this is only allowed because of the bipartite nature of the
square lattice. The order is commensurate since MGS is a special point in the BZ.
Up to the trivial degeneracy due to the O(3) symmetry breaking, the ground state is
unique.

(c) Stripe Nonvanishing interactions are: J1 = −1, J2 = +2, with Fourier transform of
the exchanges J(q) = − cos(qx) − cos(qy) + 2 cos(qx + qy) + 2 cos(qx − qy). The
set of ordering vectors isMGS = {Q} = {(π, 0), (0, π)}, and we choose Q = (π, 0)
in the illustration. The pattern in real space reads S(i, j) = (−1)iS0. The order is
commensurate sinceMGS is a special point of the BZ. Up to the trivial degeneracy
due to theO(3) symmetry breaking, the ground state is unique (besides that we could
also have chosen Q = (0, π) as the propagation direction of the stripes).

(d) Spiral Nonvanishing interactions are: J1 = −1, J2 = −1, J3 = 0, J4 ≈ 0.14, we
have tweaked the interactions the way that the possible ordering vectors become Q =
(±0.6, 0) or Q = (0,±0.6), we choose Q = (±0.6, 0) for the illustration. This way
the wavelength of our spin spiral is a little larger than ten lattice constants, and the real
space pattern reads S(i, j) = (cos(0.6i), sin(0.6i), 0). The order is incommensurate
since the MGS consists of general points of the BZ. The O(3) symmetry breaking
manifests itself in the freedom of choice of the plane of rotation of the spins. Here
our spins lie in the xy planes (spirals of this kind are sometimes called cycloidal
for obvious reasons, when the plane of rotation of the spins is perpendicular to the
ordering vector –or pitch vector as it is called sometimes in this context– the spiral is
called helicoidal).

Although the orderings described above are all markedly different, they have a thing in
common: All their ground state manifolds are zero dimensional, i.e. if we do neutron
scattering on these systems, magnetic Bragg peaks will appear at the ordering vectors {Q}
as shown in Fig. 1.2(b). Slightly perturbing the interaction parameters will not change this
picture, i.e. this is a quite robust feature of these models.

The situation changes dramatically if we choose the parameter set as J1 = 2J2 = 1:
The minimum of J(q) becomes the whole Brillouin zone boundary, with Q = (π, q) and
(q, π) parameterized by q ∈ [−π, π] (see the red square in Fig. 1.2(b)). This is a one-
dimensional manifold (or codimension-one manifold, since it has one dimension less than
the BZ), and the system is free to choose any ±Q pair on this manifold as an ordering
vector. What is more: One can even combine such (if one is careful enough of tweaking
the Fourier amplitudes in (1.9)) ordering vectors to create a large class –e.g. aperiodic– of
ground states. This degeneracy is totally unrelated to any symmetry of the Hamiltonian. We
do not discuss this case any further here, since we analyze this model in minutious detail in
Subsection 3.3.1. What is important to see here, that this manifold is totally different from
the well-known Bragg peaks.

We have seen that the square lattice (or any bipartite lattice) with only nearest neighbor
interactions is well suited for antiferromagnetism since the bonds can be simultaneously
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satisfied, but introducing frustrating further neighbor interactions can lead to more complex
patterns, e.g. the aforementioned spin spirals, or the multitude of ground states in the case
of the J1 = 2J2 = 1 model. In the next subsection we discuss lattices where the nearest
neighbor interactions alone introduce frustration. This is the so-called geometric frustration
what we analyze in some detail in the following.

1.1.2 Geometric frustration

T
TN=-ΘCW ΘCW

χ-1

Q
Q1 Q2

V

Unfrustrated AFM Frustrated AFM Order by Disorder

T
TN -ΘCWΘCW

χ-1

(a) (b) (c)

Figure 1.4: (a) Temperature dependence of the inverse susceptibility of an ordinary (unfrus-
trated) antiferromagnet. The Curie-Weiss temperature ΘCW can be identified by extrapo-
lating the high temperature part of the inverse susceptibility, its value is a good measure of
the magnetic interaction strengths. The actual transition temperature (TN stands for Néel
temperature) signaled by an anomaly in the susceptibility (and similarly in the heat capac-
ity) is roughly equal to |ΘCW |. (b) Temperature dependence of the inverse susceptibility of
a frustrated antiferromagnet: Nothing dramatic happens to the thermodynamic quantities at
|ΘCW | (extrapolated from the high temperature behavior of the inverse susceptibility and
measuring the interaction strengths). The Néel temperature –as signaled by anomalies in
the susceptibility and heat capacity– is far below |ΘCW |, indicating fluctuations well below
the temperature scale set by the interactions. (c) Illustration for the quantum order by dis-
order mechanism. Q is some configurational coordinate, V (Q) is a double-well potential,
with minima V (Q1) = V (Q2) = 0. The oscillator at Q2 is softer than the one at Q1. Red
lines show the energy levels of the two oscillators at Q1 and Q2: En1 ≈ ω1(n1 + 1

2
) and

En2 ≈ ω2(n2 + 1
2
), where the integers ni > 0 are the occupation numbers and ω2 < ω1, so

the energies are smaller at the second well.

Here we give a brief introduction to geometric frustration in magnets.7 We can see in
Fig. 1.4(a) that the Curie-Weiss temperature ΘCW , which measures the interaction strength
J , is roughly equal to the ordering Néel temperature TN of the ordering in usual antiferro-
magnets. In materials with lattices containing triangles the situation is markedly different
and the susceptibility is sketched in Fig. 1.4(b): The ordering temperature is well below
the energy set by the interactions, i.e. TN � ΘCW and nothing dramatic happens to the

7The book [9] is a good reference on frustrated magnetism covering a wide range of topics, including
classical and quantum models, spin liquids, experimental techniques and results, numerical tools, etc. The
textbook by Patrik Fazekas [10] is a neat introduction to magnetism, whit a particular focus on frustrated
systems.
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thermodynamic properties at ΘCW . The system wants to order antiferromagnetically but
something prevents it: One such reason can be geometric frustration. We measure the de-
viation from the standard antiferromagnetic behavior by the quantity f = |ΘCW |/TN , and
show it for some selected materials in Table 1.1. To understand the reason behind the above

Table 1.1: Properties of some selected two and three dimensional antiferromagnets, taken
from [11] and [12], the data in the last line for MnSc2S4 are taken from [13] and the data for
GdPtBi are taken from [8]. First column: Chemical formula. Second column: The lattice
of the magnetic ions. Third column: Curie-Weiss temperature as extracted from the high
temperature behavior. Fourth column: Néel-temperature signaled by anomalies in the heat
capacity or magnetic susceptibility. Fifth column: The ratio f = |ΘCW |/TN measures the
strength of frustration, larger f means a more frustrated system.

Compound Paramagnetic lattice −ΘCW [K] TN [K] f = |ΘCW |/TN
Two dimensional magnets
VCl2 triangular 437 36 12
NaTiO2 triangular 1000 <2 >500
LiCrO2 triangular 490 15 33
SrCr8Ga4O19 kagome 515 3.5 150
Three dimensional magnets
MnO fcc 610 116 5.3
MnS fcc 528 160 3.3
FeO fcc 570 198 2.9
CoO fcc 330 291 1.14
NiO fcc ∼2000 525 ∼4
K2IrCl6 fcc 321 3.1 10
GdPtBi fcc 38 9 4.2
CsNiFeF5 pyrochlore 210 4.4 48
Gd3Ga5O12 garnet 2.3 <0.03 >100
MnSc2S4 diamond 22.9 2.1 11

mentioned avoidance of ordering we consider antiferromagnetically coupled (J > 0) Ising
spins Si on a triangle. A glimpse at Fig. 1.5(a) shows that only two bonds can be simulta-
neously optimized with energy−J (instead of−3J for all bonds optimized independently)
and this ground state is sixfold degenerate (the other two fully polarized states have an
energy of 3J).8 The moral is the following: If we have triangles in a lattice with anti-
ferromagnetic interactions the ground state tends to be highly degenerate, and the system
cannot pick a single state of the ground state manifold. We can put together the triangles

8Every configuration has a spin-flip related partner as a consequence of the Si → −Si symmetry of the
Hamiltonian.
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?

(a)

(b)

(c) (d)

Figure 1.5: (a) Antiferromagnetically coupled Ising spins on a triangle. (b) Antiferro-
magnetically coupled Heisenberg or O(3) spins on a tetrahedron. (c) The kagome lattice
consisting of corner sharing triangles. (d) The pyrochlore lattice consisting of corner shar-
ing tetrahedra.

in an edge-sharing manner to form the triangular lattice and ask about the ground state de-
generacy. Wannier [14] has analyzed this model thoroughly and found an extensively large
ground state degeneracy with a zero-point entropy of S(T = 0)/N ≈ 0.3230kB and that the
system does not order at any temperature. Putting together the triangles in a corner-sharing
manner we construct the kagome lattice as depicted in Fig. 1.5(c): This lattice is even more
frustrated than the triangular one with a zero-point entropy of S(T = 0)/N ≈ 0.50183kB
[15].9 For some real world triangular and kagome magnets consult Table 1.1.

To further illuminate the connection between frustration and ground state degeneracy let
us consider four antiferromagnetically coupled Heisenberg (orO(3)) spins on a tetrahedron
(see Fig. 1.5(b)) with Hamiltonian

H� = J
∑
〈i,j〉

Si · Sj, (1.10)

where J > 0 and the summation runs over all six edges of the tetrahedron. To find the
ground states we rewrite the Hamiltonian as a complete square:

H� =
J

2
(S1 + S2 + S3 + S4)2 − 2J, (1.11)

which is minimized if and only if

S1 + S2 + S3 + S4 = 0, (1.12)

which we call the tetrahedron rule. The ground state energy becomes −2J , much higher
than −6J for six independently optimized bonds. We can calculate the number of free
parameters describing the degeneracy: The four unit vectors mean eight free parameters,
the tetrahedron rule means three constraints (removes three free parameters), and the global
rotation of the configuration described by O(3) also removes three free parameters (we do

9As a sidenote the ground state manifold of the antiferromagnetic kagome Heisenberg model is the whole
BZ (the lowest eigenvalue of J(q) is totally flat), i.e. as degenerate as it can be.
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not want to count this trivial degeneracy and O(3) is three-dimensional). So we are left
with 2 = 8−3−3 free real parameters to describe the degeneracy [16, 17, 18]. We can put
together the tetrahedra in an edge-sharing manner to form the fcc lattice (see Fig. 2.1(c))
and ask about the ground state degeneracy. The ground state manifold in q-space is one
dimensional and is depicted in Fig. 2.3(b) and this problem is analyzed in Subsection 2.7.4,
for the calculation of the entropy see Ref. [19]. Putting together the tetrahedra in a corner-
sharing manner we construct the pyrochlore lattice as depicted in Fig. 1.5(d). This lattice
is even more frustrated than the fcc one. The ground state manifold of the pyrochlore
Heisenberg model is the whole BZ, i.e. as degenerate as it can be. For some real world fcc
and pyrochlore magnets consult Table 1.1.

Here we have only considered frustration as an effect of lattice geometry, but we can
find similar behavior even on bipartite lattices if we introduce frustrating further neighbor
exchanges (see examples on the square lattice in Subsection 3.3.1). As an example it was
theoretically proposed in Ref. [20] that introducing a frustrating second neighbor interac-
tion on the bipartite diamond lattice results in a two dimensional ground state manifold,
and this manifold was found via neutron scattering for the spinel MnSc2S4 [21] where the
Mn2+ ions with S = 5/2 on the A-sites form a diamond lattice (it turned out later that this
compound besides being a spin liquid even forms a “fractional antiferromagnetic skyrmion
lattice” [22], for some data on the material see the last line in Table 1.1).

As a summary, if not all bonds can be simultaneously satisfied the system is frustrated,
frustration can lead to large ground state degeneracy (a large number of ground state con-
figurations and extended manifolds in Fourier space visible by neutron scattering), and
frustration prevents the system from antiferromagnetic ordering down to very low temper-
atures. We have only considered classical models so far. In the next section we describe a
mechanism of choosing a particular ground state from the degenerate ones if we introduce
quantum (or thermal) fluctuations.

1.1.3 Order by disorder selection
Regarding energies all states are equal on a ground state manifold, but some states are
more equal than others. Here we show a mechanism where thermal or quantum fluctuations
select a state from the classically degenerate ground state manifold as the true ground state:
The order by disorder mechanism (the original references are [16, 23, 24, 18] and the
first chapter of [9] is a pedagogical introduction to the subject). We assume that we have a
quantum particle in the double-well potential V (Q) depicted in Fig. 1.4(c), whereQ is some
configurational coordinate. We choose the two minima to be equal V (Q1) = V (Q2) = 0,
and we approximate the potential harmonically about the minima as

V (Q−Q1) ≈ 1

2
ω2

1(Q−Q1)2 and V (Q−Q2) ≈ 1

2
ω2

2(Q−Q2)2, (1.13)

with ω1 > ω2. The approximate eigenenergies for a particle around the minima are
En1 ≈ ω1(n1 + 1

2
) and En2 ≈ ω2(n2 + 1

2
), where the integers ni > 0 are the occupa-

tion numbers (these energy levels are denoted by horizontal red lines in Fig. 1.4(c)). The
two minima are classically degenerate, at zero temperature the system cannot choose be-
tween the two minima, but zero point quantum fluctuations will choose the one with lower
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energy and select Q2 (at T = 0, n1 = n2 = 0 and the energies are ω2/2 < ω1/2). This
selection of a definite state by fluctuations is the order by disorder mechanism.

Thermal fluctuations work similarly. Let us suppose that we have a statistical physi-
cal system, with a degenerate set of ground states parameterized by some configurational
coordinate Q with the ground state energy E0 being independent of Q. The free energy to
minimize at finite T is

F(Q) = E0 − TS(Q), (1.14)

where the entropy S(Q) does depend on the configuration Q: The state with larger entropy
(larger density of states) will be selected thermally, i.e. thermal fluctuations (disorder)
select an order.10

How can we apply the above considerations to our spin systems? Let us take the an-
tiferromagnetic tetrahedron as an example (see Fig. 1.5(b)). The ground states all satisfy
the tetrahedron rule in Eq. (1.12), and they can be parameterized by two real parameters
for Heisenberg spins and by one real parameter for planar spins. These parameters play
the role of the configurational coordinate Q. The analogue of the oscillator potential wells
depicted in Fig. 1.4(c) is the following. Let us pick a spin S1, the other spins act on it with
the effective molecular field (see Eq. (1.10))

heff
1 = −∂H

�

∂S1

= −J (S2 + S3 + S4) , (1.15)

and make S1 precess about heff
1 with some frequency ω governed by the equation

Ṡ1 = S1 × heff
1 . (1.16)

Since the effective field is configuration dependent so is the frequency. In lattice systems
the modes are the propagating spin precessions, the magnons. The selected ground states
–if the order by disorder mechanism works at all– can be found in principle by calculating
the spectrum of excitations above all the possible ground states, counting their energies
and choosing the lowest one. Details matter, but a tendency (see Refs. [18, 9]) towards
selecting collinear (or at least coplanar) orders is general (both for the thermal and quantum
mechanisms). It can be shown (see Ref. [9]) that for a tetrahedron of Heisenberg spins
thermal order by disorder is absent, but it selects a collinear configuration for planar spins.
Heisenberg spins on the pyrochlore lattice do not show order by disorder but planar spins
do. Heisenberg spins on the kagome lattice order coplanarly [25, 26] and planar spins
show no order by disorder on the kagome lattice. In what follows we say a few words
about interesting phases of matter strongly related to frustration, the spin liquids.

1.1.4 Classical spin liquids
Spin liquids are notoriously hard to define, because of almost philosophical reasons: Their
most intuitive definition is based on the lack of properties.11 Spin liquids are not ordinary

10For concrete examples of thermal order by disorder calculations of some Heisenberg models on the
simple cubic and fcc lattices see Section 3.4 and for the details of these calculations see Appendix E.

11The intrigued reader is directed to the literature: We have already mentioned the book [9] which reviews
several basic properties, experimental techiques, theoretical and numerical tools related to the study of frus-
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paramagnets (spin “gas” without magnetic Bragg peaks) and they do not show magnetic
order with well defined magnetic Bragg peaks, but something in between. Let us assume
that we have a material with frustration parameter f large enough to have a temperature
range TN < T � ΘCW , in this range the system is not ordered (there are strong fluctuations
because of the large number of energetically equivalent states), but there are short range
correlations (corresponding to broad features in Fourier space), this state is sometimes
dubbed a “cooperative paramagnet”. In what follows we illustrate the above mentioned
properties of classical spin liquids12 by some concrete examples.

Detailed information about the nature of spin ordering (or the lack of it) is encoded in
the spin-spin correlation functions

Gαβ(Rj −Ri) ≡ Gαβ(δ) =
〈
Sαi S

β
i+δ

〉
, (1.17)

where the average 〈. . . 〉 is either a thermal one or an average over the ground state manifold
(and we denote the lattice separation by δ = Rj−Ri).13 The Fourier transform of the above
function is the static spin structure factor

Sαβ(q) =
1

N

∑
ij

Gαβ(Rj −Ri)e
iq·(Rj−Ri) =

〈
SαqS

β
−q

〉
, (1.18)

and elastic neutron scattering measures the projected part

S(q) =
∑
αβ

(
δαβ −

qαqβ
q2

)
Sαβ(q). (1.19)

This function is also called the magnetic structure factor.
In the paramagnetic phase –e.g. for the Ising ferromagnet– correlations decay expo-

nentially at long distances and are completely structureless: G(δ) ∼ f(δ)e−δ/ξ, with a
temperature dependent correlation length ξ(T ). The function f(δ) ∝ δ−(d−1)/2 decays
algebraically in d-dimensional space. This function in Fourier space has the Ornstein-
Zernike form being proportional to 1/(q2 + ξ−2). Approaching the transition temperature
ξ diverges, and the decay of correlations at the transition temperature becomes algebraic,
called critical behavior. With all these at hand we can formulate a bit more precisely what
we expect from a spin liquid, i.e. More structure than the featureless and exponentially
decaying form of the paramagnetic correlations, but much less than the sharp Bragg peaks
produced by the ordered moments illustrated by dots in Fig. 1.2(b). Now let us give some
concrete examples of classical spin liquids.

trated systems including (proposed) spin liquids (for the problems of the definition of quantum spin liquids
see the beginning of Chapter 16 of [9]). Examples of classical spin liquids are covered in [25, 26], the review
[27] is a compact introduction, collecting concrete materials, theoretical definitions and experimental probes
of the spin liquid phase. The excellent review [28] is concerned about quantum spin liquids, where theoretical
models, numerical methods and materials are proposed.

12Quantum spin liquids are well beyond the scope of this work.
13Occasionally one is only interested in the trace of this matrix

∑
αG

αα(δ) = 〈Si · Si+δ〉, or even just its
large-distance (small-q) asymptotic. Sometimes one defines the correlation function for just the fluctuations
of the spins, i.e. one removes the part 〈Sαi 〉 〈Sβi+δ〉 from Gαβ(δ).
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• Antiferromagnetic Ising model on the triangular lattice This model shows no
order at any temperature and has an extensive ground state degeneracy (finite zero
point entropy). Stephenson studied the correlations of this model in Refs. [29, 30]
analytically: At finite T > 0 he found an exponential decay of correlations with
some oscillations in δ. Much more interesting is the ground state manifold T = 0,
where the correlations decay slowly with a power law (with oscillations) G(δ) ∝
δ−1/2 cos(2πδ/3), i.e. like in some critical point.

• Ising models on the pyrochlore lattice: Spin ice Here we mainly follow the argu-
mentation about the correlations by Henley presented in Refs. [31, 32], and Chap-
ter 12 of [9] is a pedagogical review about spin ice physics. We take the titanates
Dy2Ti2O7 and Ho2Ti2O7 as examples, where the rare-earth ions occupy a pyrochlore
sublattice with S = 15/2 for Dy3+ and S = 8 for Ho3+. The pyrochlore lattice
consisting of corner-sharing tetrahedra is depicted in Fig. 1.5(d). We pick one tetra-
hedron with its four spins on the vertices (corners). Very strong crystal fields force
the spins on a vertex of the tetrahedron to lie on the line joining the center of the tetra-
hedron with the vertex, making the spin effectively Ising-like, i.e. the spin can either
point inward or outward. Although the interactions between the spins are mainly
the long-ranged dipole-dipole ones they can be understood by a short ranged and
ferromagnetic model. Ferromagnetic interactions are corroborated by the measured
Curie-Weiss temperature (for Ho2Ti2O7) ΘCW ≈ 2K, a positive quantity. But the
system does not order down to ∼ 20mK, meaning it is a strongly frustrated ferro-
magnet.

Water ice Spin ice(a) (b)

×6

×8

×2

Figure 1.6: (a) Configurations in water ice and spin ice. Red balls are the O2− ions, green
balls are the protons H+ (only the protons close to the oxygen ions are shown). Numbers
show the degeneracy of the configurations. (b) Mapping the ground state configuration of
the spins on the pyrochlore lattice to its dual diamond lattice (black arrows).

We can understand this frustration: A single tetrahedron has sixteen possible states,
two of them are the all-in or all-out ones with zero net magnetization (this configu-
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ration is shown at the bottom of Fig. 1.6(a)). Eight of the states are the three-in one-
out configurations (or their flipped partners the one-in three-out ones), with nonzero
net magnetization (middle of Fig. 1.6(a)). The six energetically favorable states are
the two-in two-out ones, yielding the largest net magnetization (top of Fig. 1.6(a)).
Consequently the degenerate ground state manifold is spanned by the configurations
where all the tetrahedra are in the two-in two-out states having the Pauling zero point
entropy per mole tetrahedra of approximately S(T = 0) ≈ R ln(3/2) in complete
analogy with water ice (R is the gas constant).14 Measurements confirmed the value
of the zero point entropy, for recent state-of-the-art data on Dy2Ti2O7 see Ref. [34].
Now we turn to the description of fluctuations.

The spin ice states can be mapped to a model living on the bonds of the dual lattice of
the pyrochlore lattice: The lattice connecting the midpoints of the tetrahedra forming
a diamond lattice. We can draw arrows on the diamond network, simply inherited
from the spin directions, and the two-in two-out states will map to configurations
where in each vertex of the diamond lattice two arrows will “flow” in and two out,
see Fig. 1.6(b). Finally one can sum up the vectors around each vertex (a tetrahedron
of the original pyrochlore lattice) to define a vector field on the points of the diamond
lattice. This field is called polarization in Refs. [31, 32] but in the literature it is
usually called an emergent magnetic field, and after coarse-graining the resulting
field becomes B(r). The magnetic field notation is fortunate since this field inherits
from the two-in two-out configurations (on the ground state manifold) the constraint
of being solenoidal: ∇ · B(r) = 0, i.e. being on the ground state manifold of the
original model translates to having no magnetic monopoles in the emergent field
theory. In Fourier space the divergence-free condition reads

q ·B(q) = 0. (1.20)

The total free energy can be taken as

Ftot(B(r))/T =

∫
1

2
κ |(B(r))|2 dr =

1

2
κ
∑
q

|(B(q))|2, (1.21)

completing the analogy with magnetostatics (or charge-free electrostatics, hence the
name the “Coulomb phase”). The condition Eq. (1.20) projects out the longitudi-
nal part of the correlations of B(q), and together with the form of the free energy

14In ordinary (hexagonal Ih) water ice the O2− ions form a sublattice with almost perfect tetrahedral
bonding angles (in cubic ice Ic the oxygen ions form a diamond lattice with perfect tetrahedral coordination)
and the protons H+ sit on the O-O bonds. Each proton is either close to one or the other oxygen (see
Fig. 1.6(a)). An oxygen is surrounded by four protons and to minimize proton-proton repulsion two protons
are close to the selected O-ion, and the other two are far. These are the ice rules and they can be satisfied in
an extensively large number of ways and are responsible for the residual entropy of water ice. For Pauling’s
original estimate of the entropy see [33], note the unit used there is entropy unit (E. U.=cal/K mol) and the
gas constant is R ≈ 1.9872E. U.
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Eq. (1.21) this yields to the correlations in Fourier and real space〈
Bα

qB
β
−q

〉
=

1

κ

(
δαβ −

qαqβ
q2

)
,

〈
Bα(0)Bβ(r)

〉 ∼= 4π

κ

[
δ(r) +

1

r3
(δαβ − 3r̂αr̂β)

]
, (1.22)

at large separations r with r̂ = r/r. So the correlations have the form of classical
dipole-dipole interactions, this long-range, power law form is the consequence of the
local constraint ∇ ·B(r) = 0 (and in the original model, the ice rules). The angular
dependence and the power law decay 1/r3 clearly distinguishes this type of spin
liquid from paramagnets with no structure and exponential decay of correlations.

It is not trivial to connect the real spin data to the ones expressed with the effective
field B(r) above, but it can be shown [31] that the characteristic decay 1/r3 remains
intact, and the dipolar character manifests itself as pinch point (or bow-tie) type sin-
gularities in the reciprocal space of the pyrochlore lattice. These pinch points show
up without a doubt in neutron scattering, see e.g. Ref. [34] for Dy2Ti2O7 and Fig. 3
of the review [32] for Ho2Ti2O7.

As a last side-note, one can leave the ground state configurations by e.g. flipping one
spin, thereby creating two adjacent tetrahedra of one-in three-out and three-in one-
out type, these excitations translate to a pair of magnetic monopoles in the language
of the field B(r) (breaking the divergence-free constraint).

• Subextensive manifolds, MnSc2S4 Our last example of classical spin liquids is
MnSc2S4 [21] where the Mn2+ ions with S = 5/2 form a bipartite diamond lat-
tice. It was showed in Ref. [20] that for a finite range of the ratio J2/J1 of the first
and second neighbor AFM interactions on the diamond lattice the ground state man-
ifold is two dimensional.15 The exchange parameters for MnSc2S4 fall in that range,
thereby realizing a spin liquid with a two dimensional ground state manifold. In
Fig. 1.7(a)-(d) we reproduce the results of Fig. 1 of Ref. [21]. The diamond lattice of
the Mn2+ ions together with the interactions is shown in Fig. 1.7(a), Fig. 1.7(b) shows
the manifold in light gray. Fig. 1.7(c) shows the neutron scattering data revealing the
manifold and Fig. 1.7(c) shows the Monte-Carlo results for the spin correlations of
the J1 − J2 model on the diamond lattice in excellent agreement with the measured
data. For more details see the caption of the figure. What we can see here is the
structured correlations, i.e. the “cooperative paramagnetic” behavior of the spin liq-
uid. The measurement was taken at T = 2.9K, slightly above the Néel-temperature
TN = 2.1K and well below Curie-Weiss temperature |ΘCW | = 22.9K.

The fcc lattice consisting of edge-sharing tetrahedra is another typical frustrated lattice and
abundant in nature. Quite surprisingly no systematic study could be found on this system
in the literature. Therefore in Chapter 2 we considered the fcc model up to third neighbor
interactions (first in the hope of finding incommensurate spin spirals), and we have found a

15We have already showed such a codimension-one manifold for the square lattice in Fig. 1.2(b).
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Figure 1.7: Reproduction of Fig. 1 of [21]. (a) The diamond sublattice of the magnetic
Mn2+ ions with S = 5/2 in MnSc2S4 together with the nearest neighbor interactions up to
third neighbors. (b) The Brillouin zone of the parent face-centered cubic lattice, the light
gray surface is the calculated ground state manifold with exchange ratio J2/J1 = 0.85. The
(HK0) plane is shown in blue, together with its section with the ground state manifold
highlighted by the orange curve. (c) Neutron diffuse scattering intensities in the (HK0)
plane measured at T = 2.9K. (d) Monte-Carlo simulation of the spin-spin correlations on
the (HK0) plane for the J1 − J2 model with J2/J1 = 0.85 at T/J1 = 0.55.

rich phase diagram with commensurate and incommensurate phases and extended ground
state manifolds of dimension one and two providing potential hosts to spin liquid phases.
Inspired by the discovery of the two dimensional manifold we have constructed a recipe
for generating models with such large ground state degeneracies on Bravais lattices in
Chapter 3. Here we finish our introduction about spin systems in general.

1.2 Magnetooptics of multiferroics

And now for something completely different. In our last Chapter 4 we study the magne-
tooptical response (and especially the nonreciprocal directional dichroism (NDD)) of the
antiferromagnet Sr2CoSi2O7 in its high temperature, paramagnetic phase in strong external
magnetic fields in collaboration with experimentalists.

Sr2CoSi2O7 is a planar antiferromagnet with a small canting of the moments, that si-
multaneously shows electric polarization making the substance a magnetoelectric (ME)
multiferroic material. In these ME materials the magnetic and electric degrees of freedom
are usually coupled, meaning that we can control static (DC) electric polarization via mag-
netic fields, and the other way around: Controlling magnetic moments via electric fields.
At the level of linear response theory the magnetoelectric cross-effects can be captured by
the magnetoelectric susceptibilities. For the definitions of these magnetoelectric response
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functions consult Appendix F.
Several models for the microscopic origin of the magnetoelectric coupling where pro-

posed and here we briefly mention some of them. Our starting point will always be some
magnetic insulator described by a Heisenberg model, and we ask the question how elec-
tric polarization can be induced by ordered magnetic moments (for a thorough discussion
see [35, 36, 37]). In all these mechanisms the spins affect the charge or lattice degrees
of freedom, the main differences being the symmetry restrictions and the number of spins
(one or two) involved in the process.

• Inverse Dzyaloshinskii-Moriya or spin current mechanism This is the most fre-
quent mechanism of magnetically induced polarization in magnets where the spin-
orbit coupling induced Dzyaloshinskii-Moriya (DM) interactions or magnetic frus-
tration leads to non-collinear spin spirals [38]. Two spins Si and Sj at sites i and j
connected by the vector eij induce a polarization on the bond of the form

Pij ∝ eij × (Si × Sj) . (1.23)

This mechanism is inactive for collinear spins. Even for non-collinear spins the finite
individual bond-polarizations may sum to zero and give no net polarization.

• Magnetostriction or exchange striction is another two-site mechanism that does
not require spin-orbit coupling, and also works for collinear spins. When the sym-
metric exchange J(eij) Si · Sj energy depends on the bond vector the magnetic or-
dering may deform the lattice a way that leads to a net polarization.

• Metal-ligand or p− d hybridization This is an on-site (or single-site) mechanism,
involving one spin only and its ligands. This mechanism is only viable for spins with
S > 1. When the site of the magnetic ion is not an inversion center the following
form of polarization is allowed:

P ∝
∑
α

(S · eα)2 eα, (1.24)

where the vectors eα point to the p-ligands surrounding the magnetic d-ion with spin
S. The microscopic reason behind this form of polarization is the following: Because
of the spin-orbit interaction the hybridization between the p- and d-orbitals depends
on the orientation of the magnetic moment, affecting the charge distribution of the
ligands [39].

For Sr2CoSi2O7 metal-ligand hybridization is the relevant mechanism: The Co2+ ions have
S = 3/2, and their sites are not inversion centers (the Co-ions are surrounded by four O2−

ligands forming a tetrahedron, see Fig. 4.4). The consequences of Eq. (1.24) are detailed
in Section 4.3. None of the two-site mechanisms are effective in this material. Although
the DM interactions are active, the polarization contributions of the bonds cancel. All the
nearest neighbor Co-Co bonds have the same exchange energy so they cannot result a net
ferroelectric polarization either. In the following we say a few words about the dynamical
(specially, optical) consequences of the multiferroic couplings.
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The magnetoelectric cross-correlations can also manifest themselves in the finite fre-
quency excitations leading e.g. to the so-called electromagnons [40, 41, 42, 43] and to
optical anisotropies such as ME polarization rotation or NDD. A substance shows NDD if
it absorbs counter-propagating lightbeams differently (even if they are unpolarized) [44]:
One-way transparency is an extreme case of this property when the crystal is transparent
from one side and completely opaque from the other side.16 Some multiferroics, such the
melilites17 Ba2CoGe2O7, Ca2CoSi2O7 and Sr2CoSi2O7 have almost ideal one-way trans-
parency [46]. Two simple cases of NDD are usually distinguished: Magneto-chiral dichro-
ism [47] (MChD) and toroidal dichroism [48]. In the first case the light propagates along
the magnetization of a chiral18 magnet k ‖ M and in the second case k ‖ P ×M, where
M and P mean magnetization and ferroelectric polarization of the material, respectively.
The presence of magnetic order requires the breaking of time-reversal symmetry, and the
presence of net polarization needs space inversion to be broken, together with the lack of
symmetries connecting counter-propagating beams NDD is expected to be present only in
crystals of sufficiently low symmetry.

Therefore multiferroics (having necessarily low symmetry) are a good place to search
for such magnetoelectric phenomena. Indeed large NDD was found in the collective exci-
tations of some multiferroics, typically in the GHz-THz frequency range, see [49, 50, 41,
42, 46, 51, 52] in their magnetically ordered states. Our goal was to find and understand
NDD in the paramagnetic phase of Sr2CoSi2O7, where an applied external magnetic field
was used to break time-reversal symmetry.

1.3 Structure of the thesis
The main text of the thesis is divided into two essentially unrelated parts: (i) Chapters 2 and
3 consider the ground state properties of classical Heisenberg models, and (ii) Chapter 4
discusses the magnetooptics of Sr2CoSi2O7. Every chapter closes with its own summary.

• In Chapter 2 we define the Heisenberg model on the fcc lattice. Following the intro-
duction of the Luttinger-Tisza method we construct the ground state (T = 0) phase
diagram of the classical isotropic Heisenberg model up to third neighbor interactions.
We find three distinct types of phases, (i) Commensurate ones: We construct and de-
scribe the ground states and their degeneracies, (ii) Incommensurate spin spirals,
and (iii) Codimension-one and -two manifolds at phase boundaries and triple points,
where we explicitly construct large classes of orderings (e.g. aperiodic ones). We
explain the appearance of manifolds in Fourier space by rewriting the Hamiltonian
as a positive definite sum of complete squares defined on finite motifs tessellating the
lattice.

16Although this phenomenon seems a bit counter-intuitive it should not come as a big a surprise: If there
is no element in the point group of a crystal that connects the wave-vectors of the counter-propagating light
beams ±k → ∓k (leaving its polarization intact) then NDD is allowed, see [45] for details and a bunch of
example materials.

17Åkermanites are subspecies of melilites.
18In this context chirality simply means a crystal with a point group consisting only of pure rotations,

without inversion, mirror planes or rotoreflections.
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• In Chapter 3 we give a recipe for the construction of Heisenberg models on Bra-
vais lattices having codimension-one ground state manifolds (i.e. the manifolds are
curves in two, and surfaces in three dimensions). We illustrate the construcion on the
square, simple cubic and fcc lattices in detail (all the necessary ingredients to apply
the construction to other lattices are given in Appendix D). We close this chapter by
showing how the thermal or quantum order by disorder mechanisms select commen-
surate orders on the degenerate manifolds (details of the calculations are given in
Appendix E).

• In Chapter 4 we provide a theory for the absorption measurements on the magne-
toelectric multiferroic Sr2CoSi2O7 showing non-reciprocal directional dichroism in
the paramagnetic phase in strong external magnetic fields. We describe the optical
measurements based on a small-cluster exact diagonalization calculation. To further
elucidate the physics we employ a simple model based on one magnetic ion with
strong on-site anisotropy and analyze it via group theory to describe the selection
rules in detail, and the excitation energies semi-quantitatively. We also derive a quite
simple but powerful result: The time-reversed (antiunitary) symmetry elements force
the matrix elements of perturbing operators to be either real or pure imaginary (up
to our knowledge this observation is new, its proof and generalization to arbitrary
spin length and magnetic point group are given in Appendix G). In this magnetoop-
tical situation applying this result is just as useful as the standard selection rules. We
extend the symmetry analysis to the lattice model, and by considering the interac-
tions between the magnetic ions perturbatively we refine our analysis and justify the
success of the one-ion model.

• Thesis statements 5 contains my new results and the corresponding publications.

• The thesis concludes with a number of technical Appendices.



Chapter 2

Phase diagram of the J1-J2-J3 Heisenberg
model on the fcc lattice

2.1 Introduction

Neutron scattering on MnO –a face-centered cubic (fcc) magnet– provided the first proof
of existence of an antiferromagnetic order (for details see the Introduction 1.1.1). In the
most common metal oxides –besides a number of other magnetic materials– the magnetic
ions form the fcc lattice (c.f. Table 1.1). The wide range of frustration parameters f hints to
a large variety of possible interactions and consequently ground states in these substances.
A recent paper about the half-Heusler compound GdPtBi [8] showed that the inclusion of
a third neighbor interaction to the Heisenberg Hamiltonian is inevitable (the order is of
Type-II) in order to understand the neutron scattering picture . Surprisingly we could not
find results on Heisenberg magnets beyond second neighbor exchanges in the literature.
Therefore in this chapter we provide a systematic study of the ground state structure of the
Heisenberg model on the frustrated fcc lattice up to third neighbor interactions of arbitrary
sign.

The structure of this chapter is as follows. We introduce the fcc lattice and our Heisen-
berg model in Sec. 2.2 and we give an overview of the literature on magnetic models on the
fcc lattice. In Sec. 2.3 we give the model in q-space and we describe the Luttinger-Tisza
method in some detail. (More technical details on Fourier transform conventions and some
technical derivations of used formulas are given in Appendix A. A summary of the relation-
ship between spin structures in real and reciprocal space together with some illustration of
spin patterns on the square lattice were given in the Introduction 1.1.1.) The phase diagram
is described in Sec. 2.4, the details of the commensurate orderings are given in Sec. 2.5,
while the properties of the incommensurate orders are briefly summarized in Sec. 2.6. We
dedicate Sec. 2.7 to the description of the phases with degenerate manifolds and this is the
place where we construct a large number of aperiodic ground states. Chiral properties of
the orders are discussed in detail in Appendix C. The chapter closes with a summary and
outlook for further studies in Sec. 2.8.
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Figure 2.1: Geometry and exchange interactions of the fcc lattice: the encompassing unit
cube is the conventional cell. (a) Primitive lattice vectors a1 = 1

2
(1, 1, 0), a2 = 1

2
(1, 0, 1),

a3 = 1
2

(0, 1, 1) join the first neighbors. (b) The first neighbor J1, second neighbor J2,
and third neighbor J3 interactions on the lattice are shown (c.f. the Hamiltonian Eq. (2.2).
There are 12 first, 6 second and 24 third neighbors. The

(
111
)

planes are triangular lattices
and are indicated by a light cyan color: Interactions J1 and J3 are first and second neighbor
interactions of these triangular lattices, respectively, and J2 connects the planes. We can
cover the lattice by edge sharing elementary tetrahedra (c) or by edge sharing octahedra
(d).

2.2 The lattice and the model
The fcc lattice is generated by the

a1 =

(
1

2
,
1

2
, 0

)
, a2 =

(
1

2
, 0,

1

2

)
, a3 =

(
0,

1

2
,
1

2

)
, (2.1)

primitive lattice translations depicted in Fig. 2.1(a). We will refer to the lattice points by
their Cartesian components, i.e. we set the lattice constant to one: Ri = (x, y, z). Note that
either all the Cartesian coordinates are either integers, or two of them are half-integers, so
that x+ y+ z is always an integer. This lattice is an archetype of frustration: it can be built
from (111) triangular planes, in an ABCABC type stacking style, see Fig. 2.1(b). This
frustration can be made even more manifest if we cover the lattice by edge sharing tetrahe-
dra1, the two differently oriented tetrahedral building blocks are depicted in Fig. 2.1(c). An-
other way of constructing the lattice is an edge sharing octahedral covering, see Fig. 2.1(d).
We will see that these coverings –among others– play an essential role in understanding the
ground state structure of the Heisenberg model presented in the following.

The Hamiltonian of the classical isotropic Heisenberg model reads

H = J1

∑
〈i,j〉1

Si · Sj + J2

∑
〈i,j〉2

Si · Sj + J3

∑
〈i,j〉3

Si · Sj, (2.2)

where the Si are three dimensional unit vectors |Si| = 1 at the sites Ri of the fcc lattice,
interacting with first (J1), second (J2), and third neighbor (J3) exchange interactions. The

1This covering also shows that this lattice can be viewed as the three-dimensional analogue of the trian-
gular lattice.
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summation indices 〈i, j〉δ with δ = 1, 2, 3 refer to the δ’th neighbor pairs. There are twelve
first, six second and twenty-four third neighbor vectors in the fcc structure. One vector of
each neighbor set is drawn in Fig. 2.1(b), and their coordinates are

δ1 =

(
1

2
,
1

2
, 0

)
, δ2 = (0, 1, 0) , δ3 =

(
1,

1

2
,
1

2

)
. (2.3)

The reciprocal lattice vectors corresponding to the primitive vectors Eq. (2.1) are:

b1 = 2π (1, 1,−1) , b2 = 2π (1,−1, 1) , b3 = 2π (−1, 1, 1) . (2.4)

We will refer to any point in reciprocal space by its q-triplet, e.g. q = (qx, qy, qz) =
(2π, 2π,−2π) = b1. Special points and lines in the Brillouin zone (BZ) have more or less
commonly used labels, we will refer to them either by their labels, or the labels with their
Cartesian coordinates in parenthesis in units of 2π. For example one of the BZ corners of
the fcc lattice can be referred to as W , W

(
1, 1

2
, 0
)
, or (2π, π, 0). The BZ takes the form

of a truncated octahedron, it is depicted in Fig. 2.3(a) together with some symmetry points
and their names and positions (note that the coordinates in this figure are measured in units
of 2π). Next we overview the literature of the fcc magnets.

Here we go over the vast literature of the O(n) fcc magnets, their thermodynamics
and critical theory [53].2 After decades of debates over the n = 1 (Ising) model [55, 56,
57, 58, 59] the dust probably has settled, and this model is believed to have a first order
transition to the Type-I (see Subsection 2.5 for the types of commensurate phases) AFM
phase [60, 61, 62, 63, 64, 65, 66]. However our knowledge about the planar n = 2 model
seems to be limited [67, 53]. The n = 3 (Heisenberg) model has also been debated for a
long time [68, 67, 69, 17], but the verdict seems to be a first order transition to a collinear
Type-I AFM state [70]. Quantum fluctuations were considered by a few studies in the large-
S [71] or small-S limits [72], but after more then 70 years since Anderson’s paper [73], the
ground state of the quantum AFM Heisenberg model on the fcc lattice is still unknown.

Our goal is to find the ground states of the model (2.2) using the method developed
by Luttinger and Tisza [74], i.e. by finding the minimum of the exchange interaction in
Fourier space J(q) [75]. We devote the next section to the introduction of the Luttinger-
Tisza method. We will see that in frustrated models like ours the ground states are far from
being unique, and we wish to classify and describe them in detail.

2.3 The model in q-space and the Luttinger-Tisza method

Here we briefly describe the Luttinger-Tisza method that we will use extensively to find the
ground states of classical isotropic Heisenberg models. We do not present the method in full
generality, since we will only be concerned about isotropic Heisenberg models on Bravais
lattices. Generalizing the method to anisotropic exchanges and/or non-Bravais lattices is

2This article also contains a lot of examples of real world fcc magnets, together with their ordering types,
and the order of their phase transitions. For other examples of commensurately ordering fcc magnets and
their corresponding J1, J2 values see [54].
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possible but it complicates the formalism considerably (the exchanges –both in real and
Fourier space– become matrices, and we have to minimize their q-dependent eigenvalues).

A general Heisenberg Hamiltonian in Fourier space reads

H =
∑
〈i,j〉

JijSi · Sj = N
∑
q∈BZ

J(q)Sq · S−q = N
∑
q∈BZ

J(q) |Sq|2 , (2.5)

where the summation runs over the BZ, and N is the total number of sites of the lattice
with periodic boundary conditions.3 The Fourier form of the actual Hamiltonian (2.2) on
the fcc lattice becomes

J(q) = 2J1

(
cos

qx
2

cos
qy
2

+ cos
qx
2

cos
qz
2

+ cos
qy
2

cos
qz
2

)
+ J2 (cos qx + cos qy + cos qz)

+ 4J3

(
cos qx cos

qy
2

cos
qz
2

+ cos
qx
2

cos qy cos
qz
2

+ cos
qx
2

cos
qy
2

cos qz

)
. (2.6)

We want to minimize the Hamiltonian (2.5) subject to the so-called local or strong
constraints |Si|2 = 1, for each site i, which is clearly a formidable task because of the
large number of constraints (N constraints for a lattice consisting of N sites). Instead of
attacking this problem we solve a simpler one. We only require the fulfillment of the much
weaker global constraint ∑

i

|Si|2 = N ⇔
∑
q∈BZ

|Sq|2 = 1, (2.7)

i.e. we only fix the spin length ”on average” (for a proof of equivalence of the real and
Fourier space norms consult Appendix A). Note that under the global constraint the energy
per site

ε =
H
N

=
∑
q∈BZ

J(q) |Sq|2 , (2.8)

is a convex combination4 of the real numbers J(q) with non-negative coefficients
|Sq|2 > 0, which is clearly minimized if we pick the points in the BZ where J(q) achieves
its minimum. We denote this set of points {Q} –the ordering vectors– byMGS, and dub it
as the ground state manifold (note that J(Q) is –by definition– constant onMGS). In order
to satisfy the global constraint

∑
Q∈MGS

|SQ|2 = 1 is still required, but there is nothing
to guarantee the fulfillment of the local constraints. Nevertheless, we have found a lower
bound to the true ground state energy per site ε0

ε0 =
〈H〉0
N
> ε(Q) =

∑
Q∈MGS

J (Q) |SQ|2 = J (Q) , (2.9)

where the “0” indices refer to the true ground state properties. If we are able to choose the
complex amplitudes SQ the way that Si =

∑
Q∈MGS

S0
Qe
−iQ·Ri is of unit length for every

3Details of the Fourier transform conventions and calculations are presented in Appendix A.
4By the convex combination of some quantities Jq we mean the weighted sum

∑
q pqJq , with non-

negative weights pq that sum to one:
∑
q pq = 1. Here the quantities are Jq ↔ J(q) and the weights

are pq ↔ |Sq|2.
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i, than we have achieved our goal, since we have found a true ground state (hence the “0”
index on the amplitudes). In this case Eq. (2.9) becomes an equality and the energy per site
is simply the Fourier transform of the exchange parameters evealuated on theMGS

ε0 = ε(Q) = J (Q) , (2.10)

note that ε(Q) only depends on the ordering vector parametrically.
What we do in practice is the following. We minimize J (q) with respect to q, i.e. we

equate its gradient to zero, and if this equation is satisfied at q = Q we check the positive
semidefiniteness of the Hessian

∂J (q)

∂qα

∣∣∣∣
q=Q

= 0, and
∂2J(q)

∂qα∂qβ

∣∣∣∣
q=Q

> 0. (2.11)

for α, β = x, y, z. The conditions above are necessary, but not sufficient to have a global
minimum: to find a true ground state we have to compare the different local minima and
choose the lowest one. In order not to miss a phase and scan the phase boundaries in the
three-dimensional parameter space of the exchanges –beside the analytical solutions– we
numerically minimized J(q) for randomly chosen exchanges and compared the numerical
minima to the values at symmetric points and lines in the BZ. This way a rough picture of
the phase diagram was drawn and later it was refined by analytical means.

We have seen in the Introduction 1 that the physics of the system strongly depends
on the dimension (and of course shape) of the MGS: For zero dimensional manifolds of
commensurate orders (magnetic Bragg peaks) on the square lattice and the corresponding
orderings see Fig. 1.2(b) and Fig. 1.3. Spin spirals (helices, cycloids) [76, 77, 78] have zero
dimensional manifolds too, see also Fig. 1.3(d) and Section 2.6. The J1-J2 model on the
square lattice [79, 80] may possess a one-dimensional manifold (see also Subsection 3.3.1),
just like the honeycomb lattice [81, 82, 83]. The first neighbor antiferromagnetic model
on the fcc lattice [71, 19] also has a one-dimensional MGS, see Fig. 2.3(b) and Subsec-
tion 2.7.4. Two dimensional manifolds (spin spiral surfaces) were found in the J1 − J2

model on the diamond [20], fcc [69, 84],5 body-centered cubic [85], and hexagonal close
packed [86] lattices. Moreover the kagome [87, 88] and pyrochlore [89, 90, 91] lattices
have the whole BZ as the ground state manifold (see Figs. 1.5(c) and (d)). Fluctuations on
the extended manifolds make these systems good candidates for realizing classical spin liq-
uids in some temperature range, see Subsection 1.1.4 and Refs. [25, 26, 20, 21, 92]. In the
following we construct the ground state phase diagram of the model in exchange parameter
space by minimizing the energy ε(q) with respect to the wave-vector.

2.4 Ground state phase diagram and ordering vectors
In this section we calculate the classical, zero temperature, ground state phase diagram of
the model Eq. (2.2) in the J1 − J2 − J3 parameter space. T = 0 means that the local

5For an expanded version of our paper [84] on the affine lattice construction of spin spiral surfaces consult
Chapter 3.
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Figure 2.2: Phase diagram of the classical J1-J2-J3 Heisenberg model (2.2) on the fcc
lattice for (a) ferromagnetic J1 < 0 and (b) antiferromagnetic J1 > 0 first neighbor in-
teractions. Essential information about the phases is given in Table 2.1. First order phase
transitions are denoted by solid black lines, dashed black lines stand for continuous (sec-
ond order) transitions. Equations of the phase boundaries are given in Table B.1. Phases
are labeled by their ordering vectors in units of 2π (c.f. Fig. 2.3). The four commensu-
rate phases are the ferromagnet Γ(0, 0, 0), and three types of antiferromagnets: X(1, 0, 0),
L
(

1
2
, 1

2
, 1

2

)
, and W

(
1, 1

2
, 0
)
. The commensurate ordering vectors are shown in Fig. 2.3(a)

(these phases are already present in the J3=0 models [17, 93]). A finite J3 causes the
incommensurate phases ∆(q, 0, 0), Λ(q, q, q) and Σ(q, q, 0) to appear, where q has to be
optimized according to Eqs. (2.44)-(2.46) (for the ordering vectors see Fig. 2.3(d)-(f)). The
phase Σ(q, q, 0) in (b) has a bow-tie shape (enlarged in the inset) with a neck being the
single point J2 = J1/2 and J3 = 0 (green dot), and at this point the L and W phases
meet. The dark red X −W phase boundary emanating from the first-neighbor antiferro-
magnetic point J2 = J3 = 0 is degenerate. Along this line any of the ground states have
ordering vectors on the one-dimensional manifold M1

Z defined by Q = (2π, q, 0) with
q ∈ [−π, π]. The manifold is shown in Fig. 2.3(b). In (a) the two triple points also have
one-dimensional ground state manifolds: M1

∆ (Fig. 2.3(d)) andM1
Λ (Fig. 2.3(e)). At the

green dot J3 = 0, J2 = J1/2 > 0, this point has a two-dimensional ground state manifold
shown in Fig. 2.3(c). Basic properties of the manifolds are given in Table 2.2.
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spin length constraint is satisfied. In the spirit of the Luttinger-Tisza method we compare
the energies ε(Q) of the possible orderings and choose the lowest one for a given set of
parameters. We do not bother about the real space picture of the orderings yet, since we
will analyze the fulfillment of the local length constraints in the following sections in great
detail. The energies and ordering vectors6 are collected in Table 2.1, and the detailed phase
diagram is shown in Fig. 2.2.

Table 2.1: Symmetry points and lines –the possible ordering vectors Q– with their labels
in the Brillouin zone of the fcc lattice are given in the first column. The number of arms
of the star (|F|) of the point or line (degeneracy) is given in the second column. Third
column: The energy per site ε (Q) for the given ordering. Fourth column: The exchange
parameter regions where the Hessian [Eq. (2.11)] is positive definite (stability criterion).
In the fifth column conventional names of the commensurate antiferromagnetic phases are
given. For the phase diagram see Fig. 2.2. The ordering vectors in the Brillouin zone are
given in Fig. 2.3. The optimized incommensurate ordering vectors are given in Eqs. (2.44)–
(2.46). About notation: we refer to points in the Brillouin zone either by their names and
coordinates in units of 2π or by their respective wave-vector, i.e. W (1, 1

2
, 0) ≡ (2π, π, 0) =

QW .

Label(Q) |F| ε (Q) Local stability Type
Γ (0, 0, 0) 1 6J1 + 3J2 + 12J3 J1 < −J2−6J3 –
X (1, 0, 0) 3 −2J1 + 3J2 − 4J3 J2 < 4J3 < 2J1−2J2 I
L
(

1
2
, 1

2
, 1

2

)
4 −3J2 J1−2J2 < 2J3 < J1+J2 II

W
(
1, 1

2
, 0
)

6 −2J1 + J2 + 4J3 8J3 < 2J2 < J1−2J3 III
∆ (q∆, 0, 0) 6 2−2J2

1+2J1J2+J2
2−24J2

3

2J2+8J3

Λ (qΛ, qΛ, qΛ) 8 −3(J2
1+2J1(J2−2J3)+(J2+2J3)2)

8J3

Σ (qΣ, qΣ, 0) 12 ε (QΣ)7

Next we compare the ground state energies ε(Q) of the adjacent phases to find the phase
boundaries. The boundaries are of first order if the ordering vector jumps discontinuously

6We recall that the star of a wave-vector q is its orbit under the action of the point group G of the crystal,
i.e. Fq = {gq | g ∈ G}, elements of the star are called arms (we only count inequivalent arms in Table 2.1,
i.e. those arms that only differ in a recirocal lattice vector are identified). The notation |F| for the number of
arms of the star is nonstandard. Since our exchanges are point group symmetric J(q) = J(gq); specifically
the ground state energies ε (Q) are degenerate for all the arms of the star of the ordering vector Q.

7The ε(QΣ = (qΣ, qΣ, 0)) Fourier transform is:

ε (QΣ) =
J3

1 + 6J2
1J2 − 66J2

1J3 + 12J1J
2
2 − 120J1J2J3 + 12J1J

2
3 + 8J3

2 + 24J2
2J3 − 120J2J

2
3 + 296J3

3

432J2
3

+

(
−J2

1 − 4J1J2 + 44J1J3 − 4J2
2 − 8J2J3 − 100J2

3

)√
(J1 + 2(J2 + J3))2 − 48J3(J1 − 2J3)

432J2
3

.
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Table 2.2: Multiple points of the phase diagram, corresponding to the degenerate manifolds
in wave-vector-space. First column: The label of the manifold is given (the superscripts
1, 2 refer to the dimension of the manifold), see Fig. 2.2. The manifolds are shown in
Figs. 2.3(b)-(e). In the second column we give the phases that meet at the special parameter
values given in the third column. In the fifth column we give the defining equation of the
manifolds in q-space, we show only one of the crystallographically equivalent directions.
Fifth column: The energy per site on the manifold.

Label Phases Constraints on J-s Def. ofMGS ε(Q)

M1
Z ∪ Γ Γ−X −W J2 = −2J1, J3 = −J1

2
, J1 > 0 Q = (2π, q, 0) −6J1

M1
Z X −W J3 = J2

4
, −2J1 < J2 < 0, J1 > 0 Q = (2π, q, 0) 2 (J2 − J1)

M1
∆ Γ−∆−X J2 = 2J1, J3 = −J1

2
, J1 < 0 Q = (q, 0, 0) +6J1

M1
Λ Γ− Λ− L J2 = −J1, J3 = 0, J1 < 0 Q = (q, q, q) +3J1

M2 L−W − Σ J2 = J1
2

, J3 = 0, J1 > 0 f (Q) = 0 8 −3
2
J1

while crossing the boundary, and they are of second order if the ordering vector deforms
continuously through the phase boundary; solid lines (dashed lines) show the first order
(second order) transitions in Fig. 2.2. The matching phases and the equations of the phase
boundaries together with the order of the transitions are given in Table B.1 of Appendix B.
There are points (and a line) of the phase diagram that need special attention, the triple
points (where three phases meet) and the boundary X(1, 0, 0)−W (1, 1

2
, 0). At these points

theMGS’s extend to lines and a surface showing large (but subextensive) degeneracy of the
ground states. Elementary information about these points and the corresponding ground
state manifolds are given in Table 2.2. The ordering vectors for the commensurate and
incommensurate phases together with the extended manifolds are presented in Fig. 2.3. We
will analyze the different orderings in real space in detail in Sections 2.5–2.7, here we only
summarize the basic properties of these phases.

Essentially, we have found three basic types of phases:

(i) We have found four commensurate orderings with ordering vectors at high symmetry
points of the BZ [19, 17, 93, 95]:

(a) The ordinary ferromagnet with ordering vector Q = Γ(0, 0, 0).

(b) An antiferromagnet with ordering vectors Q = X(1, 0, 0) and its symmetry
related partners, commonly dubbed the Type I phase.

(c) Another antiferromagnet with ordering vectors Q = L
(

1
2
, 1

2
, 1

2

)
and its sym-

metry related partners (Type II).

(d) And yet another antiferromagnet with ordering vectors Q = W
(
1, 1

2
, 0
)

and its
symmetry related partners (Type III).

8The equation of the two-dimensional manifoldM2 is: f (Q) = cos Qx

2 + cos
Qy

2 + cos Qz

2 = 0.
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(a) (c)

(d) (e) (f)

(b)

Figure 2.3: Brillouin zone (truncated octahedron) of the fcc lattice together with ordering
vectors and ground state manifolds of the phases in Fig. 2.2. (a) Commensurate order-
ing vectors, the encompassing red cube contains two BZ’s. Γ(0, 0, 0): The ferromagnet
with a one armed star. X (1, 0, 0): The Type-I antiferromagnet (three arms). L

(
1
2
, 1

2
, 1

2

)
:

The Type-II antiferromagnet (four arms). W
(
1, 1

2
, 0
)

is the Type-III antiferromagnet (four
arms). (b) Degenerate wave-vectors (Z-lines) on the X(1, 0, 0)−W

(
1, 1

2
, 0
)

phase bound-
ary (J1 > 0 and J3 = J2/4) forming a one-dimensional manifoldM1

Z , c.f. the dark red
line in Fig. 2.2(b). Every point on the crisscrosses is energetically degenerate. (c) Two-
dimensional energetically degenerate manifoldM2 (a Schwarz P surface [94], see also our
paper [84] and Subsection 3.3.2) belonging to the point J3 = 0, J2 = J1/2 > 0 (green dot
in Fig. 2.2(b)). The second row (d)–(f) shows the wave-vectors of incommensurate orders
(spin spirals): Depending on the exchange parameter values [c.f. Eq. (2.44)-(2.46)] a single
±Q pair of wave-vectors is chosen as the ordering vector. This row also corresponds to
the one-dimensional degenerate manifolds of the special points of the phase diagram. (d)
Incommensurate ordering vectors ∆(q, 0, 0) of the spin spirals propagating along the cubic
axes with 6 arms. This is also the manifold M1

∆ of the Γ − ∆ − X triple point, see the
yellow dot in Fig. 2.2(a). (e) Incommensurate ordering vectors Λ(q, q, q) of the spin spirals
propagating along the body diagonals of the enclosing cube with 8 arms. This is also the
manifoldM1

Λ of the Γ−Λ−L triple point, see the orange dot in Fig. 2.2(a). (f) Incommen-
surate ordering vectors Σ(q, q, 0) of the spin spirals propagating along the face diagonals of
the cubic cell (pictured only in the horizontal planes for better visibility; 12 arms). About
notation: Brillouin zone points are denoted either by their names and coordinates in units
of 2π (fractional coordinates) or their wave-vector, e.g. W (1, 1

2
, 0) ≡ QW = (2π, π, 0).
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For the ordering vectors in the BZ see Fig. 2.3(a). All these phases have already been
found in the J1 − J2 model (see the J3 = 0 lines in Fig. 2.2) and they are analyzed
in detail in Sec. 2.5.

(ii) We have also found three types of incommensurate spin spirals (helices or cycloids
[96, 76, 77, 78, 97])9 as the result of the frustrating effect of the J3 interaction. The
length of the pitch (or ordering) vector Q of these spirals is fixed by the exchange pa-
rameters values, and the pitch vectors point in high-symmetry directions of the crys-
tal. The incommensurate ordering vectors reside on the lines ∆(q, 0, 0), Λ (q, q, q)
and Σ (q, q, 0) (see Fig. 2.3(d)–(f)). These spirals are absent in the pure J1 − J2

models, for a few details see Sec. 2.6. Although these phases can be experimentally
significant (the fcc lattice is quite common, and –up to our knowledge– this is the
simplest model producing incommensurate orders on it), there is nothing much to
tell about them theoretically.

(iii) We have also found four phases with large ground state degeneracy and possessing
several different types of orderings. One of these ground state manifolds is two-
dimensional MGS = M2 (for a detailed description of this spiral surface see Sub-
section 3.3.2), and three of them is one-dimensional : M1

Z , M1
∆, andM1

Λ. Upper
indices on the manifold labels denote the dimensionality of the manifold.

(a) The two-dimensional manifold MGS = M2 [84, 69, 98] resides at the triple
pointL

(
1
2
, 1

2
, 1

2

)
−Σ (q, q, 0)−W

(
1, 1

2
, 0
)
: The surface is depicted in Fig. 2.3(c).

The presence of this codimension-one manifold at special values of exchanges
J2 = J1/2 and J3 = 0 is not an accident but a manifestation of our general
construction [84] presented in detail in Chapter 3.

(b) One of the one-dimensional manifolds resides at the X(1, 0, 0) −W
(
1, 1

2
, 0
)

phase boundary (see the red line with endpoints in Fig. 2.2(b)), that extends
from the first neighbor antiferromagnetic model [19, 17] J1 > 0, J2 = J3 =
0. This manifold is called M1

Z and it is depicted in Fig. 2.3(b): The lines
are connecting the X(1, 0, 0) and W

(
1, 1

2
, 0
)

points of the BZ, these lines are
sometimes called ”Z”, hence the name of the manifold.

(c) Another one-dimensional manifold resides at the triple point Γ(0, 0, 0) −
∆(q, 0, 0) − X(1, 0, 0) and its MGS = M1

∆ coincides with the collection of
∆(q, 0, 0)-s depicted in Fig. 2.3(d).

(d) The last one-dimensional manifold resides at the triple point Γ(0, 0, 0) −
Λ(q, q, q) − L

(
1
2
, 1

2
, 1

2

)
and its MGS = M1

Λ coincides with the collection of
Λ(q, q, q)-s depicted in Fig. 2.3(e).

These degenerate phases can be found at carefully chosen parameter values where other
more conventional phases meet, for details consult Sec. 2.7. In the following sections we
analyze the possible configurations 10 in detail, starting with the commensurate ones.

9The model being isotropic there is nothing to fix the plane of rotation of the spirals to the pitch vector Q
or to the crystallographic axes, for an illustration of a spin spiral on the square lattice see Fig 1.3(d).

10We make one last sidenote about the illustrations of ground state patterns on the fcc lattice (or the lack
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2.5 Commensurate phases

In this section we describe and investigate the four commensurate orders in detail, for
the ordering vectors see Fig. 2.3(a). We calculate the Fourier amplitudes participating in
the orders and show how the local spin length constraints manifest themselves in Fourier
space, and also describe the orders in real space. We also count the degeneracies: The
number and type of free parameters characterizing the order that remain after removing
the trivial, global O (3) rotations of the symmetry breaking. To get the correct number
of free parameters in Fourier space one must consider the periodicity of reciprocal space:
equivalent wave-vectors must not be distinguished. Here by equivalence we mean differing
only in some reciprocal lattice vector G, i.e. q ∼ q′ if q = q′ + G for an arbitrary
wave-vector q.

We calculate the Fourier amplitude constraints (and correspondingly the number/type
of free parameters) as follows. We expand the spins Si =

∑
Q∈MGS

S0
Q e−iQ·Ri in Fourier

space, and we keep only the amplitudes S0
Q of the arms of the star of the respective ordering

vector (i.e. theMGS for commensurate orderings) finite. Next we impose the constraints
that for every lattice point the spins have to be real unit vectors (the local length con-
straints), and solve the equations [99, 93, 100] for the Fourier amplitudes. This procedure
results the following rules:

S0
Q = S0∗

−Q, (2.12)

this is a consequence of the reality of the real space spins Si. The global length constraints
(by unitarity of the Fourier transform, see Appendix A) gives us∑

Q

∣∣S0
Q

∣∣2 = 1. (2.13)

And by exploiting the local length constraints we have the following equation in Fourier
space: ∑

Q

S0
Q · S0∗

Q−q′ = 0, ∀ q′ 6= 0. (2.14)

In order to make this last equation useful one has to choose q′ such a way that Q− q′ lies
on theMGS. We prove these equations in Appendix A.

2.5.1 The Γ (0, 0, 0) ferromagnet
This phase is the usual ferromagnet: All the spins point in the same direction and we only
have the trivial O(3) degeneracy of the symmetry breaking. The single Γ (0, 0, 0) point sits
in the center of the BZ, see the black dot in Fig. 2.3(a).

of them). We illustrated some typical spin patterns on the square lattice in the Introduction 1 (see. Fig. 1.3).
Drawing the same illustrations for the fcc lattice is much harder, not just because of its three-dimensional
nature and connectivity, but also because of the complexity of the resulting patterns. As an example, the
ground state of the Type III or W -phase consists of 32 (!) magnetic sublattices, c.f. Subsection 2.5.4. Even
though I tried real hard I could not find a proper way of illustrating such complicated patterns.
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2.5.2 The X (1, 0, 0) antiferromagnet, Type I
In this antiferromagnetic phase we have three nonequivalent ordering vectors:

X1 = (2π, 0, 0) , X2 = (0, 2π, 0) , X3 = (0, 0, 2π) , (2.15)

forming the star of X. These arms point to the midpoints of the square-shaped faces of the
BZ (see the green dots in Fig. 2.3(a)) we can combine them with the appropriate Fourier
amplitudes to construct a triple-Q order [99]. We expand the real space spins by choosing
the complex Fourier amplitudes S0

Xα
in

Si =
3∑

α=1

S0
Xα
e−iXα·Ri , (2.16)

and we enforce some constraints on the amplitudes to make the real space spins real unit
vectors. The opposite square faces of the BZ are identified, so Xα ∼ −Xα and the phase
factors e−iXα·Riare just ±1-s, so the amplitudes have to be real to ensure the reality of Si:

S0
Xα
∈ R3, ∀α. (2.17)

Using Eqs. (2.13–2.14) we get the following four constraints to fix the spin lengths:

3∑
α=1

∣∣S0
Xα

∣∣2 = 1 (1 constraint), (2.18)

S0
Xα
· S0

Xβ
= 0, ∀α 6= β (3 constraints), (2.19)

and the second set of equations follows if we choose q′ = Xα−Xβ in Eq. (2.14). The three
real amplitudes S0

Xα
provide 9 free real parameters. The global O(3) freedom removes 3 of

them (O(3) is a three-parameter Lie group), and Eqs. (2.18) and (2.19) give four additional
constraints, leaving two free parameters to characterize the degeneracy of the ground state
in this phase [17]. The global O(3) rotational freedom and the mutual orthogonality and
normalization of the real S0

Xα
allows us to parametrize the Fourier amplitudes as

(
S0
X1
|S0

X2
|S0

X3

)
=

 ξ 0 0
0 η 0
0 0 ζ

 , (2.20)

where all the parameters ξ, η, and ζ are real, and they satisfy the additional constraint:11

ξ2 + η2 + ζ2 = 1. The ground state manifold can thus be parametrized by a unit vector
(ξ, η, ζ). In what follows we construct and describe the order in real space.

With the parametrization given in Eq. (2.20) the spin on lattice point Ri = (x, y, z)
becomes (the coordinates can be either integers or half-integers):

Si =

 (−1)2xξ
(−1)2yη
(−1)2zζ

 . (2.21)

11Because of the O(3) symmetry we can choose X1 to point in the x-direction, then by mutual orthogo-
nality we choose the other two amplitudes in the y and z directions, and then we use the constraint (2.18).
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Figure 2.4: (a) Type-I X (1, 0, 0) 4-sublattice antiferromagnetic order. The sublattice spins
are SA, SB, SC and SD, repectively. The sublattices are simple cubic with lattice vectors
(1, 0, 0), (0, 1, 0), and (0, 0, 1). The different spins A − B − C − D sit on the a vertices
of elementary tetrahedra of the fcc lattice, and they satisfy the tetrahedron rule: SA +
SB + SC + SD = 0. (b) Type-II L

(
1
2
, 1

2
, 1

2

)
antiferromagnetic order, with four pairs of

antiferromagnetically ordered sublattices: inverted colors correspond to opposite spins, i.e.
SĀ = −SA is a white letter on a black disk. Each sublattice forms an fcc lattice with
a doubled lattice constant with respect to the original fcc lattice. On each elementary
octahedron of the original fcc lattice the spins form antiparallel pairs on opposite vertices
of the octahedra.

The superlattice vectors (the primitive vectors of the magnetically ordered crystal) form a
simple cubic lattice with a unit cell being the conventional cell of the fcc lattice (the black
cube in Fig. 2.1(a) containing four lattice points) with primitive lattice translations

aX1 = (1, 0, 0), aX2 = (0, 1, 0), aX3 = (0, 0, 1). (2.22)

The four magnetic sublattices form tetrahedra with spins

(SA|SB|SC |SD) =

 ξ −ξ −ξ ξ
η −η η −η
ζ ζ −ζ −ζ

 , (2.23)

see Fig. 2.4(a). These are the elementary tetrahedra of the original fcc lattice. The spins on
every elementary tetrahedron sum to zero:

SA + SB + SC + SD = 0, (2.24)

and we refer to this situation as the tetrahedron rule (the easiest way to see this is by
summing up every row in Eq. 2.23). We check the Fourier space degeneracy counting in
real space. The four sublattice spins mean four unit vectors providing eight free parameters,
the global O(3) symmetry and also the tetrahedron rule remove three of them, and we are
left with two free parameters as expected.

If we use all three arms of the star (all the Xα-s) and create a triple-Q order (with all
ξ, η, ζ finite in Eq. 2.20), then the spins are non-coplanar. If one of the parameters is zero,
e.g. ζ = 0, the configuration is coplanar, and if only ξ remains, it is collinear. Thermal
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or quantum order by disorder effects select a single arm of the star resulting in a collinear
structure [17].

One may ask the question: Can this phase be chiral? Even if we restrict ourselves to the
study of spin systems there are multiple definitions of chirality scattered in the literature,
so we dedicate Appendix C to this question. We review some notions of chirality there, and
analyze our commensurate orders according to the different notions.

2.5.3 The L
(

1
2 ,

1
2 ,

1
2

)
antiferromagnet, Type II

In this antiferromagnetic phase the nonequivalent Q-vectors are

L1 = (π, π, π) , L2 = (π,−π,−π) , L3 = (−π, π,−π) , L4 = (−π,−π, π) , (2.25)

forming a four-armed star (see the red dots in Fig. 2.3(a)). Since these arms reside on the
midpoints of the hexagonal faces of the BZ we can construct a quadruple-Q order out of
them [99]. We expand the real space spins in Fourier amplitudes as

Si =
4∑

α=1

S0
Lαe

−iLα·Ri ∈ R3. (2.26)

Just like in the former case Lα ∼ −Lα and the phase factors are e−iLα·Ri = ±1, the
amplitudes have to be real to ensure the reality of Si, i.e.

S0
Lα ∈ R3, ∀α. (2.27)

We can express the spins in real space as

Si = (−1)x+y+zS0
L1

+ (−1)y+z−xS0
L2

+ (−1)x+z−yS0
L3

+ (−1)x+y−zS0
L4
, (2.28)

with Ri = (x, y, z). Substituting the lattice points in the above equation yield four inde-
pendent spins on an elementary tetrahedron

SA = S (0) = S0
L1

+ S0
L2

+ S0
L3

+ S0
L4
, (2.29a)

SB = S (a1) = −S0
L1

+ S0
L2

+ S0
L3
− S0

L4
, (2.29b)

SC = S (a2) = −S0
L1

+ S0
L2
− S0

L3
+ S0

L4
, (2.29c)

SD = S (a3) = −S0
L1
− S0

L2
+ S0

L3
+ S0

L4
, (2.29d)

where the vectors ai are the primitive vectors of the fcc lattice, see Eq. (2.1). The tetra-
hedron rule does not hold anymore, since the J1 interactions cancel. Inverting the above
equations Eqs. (2.29) for the Fourier amplitudes of a given configuration on a tetrahedron
yields

S0
L1

=
1

4
(SA − SB − SC − SD) , (2.30a)

S0
L2

=
1

4
(SA + SB + SC − SD) , (2.30b)

S0
L3

=
1

4
(SA + SB − SC + SD) , (2.30c)

S0
L4

=
1

4
(SA − SB + SC + SD) . (2.30d)
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Shifting the elementary tetrahedron by δ = (1, 0, 0) flips the spins, resulting in an 8-
sublattice antiferromagnet of spin pairs of SA, SB, SC and SD, and SA = −SĀ (where
SĀ is the site of the spin shifted by (1, 0, 0) with respect to SA, and so on). The order is
shown in Fig. 2.4(b).

The magnetic superlattice is an fcc lattice doubled in linear size with respect to the
original one, with primitive lattice vectors

aL1 = (1, 1, 0), aL2 = (1, 0, 1), aL3 = (0, 1, 1). (2.31)

We calculate the degeneracies in real space. The four independent sublattice spins mean
8 free real parameters (four independent unit spheres), the global O(3) freedom removes 3
parameters resulting 5 independent real degrees of freedom [17]. On every (111) triangu-
lar plane only four out of eight spin directions are present, forming a regular 4-sublattice
order [101]. About the chiral properties of this phase consult Appendix C.

2.5.4 The W
(
1, 1

2 , 0
)

antiferromagnet, Type III
We have 24 symmetry related W-vectors (the corners of the BZ, see the purple dots in
Fig. 2.3(a)) in this order. The 24 vectors fall into 6 equivalency classes forming 6-armed
star. This can be understood since each corner of the BZ is shared by four truncated octa-
hedra. The six arms form three ± pairs: Qα = ±W1, ±W2, ±W3 with classes

W1 ∼ {(π, 0, 2π), (−π,−2π, 0), (−π, 2π, 0), (π, 0,−2π)},
W2 ∼ {(2π, π, 0), (−2π, π, 0), (0,−π,−2π), (0,−π, 2π)},
W3 ∼ {(0, 2π, π), (−2π, 0,−π), (0,−2π, π), (2π, 0,−π)}. (2.32)

Since Wα � −Wα to make the spins real in real space we have to combine the ±Wα

pairs:

Si =
3∑

α=1

S0
Wα

e−iWα·Ri + S0
−Wα

e+iWα·Ri , (2.33)

where the amplitudes form complex conjugate pairs

S0
−Wα

= S0∗
Wα

. (2.34)

This type of ordering is also called a triple-Q one (we have three pairs of ordering vectors).
The local spin length constraint results the following restrictions for the Fourier amplitudes:

3∑
α=1

S0∗
Wα
· S0

Wα
=

1

2
, (2.35a)

S0
Wα
· S0

Wα
∈ iR, ∀α, (2.35b)

S0
Wα
· S0

Wβ
= S0∗

Wα
· S0

Wβ
= 0, ∀ α 6= β. (2.35c)
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Since S0∗
Wα

= S0
−Wα

the first equation is the consequence of Eq. (2.13):

3∑
α=1

(
S0∗
Wα
· S0

Wα
+ S0∗

−Wα
· S0
−Wα

)
= 1. (2.36)

The last two equations follow from Eq. (2.14) with the choice q′ = 2Wα and q′ = Wα ±
Wβ .

To calculate the number and properties of the free parameters we decompose the com-
plex amplitudes into real vectors yielding

S0
±Wα

= uα ∓ ivα, uα,vα ∈ R3, α = 1, 2, 3 (2.37)

and we express the complex constraints Eqs. (2.35) for the real and imaginary parts of the
amplitudes as

1

2
=

3∑
α=1

(
|uα|2 + |vα|2

)
(1 constraint), (2.38a)

|uα| = |vα| , ∀ α (3 constraints), (2.38b)
0 = uα · uβ, ∀ α 6= β (3 constraints), (2.38c)
0 = vα · vβ, ∀ α 6= β (3 constraints), (2.38d)
0 = uα · vβ, ∀ α 6= β (3 constraints). (2.38e)

The three pairs of the real vectors uα and vα mean 18 free parameters, the equations above
give 13 constraints and together with the global O(3) degrees of freedom (3 free param-
eters) we are left with 2 free real parameters for the nontrivial degeneracy analogously to
the Type-I phase.

As we have done to the Type-I phase, with the use of the global O(3) freedom and
the orthogonality and normalization of the uα real amplitudes we parametrize them as (see
Footnote 2.18):

(u1|u2|u3) =
1

2

 ξ 0 0
0 η 0
0 0 ζ

 , (2.39)

where all the parameters are real and they satisfy the constraint: ξ2+η2+ζ2 = 1. We use the
orthogonality relations between the real and imaginary parts uα and vα (see Eqs. (2.38c)–
(2.38e)) resulting for the vα-s

(v1|v2|v3) =
1

2

 ±ξ 0 0
0 ±η 0
0 0 ±ζ

 , (2.40)

and at this point any of the eight possible combination of the above signs can be chosen. We
can ask the question: are all these eight choices physically different? The answer is no, in
the following sense: There are only two independent phases forming chiral/enantiomorphic
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partners, i.e. the two phases are related by space inversion, but there is no proper space
group element that maps the two phases to each other. One class consists of the sign
distribution in Eq. 2.40 with an odd number of minus signs, while in the other class the
number of minus signs is even. Deriving the above statement is tedious, and we refer to
Section IV.D and Appendix C of our original paper [102]. The above notion of chirality is
explained in detail in Section C.2.

Substituting the real parametrization (2.39) and (2.40) in Eq. (2.37) and using Eq. (2.33)
yields for the spin components in real space

Si(ξ, η, ζ) =
√

2

 ξ cos
(
W1 ·Ri ± π

4

)
η cos

(
W2 ·Ri ± π

4

)
ζ cos

(
W3 ·Ri ± π

4

)
 =

√
2

 ξ cos
(
π(x+ 2z)± π

4

)
η cos

(
π(y + 2x)± π

4

)
ζ cos

(
π(z + 2y)± π

4

)
, (2.41)

where we have used the Cartesian coordinates Ri = (x, y, z), and in the fcc lattice the
coordinates x, y, and z can either be integers or some half integer combinations.

The last form of the spins in Eq. (2.41) is very handy in understanding the spin pattern.
We just have to follow the phase shifts of the components when applying transformations,
e.g. space group elements or time reversal. These transformation properties are described in
detail in Section IV.D and Appendix C of our original paper [102]. It is seen that translating
system by 2 in any of the Cartesian directions leaves the pattern unchanged. We have to
change all the x, y, and z coordinates by an even number to achieve a 2π phase shift in all
the spin components (see Eq. (2.41)) to leave them intact, and the smallest possible choices
for such translations are the vectors

aW1 = (2, 0, 0) , aW2 = (0, 2, 0) , aW3 = (0, 0, 2) . (2.42)

Therefore we conclude that the resulting magnetic unit cell is just the conventional Bravais
cell doubled in linear size and the resulting magnetic superlattice is a simple cubic one with
the above vectors as primitive lattice translations. The usual cubic cell depicted in Fig. 2.1
contains four lattice points, so the magnetic unit cell contains 32 of them.

This 32-sublattice order is very complicated and we have found no elucidating way
to visualize it, but nevertheless we enumerate some of its properties. The moments point
to eight directions forming four ± pairs (just like in the Type-II phase), but the four spin
directions are connected by a tetrahedron rule (just like in Eq. (2.24)): Spins on every
elementary tetrahedron sum up to zero. We can calculate the degeneracy in real space:
Four unit vectors mean 8 parameters and the tetrahedron rule together with the global O(3)
removes six of them leading to the correct value of two for the number of free parameters.

One can ask the question: Is there a way to build up the 32-site order from an ele-
mentary tetrahedron satisfying the tetrahedron rule? The answer is positive: For example
translating a tetrahedron by the vector (1, 1, 1) and flipping all the spins is a symmetry of
the configuration. Tetrahedra separated by vectors such as (1, 0, 0) are also related by spin
flips and carefully chosen two-fold rotations.

Our one last note is about the coplanar and collinear states. If we form a coplanar or
double-Q order by setting e.g. ζ = 0 in Eq. (2.41) the magnetic cell is halved to 16 sites,
since (0, 0, 1) is now a lattice translation (see Eq. (2.41)). The collinear, single-Q order has
a 4-site unit cell: With η = ζ = 0 the lattice translations become (1, 1

2
, 1

2
), (0, 1, 0), and

(0, 0, 1).
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2.6 Incommensurate phases

In this section we study the incommensurate phases (spin spirals), i.e. the phases that have
ordering vectors Q at general positions in the BZ (for an illustration of a spiral on the
square lattice see Fig. 1.3(d)). We started to study the J1 − J2 − J3 isotropic problem
in order to find the simplest Heisenberg model on the fcc lattice having incommensurate
phases, which we have actually found. But we discovered much more interesting ground
states, for the details see the next section.

All the previously discussed commensurate phases are present in the J1−J2 models [95,
17, 93], see the J3 = 0 lines in Fig. 2.2(a) and (b). A new feature of the J3 6= 0 model is the
presence of incommensurate orderings with propagation vectors (also called pitch vectors)
along special directions [103, 104, 105] of high symmetry. The possible pitch vectors
of the three incommensurate orderings are depicted in Fig. 2.3(d)–(e), and here we give
the dependence of the wave-vectors on the exchange parameters and give their accessible
ranges.

Since the ordering vectors are incommensurate we have to combine both ±Q, and a
general spin spiral looks like

Si = s1 cos (Q ·Ri + ϕ)± s2 sin (Q ·Ri + ϕ) , (2.43)

where s1 and s2 are two arbitrary orthogonal unit vectors that span the plane of spin rota-
tions, ϕ is an arbitrary phase, and± accounts for the two possible senses of rotations of the
spiral, i.e. the two chiral enantiomers in the sense explained in Sec. C.2. Since the model
is isotropic, nothing fixes the plane of rotation of the spins relative to the wave-vector or to
the crystallographic axes (another manifestation of the spontaneous breaking of the global
O(3) symmetry).12 Since the wave-vectors are incommensurate we are unable to build any
multiple-Q ground states out of their stars [99]. In the following we give the data about the
three possible incommensurate orderings: The ordering vectors, the number of the arms of
the stars, and the ranges of the ordering vectors and their optimized values as a function of
the exchange parameters.

The three feasible directions of the pitch vectors are ∆ (q, 0, 0) having a 6-armed star
(see Fig. 2.3(d)), Λ (q, q, q) having an 8-armed star (see Fig. 2.3(e)) and Σ (q, q, 0) having
a 12-armed star (see Fig. 2.3(f)).

• We can see in Fig. 2.2(a) that ∆ (q, 0, 0) smoothly connects the two phases Γ(0, 0, 0)
and X(1, 0, 0) so the possible q-values extend to the whole ∆ (q, 0, 0)-star, i.e. q ∈
(−2π, 2π]. The optimized q-value of the spiral is

cos
q∆

2
=
−J1 − 2J3

J2 + 4J3

. (2.44)

12One sometimes calls special cases of spirals when the orientation of the spin rotation plane contains (is
perpendicular to) the propagation vector as cycloids (helices). We also note that a tiny homogeneous external
field breaks the rotational symmetry of the system, and without changing the pitch vector aligns the spin
rotation plane perpendicular to the field, and cants the spins a little bit in the direction of the field.
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• The phase Λ (q, q, q) smoothly interpolates between the phases Γ(0, 0, 0)
and Λ

(
1
2
, 1

2
, 1

2

)
and the possible q-values extend to the whole Λ (q, q, q)-star q ∈

(−π, π]. The optimized q-value of the spiral is

cos qΛ = −J1 + J2 + 2J3

4J3

. (2.45)

• The case of the Σ (q, q, 0) star is quite different, the possible q-values are restricted to
the interval 1.28π . q ≤ 2π, making the transition between Γ(0, 0, 0) and Σ (q, q, 0)
first order. The optimized q-value of the spiral is

cos
qΣ

2
=

√
(J1 + 2(J2 + J3))2 − 48J3(J1 − 2J3)

24J3

− J1 + 2(J2 + J3)

24J3

. (2.46)

The vector Q = (π, π, 0) on the Σ (q, q, 0)-line –although it is not a special point in
the BZ– corresponds to a Néel-type commensurate antiferromegnetic order, and is called
the Type-IV order. This type of ordering is realized in CoN [106, 71]. Since the quantum
order by disorder mechanism favors collinear orders we tried to stabilize this type of order
by including quantum fluctuations (in the spirit of [107]), but the available q-values for the
Σ (q, q, 0) phase are far from π, and our attempts failed.

2.7 Ground states of the extended manifolds

The degenerate ground state manifoldM1
Z for the first-neighbor antiferromagnetic Heisen-

berg model (J1 > 0, J2 = J3 = 0) on the fcc lattice was found in [58, 19]. The degeneracy
here means that the ordering pattern corresponding to any Q-point on this manifold has
the same energy, no matter how differently the real space patterns may look like. If we are
lucky enough we may even mix different points on the manifold to create e.g. aperiodic
ground state patterns. We will see plenty of examples in the following. A family of ground
states were composed in [19] of (100)-directed, noninteracting (independent) AFM planes.
In this section we characterize the phases with extendedMGS-s of energetically degenerate
ordering vectors (for the manifolds see Fig. 2.3(b)–(e)) that correspond to large ground state
degeneracies at special points of the phase diagram shown in Fig. 2.2. These degeneracies
found in Fourier space can be understood by a construction in real space: We cover the lat-
tice with finite motifs (shown in Fig. 2.5), and write the Hamiltonian as a positive definite
sum of complete squares of spins over these motifs. The minimization of the Hamiltonian
imposes local constraints on the spins on these motifs, and any state that satisfies these
local constraints is a good ground state. These constraints can be satisfied in several ways
thereby explaining the degeracy. We generalize the construction given in [19] for the other
degenerate manifolds (besidesM1

Z) and build up ground states from noninteracting planes
(ferro- or antiferromagnetic, or even mixed). We have also found ground states consisting
of ferromagnetically ordered chains (although these chains are interacting).

We solved the models of the extended manifolds for Ising spins Si ∈ {1,−1}, for finite,
symmetric clusters. Details of the Ising calculations are given in Appendix D of the original
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paper [102]. We also simulated the model numerically for planar (also called O(2) or XY )
spins Si = (Sx, Sy)i, S2

x + S2
y = 1 as a guide to our intuition of the possible ground states

of the O(3) model.
The structure of this section is the following: We we will consider all the five degen-

erate manifolds in different subsections, starting with the two-dimensional M2 followed
by the one-dimensional ones. In every subsection we describe the finite motif covering
and rewrite the Hamiltonian according to it. In the one-dimensional cases we construct
several classes of unusual –e.g. aperiodic– ground states based on these coverings, but a
caveat comes here. These constructions are sometimes quite complicated geometrically,
and they are very hard to understand just by looking at two-dimensional pictures (although
we tried to do our best when drawing the illustrations). The best way to understand such
constructions is by building a real world ball-and-stick model, e.g. by using Geomag© (as
we actually did). Therefore for the ones only interested in the resulting ground state pat-
terns (or living without a properly colored fcc-model) every subsection closes with a short
summary enumerating the ground state patterns found.

Table 2.3: Finite motifs we used to cover the face-centered cubic lattice (for pictures of
them see Fig. 2.5). Second column: Symbols of the motifs used in formulas. Overcounting
of the sites and the J1 first, J2 second, and J3 third neighbor bonds. E.g. in a tetrahedral
covering (see Fig. 2.5(a)) we put two tetrahedra of different orientation on each site, and as
a consequence each first neighbor bond is shared by two tetrahedra, and no longer bonds
are covered. In the seventh column we give the reference of the subfigures in Fig. 2.5 for
the given motif.

Motif Symbol Site J1 J2 J3 Subfigure
Tetrahedron tetra 2 2 – – (a)
Signed rectangle rect1 6 2 4 1 (b)
Signed rectangle rect2 6 2 4 1 (c)
Square square 3 2 2 – (d)
Octahedron octa 1 2 1 – (e)

2.7.1 The J1 = 2J2 > 0, J3 = 0 point: The two-dimensional M2

ground state manifold

In this subsection we consider the two-dimensional ground state manifold M2, give its
finite-motif covering (and explain the technique in some detail), and rewrite the Hamilto-
nian based on this covering as a positive definite sum of complete squares of spins.

At the point J1 = 2J2 > 0, J3 = 0 (see the green dot in Fig. 2.2(b)) the ordering vectors
of the possible ground states form the two-dimensionalM2 manifold, defined by

cos
Qx

2
+ cos

Qy

2
+ cos

Qz

2
= 0, (2.47)



2.7. Ground states of the extended manifolds 43

(a) (b) (c) (d) (e)

Figure 2.5: Finite motifs we have used to cover the face-centered cubic lattice to create
the Heisenberg exchanges for models with high ground state degeneracies. Red, green and
blue lines correspond to first, second, and third neighbor bonds of a motif, respectively.
By covering the crystal with these motifs we count bonds and sites multiple times: This
overcounting is given for every motif in Table 2.3. (a) the elementary tetrahedra (index
“tetra” in formulas). On each lattice point we put two tetrahedra of different orientation:
This way we cover every first neighbor bond twice (and no further neighbor bond is cov-
ered). (b) A signed rectangle (index “rect1” in formulas): We can put 6 differently oriented
rectangles on every site and we cover every first, second and third neighbor bond (for the
overcounting the sites and bonds see Table 2.3). “Signed” here means that when we write
the complete squares of the spin sums in Eq. (2.68) to construct the Hamiltonian we have
to assign a minus sign to the spins sitting in the vertices denoted by white dots, black dots
mean a plus sign for the appropriate spins. Together with the tetrahedra we use this motif
to construct the ground states of the phase corresponding to the manifold M1

Z , see Fig.
2.3(b). (c) A differently signed rectangle (index “rect2” in formulas), very similar to the
former one but with different sign distribution, see Eq. (2.69). We cover the lattice with this
motif for the phase with ground state manifoldM1

∆. (d) A signed square: (index “square”
in formulas), by 3 differently oriented squares per site we cover the lattice for the phase
with ground state manifoldM1

Λ, see Eq. (2.52). (e) Elementary octahedron (“octa” in for-
mulas): We cover the lattice with one edge-sharing octahedron per site for the phase with
the two-dimensional ground state manifoldM2, see Eq. (2.49).

and shown in Fig. 2.3(c). Ordering patterns corresponding to general points of this manifold
correspond to spin spirals, so surfaces like this are called spin spiral surfaces. This is the
only point of the phase diagram with such a large degeneracy [69, 98], however extending
the model with a fourth neighbor coupling J4 another two-dimensional manifold appears,
see our paper [84], Section 3.4 and especially Fig. 3.6. We mention that the W

(
1, 1

2
, 0
)

and L
(

1
2
, 1

2
, 1

2

)
points are parts of this manifold: Not surprisingly, since this is the point

of the phase diagram where the W
(
1, 1

2
, 0
)

and L
(

1
2
, 1

2
, 1

2

)
phases meet at the neck of the

Σ(q, q, 0) phase [93], see also Fig. 2.2(b). The Hamiltonian at this point becomes

H =
J1

4

∑
〈i,j〉1

4 Si · Sj +
∑
〈i,j〉2

2 Si · Sj

 . (2.48)

We can express this Hamiltonian as a sum of complete squares of spins on the vertices of
the edge-sharing elementary octahedra covering the lattice (for a picture of the covering
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motif see Fig. 2.5(e))

H =
J1

4

∑
octa

(S1 + S2 + S3 + S4 + S5 + S6)2 − 3

2
J1N, (2.49)

where S1, . . . , S6 denote the six spins on the vertices of an octahedron. Every first neigh-
bor bond is covered twice, and every second neighbor bond once (see Table 2.3), and
consequently Eq. (2.49) exactly reproduces Eq. (2.48). This is why we chose the octahedra
to cover the lattice for these particular values of the exchange parameters. Since J1 > 0
Eq. (2.49) is minimized if the spins sum to zero on every octahedron:

S1 + S2 + S3 + S4 + S5 + S6 = 0, (2.50)

and we dub this equation the octahedron rule. Every such configuration is a ground state,
and every ground state satisfies the octahedron rule. The additional constant −3

2
J1N gives

the correct ground state energy with N being the number of sites (compare this to Ta-
ble 2.2).13 The following commensurate orderings automatically satisfy the octahedron
rule: The L

(
1
2
, 1

2
, 1

2

)
and W

(
1, 1

2
, 0
)
-type ground states, see Fig. 2.4(b) and Eq. (2.41). A

general spin spiral with ordering vectors on the manifold Q ∈ M2 also follows the octa-
hedron rule: We can check this by putting an arbitrary Q in Eq. (2.43), and summing the
spins on octahedra. The sum vanishes if and only if Q satisfies the equation (2.47) of the
surfaceM2. Order by disorder effects (either thermal or quantum) at the harmonic level
select the L

(
1
2
, 1

2
, 1

2

)
points on the M2 surface, see our paper [84] and Section 3.4, the

technical details of the free energy calculations are presented in Appendix E. The appear-
ance of such a largeMGS is not an accident at all: Codimension-one manifolds (surfaces
in three dimensions and curves in two dimensions) are guaranteed to form for models with
special parameters, and we devote the whole Chapter 3 to a recipe for constructing such
models on Bravais lattices.

In the next subsection we describe the finite motif covering corresponding to the one-
dimensionalM1

Λ ground state manifold, and construct some unusual ground state configu-
rations.

2.7.2 The Γ(0, 0, 0)−Λ(q, q, q)−L(1
2 ,

1
2 ,

1
2) triple point: The one-dimensional

M1
Λ ground state manifold

In this subsection we consider the one-dimensional ground state manifold M1
Λ, we give

its finite-motif covering and rewrite the Hamiltonian based on this covering as a positive
definite sum of complete squares of spins. We construct several classes of unusual –e.g.

13It is worth emphasizing that comparing the additional constant to the true ground state energies calculated
by the Luttinger-Tisza method and enlisted in Table 2.2 is crucial: (i) We have shown in Eq. (2.9) that the
Luttinger-Tisza energy is a lower bound to the true ground state energy, (ii) Nothing guarantees the uniqueness
of a finite covering of the lattice for a given set of exchange parameters, and the different coverings can have
different ground state energies (like the additional constant in Eq. (2.49)). But if the additional constant of
the Hamiltonian in its motif-covering form (like Eq. (2.49)) agrees with the Luttinger-Tisza value given in
Table 2.2 we can be sure that configurations satisfying the motif rule (e.g. Eq. (2.50)) give correct ground
state configurations since they achieve the smallest possible ground state energy.
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Figure 2.6: (a) Octahedra covering the face-centered cubic lattice (see also Fig. 2.1(d) and
Fig. 2.5(e)). We show the three realizable orientations of the signed squares (depicted in
Fig. 2.5(d)) inscribed in the octahedron. (b) The face-centered cubic lattice viewed from
the (110) direction. This is the two-dimensional lattice of the (110) ferromagnetic chains
that form a class of possible ground state solutions of the model in the Γ−Λ−L point of the
phase diagram (with exchange parameters J1 = 2J2 > 0, J3 = 0, see also the green dot in
Fig. 2.2(b)). The bond strengths of the effective two-dimensional Hamiltonian (2.60) for the
chains areK1 for the first neighbor red bonds, andK2 for the second neighbor green bonds.
Note that this lattice of interacting chains is topologically equivalent to a first and second
neighbor model on the square lattice. The gray rhombus is the projection of one of the
covering signed squares also shown in Fig. 2.5(d), minus signs of the spins are associated
to one pair of opposite vertices, say to A and A′. (c) Brillouin zone of the lattice shown
in Fig. 2.6(b), together with the ground state manifold (orange cross) of the Hamiltonian
Eq. (2.60), this manifold is nothing but the section ofM1

Λ (see Fig. 2.3(e)) with the (110) q-
plane passing through the origin. We note that this BZ is not a perfect hexagon. Symmetry
points of the original three dimensional BZ (see Fig. 2.3(a)) are depicted, together with
some points less frequently considered: K

(
3̄
4
, 3

4
, 0
)

and U
(

1̄
4
, 1

4
, 1
)

.

aperiodic– ground states based on these coverings. These constructions are sometimes very
technical and quite complicated geometrically, and they are very hard to understand just by
looking at two-dimensional pictures, therefore for the ones only interested in the resulting
ground state patterns every subsection closes with a short summary enumerating the ground
state patterns found.

At the triple point J2 = −J1 > 0, J3 = 0 (see the orange dot in the phase diagram
Fig. 2.2(a)) theMGS isM1

Λ depicted in Fig. 2.3(e). The possible ordering vectors Λ(q, q, q)
smoothly connect Γ(0, 0, 0) and L

(
1
2
, 1

2
, 1

2

)
, explaining the shape of the manifold. The
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(a) (b) (c)
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Figure 2.7: The face-centered cubic lattice viewed from the (111) direction. (a) Neighbor-
ing (111) planes are shown in orange and green, the octahedra connecting the planes are
denoted by thin, black hexagons. The planes form triangular lattices. We can see the 6 first
neighbor (J1) in-plane bonds (in orange) emerging from the central site, and the 3 black
J1 lines connecting the central site to the green plane (the enumeration of all the intra- and
interplane bonds is given in Table 2.4). The gray parallelogram denotes the projection of a
covering square also shown in Fig. 2.5(d). (b) A solution of the model Γ− Λ− L point of
the phase diagram, see the orange dot in Fig. 2.2(a). Kagome sublattices of majority spins
that are ordered ferromagnetically (S1 orange, and green S2) are shown on the triangular
(111) planes. Minority spins are shown by purple S1′ and blue S2′ dots. (c) Highlighted
(1̄10) lines on the (111) planes. These chains order ferromagnetically in a class of solu-
tions of the model in the Γ− Λ− L point of the phase diagram. The chains interact by the
interactions given in Eq. (2.60), see also Fig. 2.6(b).

Hamiltonian at this point becomes

H = J1

∑
〈i,j〉1

Si · Sj − J1

∑
〈i,j〉2

Si · Sj, (2.51)

note that this is a mixed ferro-antiferromagnetic model. We cover the lattice by signed
squares (for the sign distribution see Fig. 2.5(d))

H = −J1

4

∑
square

(S1 − S2 + S3 − S4)2 + 3J1N, (2.52)

to every site we can draw 3 squares, directed in each of the {100} planes. Consequently
every first and second neighbor bond is covered twice, see Table 2.3. Just like in the
previous subsection the Hamiltonian is minimized if and only if the

S1 − S2 + S3 − S4 = 0 (2.53)

sums vanish on every square (a square rule), the ground state energy per site can be inferred
from the additional constant ε = +3J1 (compare this to Table 2.2).

The three equations on the three signed squares are dependent, and instead of them
we can use the octahedra containing these squares to cover the lattice (see Fig. 2.1(d) and
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Fig. 2.6(a)). Out of the 3 square equations on orthogonal squares only two equations are
independent per octahedron. With the notations of Fig. 2.6(a) for the sites of an octahedron,
the ground state spin configuration satisfies the equations

SA + SA′ = SB + SB′ = SC + SC′ = 2m , (2.54)

where the auxiliary vector m is proportional to the magnetization of an octahedron. We
can solve them introducing the a, b, and c vectors

SA = m + a , SA′ = m− a , (2.55a)
SB = m + b , SB′ = m− b , (2.55b)
SC = m + c , SC′ = m− c . (2.55c)

The spin length constraint |SA|2 = |SA′|2 = 1 implies (m± a) · (m± a) = 1 (and we
have analogous equations for b and c). Adding and subtracting these equations result the
set

|m|2 + |a|2 = 1 , m · a = 0 , (2.56a)
|m|2 + |b|2 = 1 , m · b = 0 , (2.56b)
|m|2 + |c|2 = 1 , m · c = 0 . (2.56c)

The vectors above can differ from octahedron to octahedron, as long as they satisfy some
compatibility conditions: Sharing an edge creates a dependence among them (in what fol-
lows we omit the octahedron index for simplicity). Having spins with Ns components the
a,b, c, and m mean 4Ns degrees of freedom, and there are 6 constraints in Eq. (2.56): We
expect 4Ns − 6 free continuous parameters describing the ground state of an octahedron.
A ferromagnetic order obeys the rule given by Eq. (2.54) or Eq. (2.53) trivially, since the

Table 2.4: Number of bonds connecting a single lattice point to its neighbors on the nearby
(111) planes, see Fig. 2.1(b) and especially Fig. 2.7(a). The first column contains the
separation of consecutive planes: “0” means the (111) plane containing the chosen point,
“1” means the two first neighbor (111) planes to the point, and “2” means the two second
neighbor (111) planes. The second column contains the number of first neighbor bonds
connecting the chosen point to the planes of the given separation, the last two columns give
the number of further neighbor bonds between planes of the indicated separation.

Separation J1 J2 J3

0 6 0 6
1 6 6 12
2 0 0 6

Γ(0, 0, 0) point is part of this manifold.
For a ferromagnet a = b = c = 0. For m = 0 we have an antiferromagnetic

L
(

1
2
, 1

2
, 1

2

)
order: All the Type II states given in Sec. 2.5.3 and depicted in Fig. 2.4(b) can
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be constructed this way. As an example we can choose the single ordering vector (π, π, π)
and get a set of alternating (111) ferromagnetic planes, see Eq. (2.28) with only the ampli-
tude S0

L1
being nonzero, and Fig. 2.4(b) with SB = −SC = SD = SA. This suggests other

feasible candidate ground states: We may construct a family of ground states by stacking
ferromagnetic (111) planes (these planes form triangular lattices as shown in Fig. 2.7(a)).

Stacking of independent {111} ferromagnetic planes

Assuming a ground state consisting of ferromagnetically ordered (111) planes, we can rep-
resent a plane by a single effective superspin given by the unit vector si. Here “i” indexes
the consecutive planes and we can derive an effective one-dimensional model for these
effective spins

H(111)
Λ =

1

4
(6J1 + 6J2 + 12J3)

L(111)∑
i=1

si · si+1 +
1

2
(6J1 + 6J3)L(111), (2.57)

where we can deduce the effective exchanges either from Table 2.4 or from Fig. 2.7(a).
Here L(111) is the number of (111) planes in the lattice, and the additional constant is in-
ferred from from the in-plane couplings. If we substitute the actual values J2 = −J1

and J3 = 0 in Eq. (2.57), we realize that the first term disappears, so the planes disen-
tangle (become noninteracting), and the last term gives +3J1 for the correct ground state
energy per site of the original model, see Table 2.2. The ordering pattern we get is of the
form F1F2F3F4 . . . , with Fi labeling the independent ferromagnetic planes. As seen in
Fig. 2.7(a) only the first neighbor planes are connected by the covering squares. With the
notation of Fig. 2.7(a) we can see that S1′ = S1 and S2′ = S2, since these pairs lie on FM
planes. Therefore Eq. (2.54) is automatically satisfied since S1 + S2 = S1′ + S2′ .

A state like this can be constructed by choosing ordering vectors solely from the (q, q, q)
line of theM1

Λ manifold,

S(x,y,z) =
∑

q∈[−π,π)

S0
(q,q,q)e

−iq(x+y+z). (2.58)

Any point on the Λ(q, q, q) line can be present in the above sum, as long as we include both
(q, q, q) and−(q, q, q), and carefully choose the Fourier amplitudes to satisfy the local spin
length constrains. We can choose any of the symmetry related 〈111〉 directions in the above
expansion.

By solving the Ising problem on finite clusters (see Appendix D of our original pa-
per [102] for details) we have found the {111} stacking of independent ferromagnetic
planes: The Fourier transform of these ordering patterns consists only of one line of or-
dering vectors in M1

Λ. Another ordering pattern was also found, consisting of up and
down spins forming two interpenetrating pyrochlore lattices: The unit cell contains 8 lattice
points, see Fig. 2.4(b) with SA = SB = SC = SD = 1 and SĀ = SB̄ = SC̄ = SD̄ = −1.

Stacking of almost independent {111} “kagome” planes

Numerical simulations on O(2) spins revealed yet another class of ground state solutions,
where the 3/4 majority fraction of the spins on the triangular (111) planes formed a ferro-



2.7. Ground states of the extended manifolds 49

magnetic order on a kagome sublattice of these planes (see the orange and green sublattices
in Fig. 2.7(b)). The minority of the spins (purple and blue dots in Fig. 2.7(b)) seemed to
be independent of the majority ones, and a similar pattern was found on every consecutive
(111) plane. In the following we will use the notations of Fig. 2.7(b). We can apply the
octahedral constraint of Eq. (2.56): We assume the kagome-style pattern on consecutive
planes indexed by 1, 2, 3, . . . , and follow the consequences of the constraints propagate as
we move along the octahedra between the planes. We set the majority spins to S1 and the
minority spins to S1′ on the first layer. For Ising spins fixing the spins on plane “1” deter-
mines the spins on all of the consecutive layers, and the resulting ordering is the quadruple-
Q order consisting of interpenetrating pyrochlore lattices described above. For O(2) spins,
if S1′ 6= −S1 we get four feasible solutions for {S2′ ,S2}: This results in a Z4 degree of
freedom. If S1′ = −S1 we can pick any S2′ = −S2 pairs meaning an O(2) degree of free-
dom. For O(3) spins, if S1′ 6= −S1 we have an O(2)×Z2 freedom for choosing {S2′ ,S2}.
If S1′ = −S1 we can pick any S2′ = −S2: This is a degree of freedom parametrized by the
unit sphere S2. We may safely call this very small dependence of the consecutive kagome
planes “almost independence”.

Interacting 〈110〉 ferromagnetic linear chains

In the numerical simulation of the O(2) spins we have found ordering patterns consisting
of apparently independent chains ordered ferromagnetically [108, 109] lying in the {111}
planes and pointing in one of the

〈
110
〉

directions, a set of such lines is shown in Fig. 2.7(c).
Based on these numerically found patterns we may reason the following way: We assume a
ferromagnetic order along the (110) chains (the bond strengths along the chains are J1 < 0
ferromagnetic), and we can deduce an effective two-dimensional model with the chains
substituted by a single effective unit length superspin si, here the index “i” refers to points
of the lattice formed by the chains, this two-dimensional lattice is shown in Fig. 2.6(b). The
effective interactions Kδ (here δ points to the neighboring chains) are in general very com-
plicated (each point has 16 neighbors, and usually they are connected by multiple bonds of
the original fcc lattice). But the actual exchange parameters (J2 = −J1 and J3 = 0) sim-
plify the situation considerably resulting in a remarkably simple set of nonzero effective
exchanges:

K1 = 2J1 + 2J3 = 2J1 < 0, (2.59a)
K2 = J1 + 2J2 = −J1 > 0, (2.59b)

where the bonds can be found in Fig. 2.6(b). We can deduce these interactions from the gray
rhombus in Fig. 2.6(b) that shows the projection of the covering squares (one out of three)
shown in Fig. 2.5(d). To get the correct effective exchanges we need to consider all the three
differently oriented squares. This lattice built of the chains is topologically equivalent to
a first and second neighbor FM-AFM model with bond strengths K2 = −K1/2 > 0 on
the square lattice, that is known to be highly frustrated and we construct it from a different
point of view in Subsection 3.3.1. The effective two-dimensional model becomes

H(110)
Λ =

1

2

∑
i,δ

Kδsi · si+δ + J1N
(110), (2.60)
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and the additional constant can be deduced from the couplings within a chain, N (110) is the
number of chains. This model is strongly frustrated with a codimension-one ground state
manifold as seen in Fig. 2.6(c): This manifold is just the section ofM1

Λ with the (110) q-
plane passing through the origin (the q110 = 0 plane, when using the notation of Fig. 2.6(b)
and (c)). The degeneracy can also be explained by noting that the Hamiltonian can be writ-
ten as a sum of complete squares on signed rhombi (the gray rhombus in Fig. 2.6(b)): the
resulting rhombus rule SA + SA′ − SB − SB′ = 0 is just the signed square rule inherited
from the original three dimensional problem (see also Subsection 3.3.1). Any state satisfy-
ing the rhombus rule is a ground state for the (110) chains, this is also consistent with the
numerical finding in O(2) models: We saw apparently random chains obeying the rhombus
rule.

Summary

As a summary we suggest the following candidate ground states for the model at the
Γ(0, 0, 0)− Λ(q, q, q)− L(1

2
, 1

2
, 1

2
) triple point:

• Stacking of independent ferromagnetic {111} planes in the stacking styleF1F2F3F4 . . . .
Such an ordering is realized in all the Ising, O(2) and O(3) models.

• Almost independent ferromagnetic kagome sublattices in the {111} triangular planes.
Such an ordering is realized in the O(2) and O(3) models. For Ising spins this or-
der simplifies to the commensurate, quadruple-L order of intercalating pyrochlore
lattices.

• Interacting ferromagnetic chains in the 〈110〉 directions, these are not present in the
Ising models.

In the next subsection we describe the finite motif covering corresponding to the one
dimensionalM1

∆ ground state manifold, and construct some unusual ground state config-
urations.

2.7.3 The Γ(0, 0, 0) − ∆(q, 0, 0) − X(1, 0, 0) triple point: The one-
dimensionalM1

∆ ground state manifold

In this subsection we consider the one-dimensional ground state manifold M1
∆, we give

its finite-motif covering and rewrite the Hamiltonian based on this covering as a positive
definite sum of complete squares of spins. We construct several classes of unusual –e.g.
aperiodic– ground states based on these coverings. These constructions are sometimes very
technical and quite complicated geometrically, and they are very hard to understand just by
looking at two-dimensional pictures, therefore for the ones only interested in the resulting
ground state patterns every subsection closes with a short summary enumerating the ground
state patterns found.

The triple point J2 = 2J1, J3 = −J1/2, with J1 < 0 is shown by a yellow dot in the
phase diagram Fig. 2.2(a). The feasible ordering vectors ∆(q, 0, 0) smoothly connect the
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(a) (b)

Figure 2.8: Consecutive (100) planes of the face-centered cubic lattice. (a) First neighbor
planes are shown together with the signed rectangle motifs rect1 or rect2 connecting them
(see Fig. 2.5(b) and (c), sign distribution is not indicated here). The coloring of the bonds
is as follows: First (red, J1), second (green, J2) and third (blue, J3) bonds connecting the
consecutive planes. We only show one of the four possible orientations of the connecting
rectangles. We show only one intraplane J2 bond in the planes. (b) Second neighbor planes
are connected with signed rectangle motifs rect1 and rect2 (see Fig. 2.5(b) and (c)), first
(red, J1), second (green, J2) and third (blue, J3) bonds connect the second neighbor planes.
We only show one of the possible four orientations of the connecting rectangles. We show
only one intraplane J1 bond. For a total number of bonds connecting the appropriate planes
see Table 2.5.

Γ(0, 0, 0) and X(1, 0, 0) points, explaining the shape of the manifoldM1
∆; for a picture of

the manifold see Fig. 2.3(d). The Hamiltonian becomes

H = J1

∑
〈i,j〉1

Si · Sj + 2J1

∑
〈i,j〉2

Si · Sj −
J1

2

∑
〈i,j〉3

Si · Sj. (2.61)

We can tessellate the lattice by signed rectangles (denoted by “rect2”) with signs distributed
according to
Fig. 2.5(c):

H = −J1

4

∑
rect2

(S1 − S2 + S3 − S4)2 + 6J1N. (2.62)

Since −J1/4 > 0 the Hamiltonian is minimized if and only if S1 − S2 + S3 − S4 = 0 on
every rectangle, so the ground state energy per site becomes +6J1. A ferromagnetic order
automatically obeys the above rectangle rule (and Γ(0, 0, 0) and X(1, 0, 0) are part of the
manifold), as does any X(1, 0, 0) (Type I) ordering. Choosing a single arm of the X-star,
i.e. only ξ 6= 0 in Eq. (2.21) we have an ordering pattern of alternating ferromagnetic (100)
planes, see Eq. (2.23) with η = ζ = 0 and Fig. 2.4(a) with −SB = −SC = SD = SA.
This suggests the following strategy: Probably we can build a state of (100) ferromagnetic
planes (these planes themselves are square lattices). Although one cannot a priori exclude
antiferromagnetism on these planes, If we choose ξ = 0 but η 6= 0 and ζ 6= 0 in Eq. (2.23)
we get an antiferromagnetic pattern on the (100) planes, with SB = −SC and SD = −SA
in Fig. 2.4(a).
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Table 2.5: Total number of bonds connecting a selected site to its neighbors on the nearby
(100) planes, see Fig. 2.1(b) and especially Fig. 2.8. First column: The separation of
consecutive planes: “0” means the (100) plane containing the chosen point, “1” means the
two first neighbor (100) planes (see Fig. 2.8(a)), “2” means the two second neighbor (100)
planes (see Fig. 2.8(b)). The last three columns give the number of first, second and third
neighbor bonds (J1, J2, J3) connecting the selected site to the points on the neighboring
planes of indicated separations.

Separation J1 J2 J3

0 4 4 0
1 8 0 16
2 0 2 8

Stacking of independent {100} ferro- or antiferromagnetic planes

Like in the discussion of Subsection 2.7.2. we can build a family of ground state patterns of
ferromagnetically ordered (100) planes, see Fig. 2.8. Just like before we represent a plane
by a single effective unit length superspin si, where “i” indexes the consecutive planes and
we deduce an effective one-dimensional model:

H(100)
∆ =

1

4
(8J1 + 16J3)

L(100)∑
i=1

si · si+1 +
1

4
(2J2 + 8J3)

L(100)∑
i=1

si · si+2

+
1

2
(4J1 + 4J2)L(100), (2.63)

where the effective exchange can be deduced either from Table 2.5 or Fig. 2.8, and L(100) is
the number of (100) planes of the crystal. If we substitute the appropriate values J2 = 2J1

and J3 = −J1/2, we can see that the first two terms vanish, and consquently the planes
disentangle. The last term gives +6J1 for the correct ground state energy per site of the
original model, see Table 2.2. This type of pattern is of the form F1F2F3F4 . . . , where
Fi indicates the independent ferromagnetic planes. This independence of the planes can
be corroborated by noting that both the first and second neighbor planes are connected by
the covering rectangles, and the rectangle rule is satisfied bondwise on every ferromagnetic
plane: See the rectangles in Fig. 2.8, and the sign distribution in Fig. 2.5(c) and use that the
planes are ferromagnetic.

We can Fourier decompose this pattern of ferromagnetically aligned, independent (100)
planes as

S(x,y,z) =
∑

q∈[−2π,2π)

S(q,0,0)e
−iqx. (2.64)

Any symmetric set of points on the ∆(q, 0, 0) line can be present in the above sum, as
long as we care about the careful choice of the Fourier amplitudes to satisfy the local spin
length constrain. We could have chosen any of the symmetry related directions in the above
expansion.
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We do not have such a large freedom if we want to build a ground state by stacking
antiferromagnetic planes: A rect2 can connect neighboring planes by J1 bonds, in this case
the J2 bonds lie in-plane (connecting parallel spins, so they trivially satisfy the J2 in-plane
bonds), see Fig. 2.8(a). A rect2 can also connect second neighbor planes by J2 bonds, and
the J1 bonds lie in-plane (connecting antiparallel spins), see Fig. 2.8(b). Second neighbor
antiferromagnetic planes are therefore locked: They need to possess the same antiferro-
magnetic order to satisfy the rectangle rule. Consequently we have two ways to stack the
planes: Either we build the ground state from two types of independent antiferromagnetic
planes A1A2A1A2 . . . , or we can put independent ferromagnetic planes between the anti-
ferromagnetic ones: A1F1A1F2A1F3 . . . .

By solving the Ising problem on finite clusters (see Appendix D of our original paper
in Ref. [102] for details) we have found the {100} F1F2F3F4 . . . style stacking of indepen-
dent ferromagnetic planes. We also have found the FM stacking with intercalating AFM
planes in the AF1AF2A . . . style. We do not have the alternating AFM stacking here: For
Ising spins it is just an alternating FM stacking F1F2F1F2 . . . viewed from a perpendicular
direction.

Interacting 〈100〉 ferromagnetic linear chains

In the numerical simulation of theO(2) spins we have found ordering patterns consisting of
apparently independent chains ordered ferromagnetically along the 〈100〉 directions. The
Fourier transforms of these patterns correspond to points on two perpendicular lines of
M1

∆ in q-space. Based on these numerically found orderings we may try the following:
We assume a ferromagnetic order along the (100) chains. These chains form a square
lattice with primitive lattice translations (0, 1/2, 0) and (0, 0, 1/2), as depicted Fig. 2.9(a).
We represent such a chain by a single effective unit length superspin si, where i indexes
points of the square lattice and δ-s point to the neighbors of the lattice, and we arrive at the
effective two-dimensional model

H(100)
∆ =

1

2

∑
i,δ

Kδsi · si+δ + J2N
(100), (2.65)

K1 = 2J1, K2 = J1 + 2J3, K3 = J2, K4 = 2J3. (2.66)

At the M1
∆ ground state manifold the effective interactions become: K1 = 2J1, K2 =

0, K3 = 2J1, and K4 = −J1, the effective exchanges are depicted in Fig. 2.9(a). The
exchanges along the chains are strong and ferromagnetic with bond strengths J2 = 2J1 <
0, N (100) is the number of (100) chains in the system. This effective two-dimensional
model has a ground state manifold of codimension one. In the BZ of the square lattice
(for the lattice see Fig. 2.9(a)) the MGS forms the cross connecting the zone center to
the midpoints of the zone boundary and the zone corner is also part of this manifold, as
depicted in Fig. 2.9(c). This manifold is the intersection of M1

∆ with the (100) q-plane
passing through the origin. The energy per site is 6J1 = −6 |J1| (4J1 comes from the
interactions and J2 = 2J1 from the additional constant). This effective Hamiltonian can
also be rewritten as a sum of squares on signed rectangles, these rectangles are inherited
from the rect2-s projected to the (100) plane, see Fig. 2.9(a). Numerical investigations on
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Figure 2.9: Two dimensional effective model of ferromagnetic chains pointing in the (100)
direction, the chains form a square lattice and each chain is represented by an effective si
superspin, resulting the model in Eq. (2.65). (a) Face-centered cubic lattice viewed from
the (100) direction. The black and white dots indicate the (100) chains, lattice points on
the differently colored chains are shifted by a vector (1/2, 0, 0) (perpendicularly to the
paper), but these points are equivalent in the two-dimensional model of chains. Primitive
lattice translations of the square lattice of the chains are (1/2, 0) and (0, 1/2). Effective
interactions of the chains Kδ in Eq. (2.65) are represented by colored bonds, exchanges
up to fourth neighbors on the square lattice are generated. The gray rectangle: Projection
of one covering rectangle of the original model, these rectangular motifs are depicted in
Figs. 2.5(b) and (c). Black and white dots here have a totally different meaning than the sign
distribution on rectangles in Figs. 2.5(b) and (c). Gray square: Projection of the elementary
tetrahedron of the original three-dimensional model shown in Fig. 2.5(a). (b) Brillouin
zone of the square lattice depicted in Fig. 2.9(a), together with the ground state manifold
(red square) of the effective Hamiltonian Eq. (2.65), on the X −W phase boundary of the
original model. At the Γ − X −W triple point this red Γ(0, 0) point has to be included
in the manifold. This manifold is the section ofM1

Z (shown in Fig. 2.3(b)) with the (100)
q-plane passing through the origin. Symmetry points of the original three dimensional
BZ (see Fig. 2.3(a)) are also indicated. (c) Brillouin zone of the square lattice shown
in Fig. 2.9(a), the ground state manifold (dark yellow cross plus the zone corner) of the
Hamiltonian at the Γ − ∆ − X triple point (see Eq. (2.65)) is also shown. This manifold
is the section ofM1

∆ (see Fig. 2.3(d)) with the (100) q-plane passing through the origin.
Symmetry points of the original three dimensional Brillouin zone (see Fig. 2.3(a)) are also
indicated.
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O(2) spins is consistent with the above conclusions: We have found seemingly disordered
FM chains respecting the projected rectangle rule.

Summary

As a summary, we have found the following classes of ground states for the Γ(0, 0, 0) −
∆(q, 0, 0)−X(1, 0, 0) triple point:

• F1F2F3F4 . . . -style stacked independent ferromagnetic {100} planes. We have found
this type of ordering in all the Ising, O(2) and O(3) models.

• AF1AF2AF3 . . . -style stacked independent ferromagnetic planes separated by the
same antiferromagnetic {100} layers. We have found this type of ordering in all the
Ising, O(2) and O(3) models.

• Stacking of two independent {100} antiferromagnetic layers alternating in the style
of A1A2A1A2 . . . . We have found this type of ordering in all the Ising, O(2) and
O(3) models.

• Interacting ferromagnetic chains in the 〈100〉 directions, these are absent in the Ising
models.

In the next subsection we describe the finite motif covering corresponding to the one
dimensionalM1

Z ground state manifold, and construct some unusual ground state configu-
rations.

2.7.4 The X(1, 0, 0) −W (1, 1
2 , 0) phase boundary (with an endpoint):

The one-dimensionalM1
Z ground state manifold

In this subsection we consider the one-dimensional ground state manifold M1
Z , we give

its finite-motif covering and rewrite the Hamiltonian based on this covering as a positive
definite sum of complete squares of spins. We construct several classes of unusual –e.g.
aperiodic– ground states based on these coverings. These constructions are sometimes very
technical and quite complicated geometrically, and they are very hard to understand just by
looking at two-dimensional pictures, therefore for the ones only interested in the resulting
ground state patterns every subsection closes with a short summary enumerating the ground
state patterns found.

On the phase boundary line separating the W
(
1, 1

2
, 0
)

and X(1, 0, 0) phases (the dark
red line in Fig. 2.2(b)) we have the one-dimensionalM1

Z ground state manifold in Fourier
space, for this manifold see Fig. 2.3(b). ThisMGS is the crisscross connecting the points
X(1, 0, 0) and W

(
1, 1

2
, 0
)

on the square faces of the BZ boundary. The phase boundary is
given by J1 > 0, J3 = J2/4, −2 ≤ J2 ≤ 0 and the Hamiltonian at the boundary reads

H = J1

∑
〈i,j〉1

Si · Sj + J2

∑
〈i,j〉2

Si · Sj +
J2

4

∑
〈i,j〉3

Si · Sj. (2.67)
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We have two free parameters (J1 and J2) so writing this this Hamiltonian as the sum of
complete squares on finite motifs is a little bit more complicated than it was before. Here
we use the elementary tetrahedra of the fcc lattice and the signed rectangles “rect1”, the
motifs are presented in Figs. 2.5(a) and (b). The overcountings of the bonds as seen in
Table 2.3 are the following: Two tetrahedra and two rectangles cover a nearest neighbor
bond, and four rectangles cover a second neighbor bond, and each third neighbor bond is
covered once by a rectangle. For the sign distribution of the spins on the signed rectangle
see Fig. 2.5(b), (minus signs belong to the white dots and plus signs to the black dots). The
Hamiltonian reads

H =

(
J1

4
+
J2

8

)∑
tetra

(S1 + S2 + S3 + S4)2− J2

8

∑
rect1

(S′1 + S′2 − S′3 − S′4)
2
+2(J2−J1)N.

(2.68)
Just like before, since J2 < 0 all the prefactors are positive, and consequently the Hamilto-
nian is minimized if and only if the spins sum up to zero on every tetrahedron and on every
rectangle (with the appropriate sign distribution): We have a tetrahedron and rectangle
rule. The additional constant 2(J2−J1)N (with N being the number of sites in the crystal)
gives the correct ground state energy, see Table 2.2. The signed sum on the rect1-s can
be achieved by subtracting the spin sums of two edge-sharing tetrahedra, and consequently
every configuration satisfying the tetrahedron rule automatically obeys the signed rectangle
rule.

Stacking of independent {100} antiferromagnetic planes

At the first neighbor J2 = J3 = 0, J1 > 0 point the signed rectangles are unnecessary,
and we only have the tetrahedron rule [17] (this is the point where the Σ-phase meets the
X−W phase boundary line). It was shown in Ref. [19] that one can construct ground states
of (100) independent antiferromagnetically ordered planes in this point. The spins form a
checkerboard pattern on the (100) layers and the independent stacking is of A1A2A3 . . .
style. Here Ai denotes the ith antiferromagnetic plane. This construction extends without
modification to the whole X(1, 0, 0) − W

(
1, 1

2
, 0
)

boundary (see the dark red line ema-
nating from the origin in Fig. 2.2(b)). An AFM stacking like this is truly a ground state:
Both the tetrahedron and the rectangle rules are satisfied bondwise (the motifs and the sign
distribution on the rectangles are presented in Fig. 2.5(a) and (b). The planes connected by
the rectangles are shown in Fig. 2.8(a) and (b)): Spins on first neighbor bonds in a (100)
layer are antiparallel and on second neighbor bonds they are parallel. As seen in Section
2.7.3 the planes disentangle, and the intraplane contribution of exchange couplings gives
the correct ground state energy per spin as 2(J2 − J1), compare this to the Luttinger-Tisza
value in Table 2.2.

The above spin pattern can be Fourier expanded by combining ordering vectors from the
(100) directed lines of theM1

Z manifold (see Fig. 2.3(b)): This neatly explains the shape
of M1

Z , both the direction of the stacking, and that the planes are antiferromagnetically
ordered. We also could have chosen the stacking direction of planes as (010) or (001).
We have found these ground states in the Ising solution, but there are only two choices for
AFM directions in every plane.
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Interacting 〈100〉 ferromagnetic linear chains

SimulatingO(2) spins we have found (100)-directed ferromagnetic chains, in an apparently
random distribution. We can deduce an effective two-dimensional model for the FM chains
sitting on a (100) square lattice resulting Eq. (2.65) with effective exchanges K1 = 2J1,
K2 = J1 + J2/2, K3 = J2, and K4 = J2/2, where J1 > 0 and −2 < J2 ≤ 0 (we
exclude the J2 = −2, Γ−X −W triple point here, and it will be considered in Subsection
2.7.5). We depict the interactions between the chains in Fig. 2.9(a). This model has a
codimension-one ground state manifold: In the BZ of the square lattice the minima sit on
the boundary of the BZ, see Fig. 2.9(c). But be careful: We have to exclude Γ(0, 0) the
BZ-center for the time being. The Fourier transform of the effective interactions has a local
but not global minimum at the zone center, which gets lower and lower as we slide along
theX−W line towards the Γ−X−W point, and this local minimum becomes degenerate
with the MGS on the BZ boundary as we arrive at the point J2 = −2J1. This MGS is
just the intersection ofM1

Z with the (100) q-plane passing through the origin. The ground
state energy per site becomes 2(J2 − J1) (where J2 − 2J1 comes from the interactions and
J2 from the additional constant in Eq. (2.65)), compare this to the Luttinger-Tisza value
shown in Table 2.2. We can rewrite this Hamiltonian as a sum of complete squares on
signed rectangles inherited from the tetrahedra and rect1-s projected to the (100) plane,
see Fig. 2.9(a) (the projected tetrahedron rule is what prevents the ferromagnetic point
Γ(0, 0) being a global minimum). All the patterns found in the numerical solutions of
O(2) spins satisfied the projected rectangle and tetrahedron rules, but seemed otherwise
randomly distributed.

Summary

The candidate ground states for the X(1, 0, 0)−W
(
1, 1

2
, 0
)

phase boundary line are:

• Independently stacked antiferromagnetic {100} planes ofA1A2A3A4 . . . -style stack-
ing. These ground states were found in all the Ising, O(2) and O(3) models.

• We have also found interacting ferromagnetic chains in the 〈100〉 directions, but they
are not present the Ising models.

At the J2 = −2J1 and J3 = −J1/2 endpoint, where the phase boundary touches the
Γ(0, 0, 0) phase (the Γ(0, 0, 0)−X(1, 0, 0)−W

(
1, 1

2
, 0
)

triple point), the tetrahedron rule
vanishes in Eq. (2.68), and only the rectangle constraint remains S′1 + S′2 − S′3 − S′4 = 0,
this rule is less restrictive and allows for other types of ground states, we describe this triple
pointM1

Z ∪ Γ in the next subsection.

2.7.5 The Γ(0, 0, 0) − X(1, 0, 0) − W
(
1, 1

2 , 0
)

triple point: The one-
dimensionalM1

Z ∪ Γ ground state manifold

In this subsection we consider the one-dimensional ground state manifoldM1
Z∪Γ, we give

its finite-motif covering and rewrite the Hamiltonian based on this covering as a positive
definite sum of complete squares of spins. We construct several classes of unusual –e.g.
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aperiodic– ground states based on these coverings. These constructions are sometimes very
technical and quite complicated geometrically, and they are very hard to understand just by
looking at two-dimensional pictures, therefore for the ones only interested in the resulting
ground state patterns every subsection closes with a short summary enumerating the ground
state patterns found.

The Γ(0, 0, 0) −X(1, 0, 0) −W
(
1, 1

2
, 0
)

triple point is very similar to the triple point
Γ(0, 0, 0) − ∆(q, 0, 0) − X(1, 0, 0) described in Subsection 2.7.3, and has a much richer
ground state structure than the remaining part of the X(1, 0, 0)−W

(
1, 1

2
, 0
)

phase bound-
ary line. This point sits at the J2 = −2J1, J3 = −J1/2, J1 > 0 point of the phase diagram
(see Fig. 2.2(b), this is the red dot where the X −W line touches the Γ phase), and the
ground state manifold is M1

Z ∪ Γ, see Table 2.2 for the properties of the manifold, and
for a picture of it see Fig. 2.3(b). We can tesselate the lattice by signed rectangles (here
the tetrahedron rule does not apply), with sign distribution presented in Fig. 2.5(b), and the
Hamiltonian becomes

H =
J1

4

∑
rect1

(S1 + S2 − S3 − S4)2 − 6J1N, (2.69)

since J1/4 > 0 the Hamiltonian takes its minimum when S1 + S2 − S3 − S4 = 0 on every
rectangle, with the ground state energy per site being −6J1 (compare this to Table 2.2 for
the Luttinger-Tisza value of the ground state energy). This constraint allows for ferromag-
netism.

The models Γ(0, 0, 0)−X(1, 0, 0)−W
(
1, 1

2
, 0
)

can be mapped Γ(0, 0, 0)−∆(q, 0, 0)−
X(1, 0, 0) to each other with a change of sign of J1 but keeping the other two exchanges
unchanged. We have investigated the triple point Γ(0, 0, 0) − ∆(q, 0, 0) − X(1, 0, 0) in
detail, in what follows we will use the similarity of the two points, and for the details we
refer to Subsection 2.7.3.

Stacking of independent {100} ferro- or antiferromagnetic planes

We can stack (100) ferro- and antiferromagnetic layers perfectly analogously as was done
in Subsection 2.7.3, we only need to interchange the words “antiferromagnetic” and “fer-
romagnetic”, and we have to change rect2 to rect1 everywhere. These ground states where
found in all the Ising and O(2) calculations. The possible alternation of layers is the fol-
lowing: We can either use two independent FM layers: F1F2F1F2 . . . , or we can use a set
of independent AFM planes in an A1A2A3A4 . . . -style, and mix the two, resulting inde-
pendent AFM planes separated by FM layers of fixed spin direction: FA1FA2FA3 . . . .

Interacting 〈100〉 ferromagnetic linear chains

In the simulation ofO(2) spins ground state patterns formed by ferromagnetic (100) chains
appear again, and we can reuse the effective two-dimensional model for the chains pre-
sented in Eq. (2.65) on the square lattice, with the new effective exchanges K1 = 2J1,
K2 = 0, K3 = −2J1, and K4 = −J1. Strong ferromagnetic J2 = −2J1 < 0 bonds are
present along the chains again. We have a codimension-one ground state manifold again:
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The minimum is achieved on the boundary of the BZ of the square lattice, and we have to
co-opt the Γ(0, 0) point, as depicted in Fig. 2.9(b). Note that this manifold is nothing but
the intersection ofM1

Z with the (100) q-plane passing through the origin extended with the
Γ(0, 0, 0) point. The energy per site is −6J1, compare this with Table 2.2. We can rewrite
the Hamiltonian as a sum of squares on signed rectangles inherited from the rect1-s, pro-
jected to the (100) plane, see Fig. 2.9(a). All the O(2) spin configurations of ferromagnetic
chains seemed to be randomly distributed to the naked eye, but they actually satisfied this
projected rectangle rule.

We can map all the spin patterns described above to the ground states of the Γ(0, 0, 0)−
∆(q, 0, 0)−X(1, 0, 0) model: We pick chains along one of the 〈100〉 directions and flip all
the spins on every second chain in a checkerboard pattern, i.e. we change the sign of the
spins on all the white (100) chains in Fig. 2.9(a).

Summary

We found the following ordering patterns for the Γ(0, 0, 0)−X(1, 0, 0)−W
(
1, 1

2
, 0
)

triple
point:

• We can stack independent AFM {100} layers in an A1A2A3A4 . . . style. We have
found this pattern in all the Ising, O(2) and O(3) models.

• We can stack independent AFM {100} layers, separated by ferromagnetic planes
(having the same spin direction) on the {100} in a style of A1FA2FA3F . . . . We
have found this pattern in all the Ising, O(2) and O(3) models.

• We can stack two alternating independent FM {100} layers F1F2F1F2 . . . , this pat-
tern is realized in all the Ising, O(2) and O(3) models.

• Finally, we have also found interacting ferromagnetic chains in the 〈100〉 directions,
these are not present in the Ising models.

We close our chapter on the fcc-models with a summary of our results and with an
outlook for further studies.

2.8 Summary

We studied in detail the ground state phase diagram of the classical isotropic J1-J2-J3

Heisenberg model on the frustrated face-centered cubic lattice within the Luttinger-Tisza
framework, which is exact in this case. The commensurate Type I, II and III ground state
structures already present in the J1-J2 models occupy a sizeable part of the phase diagram.
We explicitly constructed the corresponding ground states and described their degeneracies.
In these phases the possibility of multiple-Q –non-collinear or even non-coplanar– orders
were considered. We thoroughly analyzed the chiral Type III phase, yet undiscussed in
the literature. Besides the commensurate phases we have shown that the frustrating effect
of the third neighbor coupling introduces the qualitatively new feature of the model by
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the emergence of incommensurate spin spirals, with pitch vectors pointing along high-
symmetry directions of the crystal.

Subextensively degenerate ground state manifolds of dimension one and two in recip-
rocal space were also identified at particular phase boundaries and triple points of the phase
diagram. We explained these degeneracies found in Fourier space by tessellating the lattice
of finite motifs in real space, and by rewriting the Hamiltonian as a positive definite sum of
complete squares of spins on these motifs. With the aid of this construction we were able
to find large classes of ground states consisting of independent, aperiodically stacked ferro-
or antiferromagnetic layers of special crystal planes. We have also found solutions of frus-
tratingly interacting, ferromagnetically ordered linear chains along special crystallographic
directions. We related the real and Fourier pictures to each other.

We solved the model for Ising spins on finite, symmetric clusters, and we numerically
simulated O(2) spins, these solutions guided our intuition in finding the ground states and
corroborated the analytical calculations. Numerical calculations on O(3) spins resulted in
even more complicated ground states, calling for further studies.

This work can be thought of as the starting point for further research: Investigating the
classical phase diagram at finite temperature (including critical phenomena), former studies
mainly focused on the first neighbor model (and to a less extent on the second neighbor
model). Large degeneracy of the ground state manifolds may lead to the realization of
classical or quantum spin liquids on the fcc lattice [110, 98, 111], provided that order by
disorder mechanisms do not lift the degeneracy (as in the case for pyrochlore [25, 26, 91]
and hyper-hyperkagome lattices [112]).

Finding non-coplanar and even chiral orders leads to other promising directions to look
into: Topological structures such as skyrmions, hedgehogs or merons may emerge in non-
coplanar magnets with potential future applications [113, 114]. Another interesting aspect
of chirality is present in the S = 1/2 isotropic triangular quantum antiferromagnet with
nearest and next nearest neighbors [115]: Chiralities defined on triangular plaquettes be-
have like Ising variables and they order at finite temperature.14 A promising experimental
realization of these ideas on the kagome lattice is proposed in Ref. [116]. One possible
consequence of such an order with finite scalar chirality of the localized spins in a tran-
gular Kondo lattice model is the itinerant electrons’ acquiring a Berry phase leading to an
anomalous Hall effect [117].

Of particular experimental importance is the incorporation of finite external magnetic
fields to the model and the study of its effect on the phase diagram (i.e. the introduction of
new phases) and ground state properties.

The triple points in the J1-J2-J3 Heisenberg model on the simple cubic and body-
centered cubic lattices are known to allow for a quantum paramagnetic phase for S =
1/2 [118, 119, 120, 105]. Since three of the degenerate manifolds found for the fcc model
support a ferromagnetic order there is a possibility that in the absence of long-range dipolar
magnetic ordering, multipolar (or nematic) orders such as quadrupolar [121, 122, 123, 124,
125, 126, 127, 128, 129, 130, 131], and octupolar [88] could be stabilized in both classical
and quantum models. Disorder effects are known to stabilize [18, 132] non-collinear/non-

14Although the global continuous symmetry of the Heisenberg model would prevent ordering at finite T
by the Mermin-Wagner theorem, the emergent discrete symmetry of the chiralities allows their ordering.
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coplanar phases, calling for further studies in this direction.



Chapter 3

Constructing extended ground state man-
ifolds

3.1 Introduction
Among classical Heisenberg models the nearest neighbor kagome and pyrochlore lattices
(Figs. 1.5(c) and (d)) have the largest ground state degeneracy possible: Their ground state
manifolds (MGS’s) extend over their whole BZ’s. Thereby these lattices provide the largest
playground for a system to explore and realize a classical spin liquid, for details we refer
to Subsection 1.1.4. What is the second best chance? An obvious guess would be to search
for models with MGS’s of one less dimension (or codimension-one manifolds). On the
diamond lattice with first and second neighbor interactions with J2/J1 > 1/8 the system
develops a two dimensional ground state manifold (a spin spiral surface) as realized by
MnSc2S4 [20, 21], see Subsection 1.1.4 for details.

We have also seen examples of codimension-one ground state manifolds (curves in two
and surfaces in three dimensions) in some occasions on Bravais lattices at very special
points in the phase diagram: On the square lattice with exchange ratio J2/J1 = 1/2 and on
the fcc lattice again with J2/J1 = 1/2 (for the manifolds see the red square in Fig. 1.2(b)
and Fig. 2.3(c)). At this point one starts to become suspicious1 that there must be some
deeper reason behind this pattern. The feeling is right: There is a general construction
scheme for creating models with codimension-one ground state manifolds, with special
interaction parameters.

Having an extendedMGS is not sufficient to realize a classical spin liquid. One may
fear that thermal order by disorder (see Subsection 1.1.3) selects a unique ground state,
thereby preventing the development of the spin liquid phase. Even if the order by disorder
mechanism is effective, there is still a possible temperature window TN < T � ΘCW (see
Subsection 1.1.4) where the existence of the spin liquid phase is allowed [20, 21, 92].

The structure of the chapter is the following: First we define our setting. Section 3.2
is the heart of our results, there we give the recipe of constructing Heisenberg models on
Bravais lattices having codimension-oneMGS’s. In Section 3.3 we illustrate the method on
the square (Subsection 3.3.1) and simple cubic and face-centered cubic (Subsection 3.3.2)
lattices. Finally we calculate the low temperature free energy of the simple cubic and face-
centered cubic models in order to determine their ground states selected by the thermal

1‘Once is happenstance. Twice is coincidence. The third time it’s enemy action.’ Ian Fleming, Goldfinger
(1959)
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order by disorder mechanism.
As usual, the classical isotropic Heisenberg Hamiltonian reads

H =
1

2

∑
i,δ

JδSi · Si+δ = N
∑
q∈BZ

J(q) Sq · S−q , (3.1)

where Si are three-dimensional unit vectors at the sites Ri of a Bravais lattice2 Λ, with N
sites and periodic boundary conditions, and i+ δ is just a shorthand for Ri + δ. The Jδ are
the exchange couplings between spins at sites with separation vectors δ belonging to the
same orbits of the point group of the lattice (hence the Jδ’s are equal on these bonds). With
this type of summation we count each bond twice, the prefactor 1/2 counteracts against this
overcounting. We sort the Jδ’s by the increasing length of δ, so we adopt the usual notation
for first-, second-, third-, . . . exchanges as J1, J2, J3, . . ., respectively.3 Conventions for
the Fourier transforms and the derivation of Eq. (3.1) are given in Appendix A. As usual
the Fourier transform of the exchange couplings is defined as

J(q) =
1

2

∑
δ

Jδe
−iq·δ . (3.2)

Just a reminder: We search for the ground state manifold denoted byMGS = {Q}, and it
is the set of points where J(q) takes its minimal value. In what follows we give the recipe
of constructing models with codimension-one ground state manifolds.

3.2 The Ansatz and symmetries
Our wish is to construct Heisenberg models with codimension-one ground state manifolds.
The best is to think about a three dimensional crystal (with three dimensional reciprocal
space) having a two-dimensional surface as theMGS in the Brillouin zone, for an illustra-
tion see Fig. 2.3(c). Using the Luttinger-Tisza method [74] one can find the ground state of
Eq. (3.1) by minimizing J(q) (details of the method are described in Section 2.3). So our
task is reduced to find a function J(q) that takes its minimum on a whole surface (in three
dimensions), and is the Fourier transform of a genuine Heisenberg exchange interaction.

The idea is quite simple: First we consider a real function f(q) that satisfies the defining
equation of theMGS f(Q) = 0 with Q ∈ MGS. Second, to ensure that f(Q) = 0 is the
minimum surface of J(q) we make the following Ansatz:

J(q) = f 2(q)− C , (3.3)

with C a tunable constant defined for convenience. Since f(q) is real f(q)2 > 0 and
f(q)2 = 0 if and only if f(q) = 0. We would like to construct a Hamiltonian –see

2This condition of having a Bravais lattice can surely be lifted, but than the Jδ’s become matrices and the
formalism gets complicated, but results much more realistic models without fine tuned parameters, see the
J1−J2 isotropic models on the honeycomb[83] and diamond[20] lattices (both lattices have a two site basis).

3More precisely: The bonds emanating from a point fall into orbits under the action of the point group of
the lattice, and we consider models where in each orbit every bond has the same strength thereby discarding
spatially anisotropic models.
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Eq. (3.2)– on the Bravais lattice Λ that has the full translational symmetry of the lattice, so
we try to find f(q) in the form

f(q) =
∑
ξ∈Ξ

cξe
iq·ξ , (3.4)

where Ξ is a finite set of points in real space, and f(q) is a real function of the wave-vector.4

Using Eq. (3.3) J(q) takes the form

J(q) =
∑

ξ,ξ′∈Ξ

cξcξ′e
iq·(ξ+ξ′) − C. (3.5)

The question arises: What are the constraints on Ξ and cξ to produce a lattice symmetric
Heisenberg model on the Bravais lattice Λ? J(q) has to satisfy Eq. 3.2 with δ = Rj −Ri,
where Ri,Rj ∈ Λ (basically we have to compare Eq. 3.2 and Eq. 3.5). We enumerate the
consequences of the constraints:

• Since f(q) –defined in Eq. (3.4)– is real, for every ξ ∈ Ξ also −ξ is contained in Ξ,
so the point set Ξ is inversion symmetric. Another consequence of the reality of f(q)
is the following for the coefficients: c−ξ = c∗ξ.

• Now we can substitute ξ′ → −ξ′ in Eq. (3.5) yielding ξ − ξ′ ∈ Λ. So Ξ is, by
definition, an inversion symmetric finite subset of an affine lattice Λ∗, i.e. Λ shifted
by some arbitrary vector δ∗:

Λ∗ = Λ + δ∗, and Ξ ⊂ Λ∗. (3.6)

This concept of an affine lattice is just the discrete version of the definition of an
affine space in ordinary linear algebra. This δ∗ must not be confused with the lattice
separation vector δ of the original lattice.

• Substituting ξ′ → ξ in Eq. (3.5) yields:

2δ∗ ∈ Λ . (3.7)

There are at most four choices for Λ∗ in two dimensions and eight in three dimen-
sions, but not all of these choices result in a Hamiltonian having the full point sym-
metry of Λ. If we denote the primitive lattice vectors of Λ as a1, a2, a3, (in three
dimensions) then the four possible choices for the shift vector δ∗ in two dimen-
sions are δ∗ ∈ 1

2
{0, a1, a2, a1 + a2}, and the eight choices in three dimensions are

δ∗ ∈ 1
2
{0, a1, a2, a3, a1 + a2, a1 + a3, a2 + a3, a1 + a2+, a3}. Of course we only

enumerated the simplest shift vectors, but any equivalent vector to those mentioned
above, further away from the ”origin” would do as well.

4A complex f(q) = f ′(q) + if ′′(q) with J(q) = |f(q)|2 − C would result in a codimension-twoMGS
defined by f ′(q) = 0 and f ′′(q) = 0 (of course this can still be interesting in three dimensional space, see
Fig. 2.3(b), (d), and (e)). Another possibility is to combine several appropriate f(q)’s, e.g. as a positive
definite sum. This surely works, but results more and more complicated interactions, so we concentrate on
the individual building blocks and consider only a single function (for the moment).
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Let us summarize what we have achieved so far: To construct a Heisenberg model with
a codimension-one MGS we use Eq. (3.5), where the finite point set Ξ is an inversion
symmetric (inversion centered at some point of the lattice Λ of the original Hamiltonian
Eq. (3.1)) subset of the affine lattice Λ∗ = Λ+δ∗, with 2δ∗ ∈ Λ. But this is not enough: Let
us assume having a square lattice with primitive vectors a1 = (1, 0) and a2 = (0, 1), and
choose δ∗ = (1/2, 0). Using Eq. (3.4) with Ξ = {(1/2, 0), (−1/2, 0)} and cξ = 1 one gets
f(q) = 2 cos(qx/2), and with the aid of Eq. (3.3) choosing C = 2 the exchange in Fourier
space becomes J(q) = 2 cos(qx). This model clearly has the full translational symmetry of
the square lattice Λ, but the result is quite unsatisfactory: The model is totally anisotropic
(in real space). It is a collection of first neighbor coupled chains in the x-direction (with
Jx1 = 2), but the chains are totally disentangled in the y-direction, i.e. all the exchanges
on the y-directed bonds are zero ( Jy1 = 0). Though the construction works: The MGS

consists of the two y-sides of the BZ boundaryMGS = (±π, qy) with −π 6 qy 6 π, so it
is one-dimensional, but this is not what we wished for. The problem is that the model does
not have the point group symmetry of Λ, this is what we rectify in the next paragraph.5

So far we have only utilized the translational properties of the lattice Λ, now we turn to
exploit its point group properties to reduce the possible choices for δ∗. First we give a few
definitions: The point group of Λ (centered at some lattice point) is denoted by G, a general
element of it is g ∈ G, the matrix of g acting on real or reciprocal space points is denoted
by g, i.e. it is either an O(2) or O(3) matrix. The action of the group elements on a vector
r is denoted by g · r = gr, and similarly for a reciprocal vector q: g · q = gq. The totally
symmetric irreducible representation (irrep) of G is denoted by Γ1+, that is the one whose
matrix representatives are all just the number “1”. In what follows we will only use one-
dimensional real representations (generally denoted by Γ), whose matrix representatives
are Γ(g) = χΓ(g) = ±1-s, and of course these ”matrices” coincide with their characters
χΓ(g).

Let us formulate our desire for the construction scheme of the Hamiltonian. We want
to have a totally symmetric (i.e. G-invariant) Jδ, or equivalently a totally symmetric J(q),
a situation that we will refer to as J(q) ∼ Γ1+, i.e. J(gq) = J(q) for all g ∈ G. To achieve
this goal first we make our Ξ set G-symmetric, i.e. we use the full orbit of a chosen vector
δ∗α ∈ Λ∗ under G:

Ξα := {gδ∗α| g ∈ G} . (3.8)

And here comes one big caveat: The above defined G-orbit must be compatible with the
translational properties of Λ, so it has to be contained in Λ∗, i.e. the site symmetry group
of δ∗α (just like any other point in Λ∗) must be isomorphic to the point group G of Λ, and
consequently the shift vector δ∗ also has to have this property. Of course δ∗ = 0 always
satisfies this constraint, and other such δ∗ 6= 0 vectors can be looked up in crystallographic
tables [133]: One has to search for the “Wyckoff position” (this is our δ∗) and its site
symmetry group. Checking the tables results the following: Such δ∗ 6= 0 exists for all
Bravais lattices except for the triangular (often called hexagonal) lattice in 2D and the

5One is tempted to cure this problem by coopting the vectors (0,±1/2) orthogonal to δ∗ to construct a
new, square symmetric Ξ, but this will not work: These newly coopted vectors are not elements of Λ∗ and
consequently the resulting Jδ’s will not respect the translational symmetries of the original lattice Λ.
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body-centered cubic lattice in 3D; these points are tabulated in Appendix D for all the 2D
and 3D Bravais lattices.

Now we are ready to present our full recipe for the construction of the Hamiltonian:

• Choose an appropriate shift vector δ∗ as discussed above to construct the affine lat-
tice Λ∗ = Λ + δ∗ (we have seen that there are only a few choices for δ∗, for details
see Appendix D).

• Choose some points δ∗α ∈ Λ∗ and create the orbits (shells) under the action G of this
point Ξα = {gδ∗α| g ∈ G}. The larger the δ∗α-s are the longer the range of the induced
interactions in the Hamiltonian become, and also the number of free parameters in
the Hamiltonian grows.

• Based on each shell we use Wigner’s machine and define the symmetry adapted func-
tions [134]:

fΓ
α (q) =

∑
g∈G

χΓ(g)eiq·(gδ
∗
α) , (3.9)

where χΓ(g) = Γ(g) = ±1 are the characters of a 1D real irrep Γ. Since for this
type of irreps Γ ⊗ Γ = Γ1+, the resulting J(q) will be G-symmetric, see Eq. (3.3).6

For illustrative purposes we will mostly use the totally symmetric irrep Γ := Γ1+,
which clearly only generates pure AFM models, incorporating irreps with Γ(g) = −1
will result in models having both AFM and FM bonds. As seen from Eq. (3.9) this
is nothing more but a Γ-symmetric coloring of the points of gδ∗α ∈ Ξα by ±1-s
according to gδ∗α 7→ χΓ(g).7

• Now we can combine the orbits Ξα resulting the set Ξ =
⋃
α Ξα, and we fix the

corresponding constants cα ∈ R or iR to get the real8

fΓ(q) =
∑

α∈orbits

cαf
Γ
α (q) . (3.10)

And finally using Eq. (3.3) we construct a Heisenberg model with a codimension-one
MGS defined by fΓ(Q) = 0.

In what follows we will –with one exception– use the totally symmetric representation
(χΓ(g) = 1) of G, and therefore drop the index Γ. Now we give a few examples illustrating
the above stated results.

6There are representation theoretical theorems guaranteeing this property in a much more general setting,
but the statement here is nothing deeper than recognizing that (±1)2 = 1.

7 There is a caveat here, and one should not have too bold expectations: Not all such ”alternating” irreps
will generate useful results, simply because not all Ξ-s are compatible with such colorings. For example out
of the three such irreps of of the symmetry group of a square (4mm) only one is allowed, the one where the
diagonally opposite vertices have the same color, and the adjacent ones are differently colored (a glimpse at
the character table shows that the twofold rotation is always represented by +1, meaning that the diagonally
opposite vertices have to have the same color, and this requires that the diagonal reflections have to be
represented by +1, and the reflections parallel to the edges have to be represented by -1, and there is only
one such irrep). For the cubic group (Oh) similar reasoning shows that there is no such coloring at all for an
octahedron (here we have three twofold rotations giving very strict constraints), but there is one for the cube.

8Of course we will have cosines (needing a real constant) and sines (needing a pure imaginary constant)
in the resulting Fourier transformed Hamiltonian.
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3.3 Examples

Here we give some two and three dimensional examples of the construction described
above. In our two dimensional examples we will consider the square lattice as Λ, because
–besides being simple– it illustrates all the important aspects of the construction (illustra-
tive figures of some spin patterns are given in Fig. 1.3). The three dimensional examples
will be the simple cubic (sc) and face-centered cubic (fcc) lattices.

3.3.1 Examples on the square lattice

x

(b)

Figure 3.1: Construction of a codimension-one ground state manifold MGS of a purely
AFM model on the square lattice Λ, given by the minima of J(q) defined by f(Q) = 0 via
Eq. (3.3). (a) Affine lattice construction with Λ∗ = Λ + δ∗, and δ∗1 = δ∗. The red arrow
connects the origin (black dot) with the points of the set Ξ1 ⊂ Λ∗ (red dots), dark green
dots are the nearest-neighbor points to the origin of Λ with exchange coupling J1 > 0, light
green dots show the second nearest-neighbor points with J2 = J1/2. (b) The degenerate
MGS (red square) for Λ∗ = Λ + δ∗1 , which corresponds to the zeros of the function f(q) in
Eq. (3.11) , is pinned to the Brillouin zone boundary.

We start with the square lattice with primitive lattice translations a1 = (1, 0) and a2 =
(0, 1), they are shown in Fig. 3.1(a) and Fig. 3.2(a) (see the dark green disks forming a
cross around the origin). As can be seen in Table D.1, for the shift vector we can only
choose δ∗ = 0 and δ∗ =

(
1
2
, 1

2

)
: They are the ones that have G = D4 ≡ 4mm as the site

symmetry group.9

First, let us consider the δ∗ =
(

1
2
, 1

2

)
case, here the first shell of the generated affine

lattice Λ∗ is shown as the four red dots in Fig. 3.1(a). We choose this first shell Ξ = Ξ1

with cardinality z1 = |Ξ1| = 4 and consisting of the orbit of δ∗1 = δ∗. Using Eq. (3.9) with
all the χΓ(g) = 1, α = 1 (we use only one orbit here), and G = 4mm is the 8-element

9Here one can also choose e.g. the isomorphic G = C4h
∼= D4 as a site group (the point group notation

was developed for three dimensional groups), we just have to remember, that we have the eight symmetry
elements of the square: The cyclic group generated by a fourfold rotation and two perpendicular pairs of re-
flection axes, sometimes this purely two-dimensional group is denoted as 4mm or as D4 referring to dihedral
group.
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(a) (b)

Figure 3.2: Construction of a codimension-one ground state manifold MGS of a purely
AFM model on the square lattice Λ, given by the minima of J(q) defined by f(Q) = 0
via Eq. (3.3). (a) Construction when Ξ0,Ξ1 ⊂ Λ, Ξ0 has one point, the origin (δ0 = 0)
and Ξ1 is the orbit of δ1 = a1 (dark green dots, ie. the first neighbors of Λ). We get a
Heisenberg model with nearest-neighbor exchanges J1 (dark green) and further neighbor
exchanges J3 = J2/2 (denoted by lighter colors). (b)MGS for Λ∗ = Λ, given by f(q) = 0
in Eq. (3.17), are shown as thick colored curves for J1/J2 = 2, 0, and−2. One can see that
the shape and topology ofMGS is controlled by the parameter J1/J2.

symmetry group of the square results

f(q) = c1f1(q) = c18 cos
qx
2

cos
qy
2
, (3.11)

and we have a single orbit, so we do not really need Eq. (3.10), but we use its only existing
c1 = 1/

√
8 to make the numbers in the derived formulas a little bit more aesthetically

pleasing. Following Eq. (3.3) with C = 2 gives

J(q) = 2(cos qx + cos qy) + [cos (qx + qy) + cos (qx − qy)] , (3.12)

and defines a J1–J2 AFM-AFM Heisenberg model –see Eq. (3.2)– with exchange couplings
J1 = 2 and J2 = 1 [79]. TheMGS coincides with the BZ boundary Q = (π, q) and (q, π)
parametrized by q ∈ [−π, π], (see the red square in Fig. 3.1(b)). It is worth mentioning,
that the simple AFM (checkerboard pattern) ground state with Q = (π, π) is part of this
manifold, i.e. it is a special spin spiral. What is important to see here is, that we have
generated a totally constrained model: There are no tunable parameters here, the ratio
J1/J2 = 2 is fixed. The Hamiltonian is the sum of edge sharing four-site complete graphs
(squares with diagonals) over the square lattice Λ

H =
∑
�

[
(S1 + S2 + S3 + S4)2 − 4

]
, (3.13)

which is minimized when the spins sum up to zero in every graph, and every such config-
uration is a proper ground state, explaining the degeneracy. We have seen plenty of similar
coverings for the fcc lattice in Sec. 2.7. We note that an alternative approach to construct
thisMGS was presented in Ref. [85].
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(b)

Figure 3.3: Construction of the codimension-one ground state manifoldMGS of the FM-
AFM model on the square lattice Λ, given by the minima of J(q) defined by f(Q) = 0 via
Eq. (3.3). (a) Affine lattice construction with Λ∗ = Λ + δ∗, and δ∗1 = δ∗. The red arrow
connects the origin (black dot) with the points of the set Ξ1 ⊂ Λ∗ (red dots: Empty dots are
the ones that pick up a minus sign in the construction Eq. (3.9)). Dark green dots are the
nearest-neighbor points to the origin of Λ with exchange coupling J1 < 0, light green dots
show the second nearest-neighbor points with J2 = −J1/2. (b) The degenerateMGS (red
crisscross), which corresponds to the zeros of the function f(q) in Eq. (3.11).

As was briefly explained in Footnote 7, we can construct FM-AFM models on the
square lattice, with only a slight modification of the above construction (this also shows
that mixed FM-AFM models can be just as frustrated as the pure AFM ones). The only
thing that needs to be changed is the used irrep of the group 4mm. Instead of the totally
symmetric irrep we need to use the one where the reflections through the coordinate axes
and the C4 rotations are represented by −1 (i.e. we color the diagonally opposite points(
−1

2
, 1

2

)
and

(
1
2
,−1

2

)
by −1, see Fig. 3.3(a)). This results

f(q) = −
√

8 sin
qx
2

sin
qy
2
, (3.14)

and defines a model with

J(q) = −2(cos qx + cos qy) + [cos (qx + qy) + cos (qx − qy)] , (3.15)

describing a J1–J2 FM-AFM Heisenberg model with exchange couplings J1 = −2 and
J2 = 1. The MGS coincides with the crisscross on the q-axes Q = (0, q) and (q, 0)
parametrized by q ∈ [−π, π], [see the red cross in Fig. 3.3(b)]. It is worth mentioning,
that the simple FM ground state with Q = (0, 0) is part of this manifold. The Hamiltonian
again can be written as the sum of edge sharing elementary squares with diagonals over the
square lattice Λ, but now the diagonally opposite spins get a prefactor of −1:

H =
∑
�

[
(S1 − S2 + S3 − S4)2 − 4

]
. (3.16)

A similar covering was used for the fcc lattice in Sec. 2.7, see Fig. 2.5(d).
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In our last square lattice example we use two orbits to get a tunable model. The simplest
such case is where δ∗ = 0, so Λ∗ = Λ, and we choose the first two shells Ξ = Ξ0 ∪ Ξ1,
where Ξ0 = {0} and Ξ1 = {a1, a2,−a1,−a2}, i.e the origin and the first neighbors in the
original lattice, with cardinalities z0 = 1 and z1 = 4. This results (again with a prefactor
c1 = 1/

√
8):

f(q) = f1(q) + c0 =
√

2(cos qx + cos qy) + c0 (3.17)

following Eq. (3.10). Eq. (3.3) with C = 2 + c2
0 then generates a model with J1 =

√
8c0,

J2 = 2, and a constrained J3 = J2/2 = 1 (see Fig. 3.2(a)), also discussed in [86]. By
tuning the parameter

√
2c0 = J1/J2 one can control the shape and topology of MGS, as

shown in Fig. 3.2(b). J1 = 0, equivalent to c0 = 0 is a topological transition (Lifshitz)
point [135].10 Next we turn to our three dimensional examples: The simple cubic (sc) and
fcc lattices.

3.3.2 Examples on the simple cubic and fcc lattices
In what follows, we construct models for the sc and fcc lattices based on the affine lattice
construction Λ∗ with δ∗ 6= 0, both having G = Oh (cubic or octahedral group) as a point
group. Not a big surprise: TheMGS surface of the fcc lattice will be the one we found and
analyzed in Subsection 2.7.1. In what follows we will only use one orbit, so we drop the
orbit indices for clarity, and choose the factor c in Eq. (3.10) to get the simplest formulas,
and give the exchanges normalized to the nicest form.

Primitive lattice translations of the sc lattice are (1, 0, 0), (0, 1, 0) and (0, 0, 1). In our
affine construction we start with the orbit of the vector δ∗ =

(
1
2
, 1

2
, 1

2

)
(vertices of the little

red cube in Fig. 3.4(a), with cardinality z = 8), and from Eqs. (3.9) and (3.10) we get

f(q) = 8 cos
qx
2

cos
qy
2

cos
qz
2
. (3.18)

This generates a third-neighbor J1–J2–J3 model [see Fig. 3.4(a)], with J3 = J2/2 =
J1/4 = 1. The resultingMGS is the cubic BZ boundary shown in Fig. 3.5(a) (the coloring
is to be understood later). As in Eq. (3.13), the Hamiltonian is the sum of face sharing
eight-site complete graphs (elementary cubes with face and body diagonals), which is min-
imized when the spins sum to zero in every graph: The analogy with the AFM-AFM square
lattice model Eq. (3.11) is perfect. In comparison, the construction with δ∗ = 0 and two
shells gives J4 = J2/2 = 1 and an adjustable J1 = 2c0 (analogy again).

Primitive lattice translations of the fcc lattice are
(

1
2
, 1

2
, 0
)
,
(

1
2
, 0, 1

2

)
and

(
0, 1

2
, 1

2

)
. In

our affine construction we start with the orbit of the vector δ∗ =
(
0, 0, 1

2

)
and Ξ ={(

±1
2
, 0, 0

)
,
(
0,±1

2
, 0
)
,
(
0, 0,±1

2

)}
(vertices of the little red octahedron in Fig. 3.4(b),

with cardinality z = 6), this results

f(q) = 2
(

cos
qx
2

+ cos
qy
2

+ cos
qz
2

)
. (3.19)

10One may wonder where all those
√

8-s come from, especially when one takes a look at the original
paper [84], where the numbers are much more beautiful. The reason is the following: Here I have defined
the Fourier transform of the exchange as Eq. 3.2, with a 1/2 in it, to be consistent with the rest of the thesis,
while in the article this 1/2 is missing. Of course this is physically irrelevant, what matters is the ratio of the
exchanges.
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Figure 3.4: Affine lattice constructions for the simple cubic (a) and face-centered cubic (b)
lattices. The shift vector δ∗ (red arrow) defines the affine lattice Λ∗ = Λ + δ∗. Red balls
with a cage show the set Ξ ⊂ Λ∗ (a cube and an octahedron). The ”origin” of Λ is a black
ball in the middle, lighter and lighter balls correspond to further and further neighbors:
Dark green balls are points coupled to the origin by the exchange J1, light green balls show
the second neighbor points with exchange strengths J2 = J1/2 for both lattices. For the
simple cubic lattice a third neighbor exchange (yellowish-green balls) J3 = J2/2 is also
generated.

The model just constructed is a J1–J2 one, with J2 = J1/2 = 1 (see Fig. 3.4(b)): This is
the model we discussed in Subsection 2.7.1 and was also studied in Ref. [69]. TheMGS is
shown in Fig. 3.5(b) (to see it without the coloring take a look at Fig 2.3(c)). And again the
Hamiltonian is the sum of edge sharing six-site complete graphs (octahedra with diagonals:
c.f. Fig. 2.5(e)). But the δ∗ = 0 construction provides a model with J4 = J3/2 = J2/4 = 1
and adjustable J1 = 4+2c0, and theMGS is the same as for the diamond lattice [20] (whose
Bravais lattice is actually fcc). In the next section we will calculate the free energies of the
aforementioned models on theMGS-s in order to find the states stabilized by thermal (or
quantum) fluctuations, in the spirit of [20] (see its supplement for details).

3.4 Free energy and order by disorder
In what follows we calculate the free energies of the sc and fcc models to find the states
selected by thermal fluctuations in a low temperature approximation, where the spin devi-
ations from the ground state are small. At zero temperature any Q ∈ MGS defines a good
ground state spin spiral (of course if Q is not a highly symmetric point in the BZ then −Q
must also be included in the construction of the spiral, for details see Section 2.6), and
for symmetric points even multiple-Q structures are allowed, for several detailed exam-
ples on the fcc lattice, see Section 2.5 and Ref. [99]. At zero temperature the ground state
energy E0 = J(Q) is constant on the wholeMGS but at finite temperature the spins start
to fluctuate giving an explicitly Q dependent contribution to the free energy F(Q) lifting
the ground state degeneracy. Thermal fluctuations then choose the state(s) with the lowest
free energy. In the harmonic approximation, the fluctuations can be integrated out in the
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Figure 3.5: Two examples of the ground state manifolds of 3D lattices, the surfaces are
defined as f(Q) = 0, where f(q) is given in Eqs. (3.18) and (3.19). They are colored
according to their free energies. Lighter colors correspond to states with smaller values of
A (Q) [Eq. (3.21)], and the minima are selected by thermal fluctuations. (a) Simple cubic
lattice: the ground state manifold is the Brillouin zone boundary, the degenerate minima are
the inequivalent points (π, 0, 0), (π, π, 0) and (π, π, π) and their symmetry related partners.
(b) Face-centered cubic lattice: The degenerate minima are the points 〈π, π, π〉, i.e. the
L-points. The Brilloin zone boundary is shown as a light wireframe, the enclosing cube is
a guide to the eye.

partition sum, and give rise to a linear T dependence in F(Q). Following Ref. [20] (and
especially its supplement) the free energy above the spiral surface can be calculated. In the
calculations we heavily use that we have a single spiral, and that the model is isotropic.
The calculation is very tedious, so it is relegated to Appendix E, and here we only cite the
results. The low temperature free energy has the form

F(Q) = E0 −NT lnT +NTA(Q) +O(T 2) , (3.20)

where−A(Q) is the Q-dependent part of the low temperature entropy density, and it reads

A(Q) =
1

N

∑
q∈BZ

lnω2
q(Q), (3.21)

where the summation is over the whole Brillouin zone, and

ωq(Q) =

(
1

2
[J(q+Q) + J(q−Q)− 2J(Q)] [J(q)− J(Q)]

)1/2

. (3.22)

States with minimal A(Q) correspond to the minimal free energy value: This is the
entropic (or thermal) order-by-disorder selection mechanism discussed in Refs. [16, 23,
24, 18] and in the Introduction 1.1.3. This is what we could have achieved analitically,
the BZ-sum has to be performed numerically. A(Q) is plotted for the sc and fcc lattices
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in Fig. 3.5: The lightest points on the surfaces are the Q-vectors of the selected minima.
Furthermore, the energy of the spin waves11 is ~Sωq(Q) in the semi-classical (long spin
S � 1) approximation. Therefore quantum fluctuations behave qualitatively similarly to
the thermal ones, and they choose the state with the lowest zero-point energy

EZP(Q) =
∑
q∈BZ

~S
2
ωq(Q). (3.23)

For the sc lattice with J1 = 2J2 = 4J3 the selected minima are the inequivalent point
sets 〈π, 0, 0〉, 〈π, π, 0〉 and 〈π, π, π〉 [119] (there are seven such points, remember: 〈Q〉 is
the set of Q together with its cubic symmetry related partners). In these highly symmetric
points multi-Q states are allowed, they correspond to an ordering in real space where in a
cube formed by eight neighboring lattice sites the spins sum up to zero (a cube rule), and
this cube is repeated through the whole lattice (the magnetic superlattice is sc again doubled
in linear size). Performing low-T expansions for such ordering patterns it is found that the
free energy minima correspond to any 8-sublattice collinear state (satisfying the cube rule),
including the single-Q states with 〈π, 0, 0〉, 〈π, π, 0〉 and 〈π, π, π〉. In fact, more is true:
Any collinear ground state has exactly the same entropy in the harmonic approximation.
We believe that higher order corrections will split this degeneracy.

For the fcc lattice with J1 = 2J2 the four L-points 〈π, π, π〉 are selected, the multiple-
L states are described in detail in Section 2.5.3. Here again entropy selects the collinear,
single-Q states forming the type-II AFM structure.12

The question arises: Can different MGS’s obtained by different Λ∗ be continuously
deformed into each other by, e.g., including more shells. The f(q) for Λ∗ = Λ has full
reciprocal lattice periodicity (let us say that it is even), while the f(q) in Eqs. (3.18) and
(3.19) changes sign when translated by a unit reciprocal lattice vector (f(q) is odd). This
even–odd property cannot be changed continuously, therefore the two types of construc-
tions provide two different topological classes ofMGS’s. The odd parity of f(q) also pins
the f(Q) = 0 surface to the boundary of the BZ for the SC lattice (i.e. the 〈π, q1, q2〉
planes) and to the 〈π/2, q, π − q〉 lines in the case of the FCC lattice (diagonals on the
hexagonal faces of the BZ), while there is no such restriction for the even f(q) function
when δ∗ = 0.13

The topological distinction is corroborated by the Euler characteristics χ14 (or equiv-

11A spin wave spectrum like this is most easily calculated in a local co-rotating coordinate system, see e.g.
Ref. [136]

12We note that Monte-Carlo simulations in Ref. [69] found a type III, Q = (2π, π, 0) order at low temper-
atures (a W -state). These results call for further investigation.

13Very similarly in one dimension: An odd function has to cross the origin, but an even has not.
14The Euler characteristic χ(M) for a compact two dimensional surface M without boundary (all our

MGS’s belong to this class when we look at them as surfaces in the first Brillouin zone with the appropriate
faces of the zone identified) can be calculated via the celebrated Gauss-Bonnet theorem:

χ(M) =
1

2π

∫
M

K dA, (3.24)

where dA is the surface element of M and K is the Gaussian curvature of M .
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Figure 3.6: Topological (Lifshitz) transition ofMGS of a model on the face-centered-cubic
lattice Λ, given by the minima of J(q) defined by f(Q) = 0 via Eq. (3.3). Here Ξ consists
of Ξ0,Ξ1 ⊂ Λ, Ξ0 is the origin and Ξ1 consists of the first neighbors. The resulting Heisen-
berg model is a fourth-neighbor one with J1 = 4+2c0, J2 = 4, J3 = 2, and J4 = 1, and the
tunable parameter c0 drives the transition. (a) c0 = −3, the surface is homeomorphic to the
sphere S2, with Euler characteristic χ = 2 and no genus g = 0. (b) c0 = 0, the transition
point, where the surface intersects itself at the midpoints of the hexagonal faces of the BZ.
(c) c0 = 3/2, the surface is homeomorphic to the Schoen IWP surface, with χ = −6 (see
the tubes on the antipodal hexagons of the BZ surface that are glued together), and we have
four handles and genus g = 4.

alently the number of genera g15) of these triply periodic surfaces [94]. We focus on the
FCC lattice. The f(Q) = 0 surface from Eq. (3.19) is homeomorphic to the so called
Schwarz-P surface with χ = −4, see Fig. 3.5(b) (the easiest way to see this is the follow-
ing: There are six “tubes” emanating from this surface, but the antipodal tubes are glued
together because of the periodicity of reciprocal space, so what we have here is basically
a sphere with three handles attached). On the other hand, we can extend Eq. (3.17) to the
fcc lattice, i.e. for Ξ we choose the origin together with the first neighbors (so Λ∗ = Λ).
This will create a fourth-neighbor model with J1 = 4 + 2c0, J2 = 4, J3 = 2, and J4 = 1.16

For −12 < c0 < 0, we have a surface homeomorphic to the sphere (but having only cubic
symmetry) with χ = 2 (see Fig. 3.6(a)). At c0 = 0, a Lifshitz transition occurs [135] (the
surface is not even a manifold, see the eight “necks” in Fig. 3.6(b)), and for 0 < c0 < 4
the surface changes to a different manifold, homeomorphic to a Schoen IWP surface, with
χ = −6 (remember: Tubes on the antipodal hexagons og the BZ are glued together so we
have four handles g = 4, see Fig. 3.6(c)). The surfaces in the case of the diamond lattice
[20] belong to this latter class (having the sameMGS’s when some parameters are varied).
We close this chapter with a summary.

15The genus (plural genera) of a surface is the number of ”holes” on it, or the number of ”handles”. For a
closed surface (we always have closed surfaces without boundary here) χ = 2 − 2g. A sphere has g = 0, a
torus has g = 1.

16The fourth neighbors (there are 12 of them) are the orbits of δ4 = (1, 1, 0) under Oh.
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3.5 Summary
As a summary, we gave a recipe of the construction of classical Heisenberg models on
Bravais lattices having degenerate ground state manifolds of codimension one, with spin
spirals as ground states. These models are fine tuned, with no or a few free parameters,
this has to be contrasted with models on non-Bravais lattices (e.g. diamond or honeycomb)
where there are free parameters. In certain cases we have provided real space coverings
of the lattice by finite motifs (complete graphs), where the ground states correspond to
states with the only rule that the spins must sum up to zero on each graph: This explains
the large degeneracy. We also have found topological (Lifshitz) transitions in models with
free parameters: Here varying the parameters changes the topology of the ground state
manifold (this can be monitored by e.g. the Euler characteristic of the manifold). We gave
a few worked out examples in two and three dimensions, and gave the necessary ingredients
to use the method for every Bravais lattice. We analyzed the effect of thermal or quantum
fluctuations, and found that they select commensurate (and likely collinear) states on the
ground state manifold. An outlook and proposed further investigations follow.

Although we have constructed model families, we barely started their analysis. No
real quantum or hardcore numerical investigations have been performed yet, and we know
that these frustrated models can host very interesting effects e.g. in the extreme quantum
regimes (small spin length). One of these is that they can provide a playground for realizing
quantum spin liquids, see [86], a topic very popular nowadays, so we believe that attacking
these models with state-of-the-art numerical methods is a promising direction for future
studies.



Chapter 4

Simple theory of directional dichroism in
the paramagnetic state of Sr2CoSi2O7

4.1 Introduction

In this chapter we describe the non-reciprocal directional dichroism (NDD) of the magneto-
electric (ME) multiferroic Sr2CoSi2O7 belonging to the family of åkermanites (a subspecies
of melilites) in the paramagnetic phase and in strong external magnetic fields. The melilite
crystals lack inversion symmetry (see Fig. 4.1) and applying a magnetic field in the param-
agnetic phase breaks time reversal as well: Thereby the necessary conditions for NDD are
fulfilled.

It was shown in Refs. [137, 138] that in Sr2CoSi2O7 the static (DC) ME effect1 persists
even in the paramagnetic phase in a high external magnetic field. Since the DC ME suscep-
tibility is related to NDD by the ME sum rule [139] we expect the NDD to appear under the
same circumstances. This expectation motivated the experimental investigation of NDD in
this compound via optical absorption. Indeed, markedly different absorption by magnetic
excitations were found in positive and negative magnetic fields, the hallmark of NDD. To
interpret the experimental results we developed a single-site analytical model showing that
the finite NDD arises if all the three are present: Magnetic field, spin anisotropy and ME
coupling.

The structure of this chapter is the following: Basic structural and magnetic properties
of Sr2CoSi2O7 are given in Section 4.2. The spin Hamiltonian and the form of the spin-
induced polarization of the material are introduced in Section 4.3 together with the coupling
to the oscillating electromagnetic field. Experimental methods and results are presented in
Section 4.4. The Kubo formula as applied to the magnetoelectric response connects the
experiments and calculations and is described in Section 4.5. Exact diagonalization of the
Hamiltonian on a small cluster and the calculation of ME susceptibilities is explained in
Section 4.6. The single-ion model is introduced and analyzed in Section 4.7. The single
ion model and its symmetry analysis is promoted to a lattice model in Section 4.8, and by
treating the exchange interactions perturbatively the remarkable success of the single-ion
model was justified in retrospect. We close the chapter with a summary in Section 4.9.

1The nonvanishing magnetoelectric susceptibility at ω = 0. For the definition of this response function
see Appendix F.



4.2. Basic structural and magnetic properties of the crystal 77

4.2 Basic structural and magnetic properties of the crystal
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Figure 4.1: Illustration of a layer of Sr2CoSi2O7. The whole crystal has space group sym-
metry P421m. Coordinate axes are also shown: The black arrows are the crystallographic
ones, the blue axes x ‖ [110] and y ‖ [1̄10] point in the directions of the Co-Co bonds used
in the calculations. Purple disks denote the Co2+ ions carrying the S = 3/2 moments and
sitting in the centers of the O2− tetrahedral cages (blue), the Si2O7 units are in grey, and
the Sr ions separating the layers are not shown. A and B denote the two types of tetrahedra
tilted by +κ and −κ (κ ≈ 22.4◦) about the [001] axis away from [110]. In the experiment
the THz light propagates along the direction of the magnetic field, k‖B‖ [100]. The mag-
netic field breaks time reversal symmetry and for this field direction the remaining unitary
symmetry operation is the 21 screw axis, (black half-arrow), the two antiunitary operations
are the twofold rotation about the [001] axis followed by time reversal and denoted by 2′

(red ellipse) and a screw axis followed by time reversal and denoted by 2′1 (red half-arrow):
The magnetic point group reduced to 22′2′ by the introduction of the field.

Here we describe the most important features of the Sr2CoSi2O7 crystal, and its mag-
netic properties relevant for understanding this chapter. This crystal is the sister com-
pound of Ba2CoGe2O7, with analogous structural, electric and magnetic properties. Since
Ba2CoGe2O7 was synthesized much earlier and its literature is vast, we mostly refer to its
literature when describing Sr2CoSi2O7 in this section (e.g. we could use the same model
with the same parameters used in [37] describing Ba2CoGe2O7). The basic static (or DC)
measurements on the magnetic field dependence of the magnetization, polarization, and
structural information on Sr2CoSi2O7 can be found in [137, 138].

The space group of the high temperature paramagnetic phase of the crystal is the tetrag-
onal P421m with point group 42m (or D2d in Schoenflies notation). A schematic of the crys-
tal and its symmetry elements are presented in Fig. 4.1. This group is non-centrosymmetric
(there is no space inversion present), but it is neither polar nor chiral,2 and –naturally– has

2We call a point group chiral if it contains no rotoreflections, i.e. it consists of pure rotations (elements
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time reversal symmetry, preventing magneto-chiral dichroism (MChD) in the paramagnetic
state.

The crystal is layered, the layers are stacked along the tetragonal axis [001], one such
layer is shown in Fig. 4.1. The basic building blocks are Co2+ ions sitting in the centers
of O2− tetrahedra forming a square lattice. The tetrahedra are slightly distorted along the
[001] direction, and are connected by Si2O7 units, and the layers are separated by Sr2+

ions. Since the layers are weakly coupled we will concentrate on the Co2+ ions forming a
single layer, and all the magnetic properties can be understood by looking at this structure.
These ions form a square lattice with two nonequivalent Co ions in the unit cell due to the
two different orientations of the O-cages (see the different tiltings±κ in Fig. 4.1, the actual
value of κ is very close to π/8). Let us now turn to the magnetic properties.

Co2+ ions in such a tetrahedral environment carry a spin S = 3/2.3 The material
is an easy-plane antiferromagnet (with a strong uniaxial on-site anisotropy): Below the
Néel temperature TN = 7 K the moments order and lie in the tetragonal planes. The lack
of an inversion center on the midpoints of the Co-Co bonds allows for a Dzyaloshinskii-
Moriya interaction (see Eq. 4.1), and this results in a small in-plane canting of the spins.
The reduced symmetry of the Néel-state makes the crystal chiral: The paramagnetic point
group 42m1′ is consequently reduced to 22′2′, the prime here refers to time reversal. We
can also break time reversal symmetry in the paramagnetic phase, and make the group
chiral by applying a magnetic field along the [100] direction, thereby canting the moments
in the direction of the field causing a net magnetization, and reducing the symmetry to 22′2′

[50] (see these remaining symmetry elements in Fig. 4.1).
Under this symmetry we expect MChD for light propagation along the magnetic field,

i.e. in the so-called Faraday geometry. Showing that this is the case, and taking the first
steps to understand the details of the phenomenon is the subject of the rest of this chapter.
In the next section we define the spin Hamiltonian describing the material together with the
way electric polarization is induced by the magnetic moments.

4.3 Spin Hamiltonian and the magnetoelectric coupling

Here we introduce the anisotropic Heisenberg Hamiltonian describing the spin system, and
give the form of the spin-induced on-site electric polarization. With the aid of the Kubo
formula [140, 139] we define magnetic and magnetoelectric response functions that can
be calculated once the aforementioned Hamiltonian is diagonalized. With these response
functions (susceptibilities) we can calculate the absorption coefficients thereby connecting

of SO(3)). A point group is said to be polar if it allows for the presence of a polar vector component: i.e.
there is at least one component of a polar vector –say the net polarization P itself– that transforms according
to totally symmetric irrep of the said group Pα ∼ Γ1+.

3The crystal field of the O2− ions on the tetrahedron lifts the five-fold degenerate d-levels of the Co2+

ion to a low lying two-fold degenerate e level, and to a higher lying, three-fold degenerate t2 level (here we
neglect the slight distortion of the tetrahedron and use the tetrahedral group Td of a perfect tetrahedron). Four
out of the seven electrons of the Co2+ ion first fill the e level, and the remaining three electrons occupy the
t2 level with all their spins aligned, resulting an S = 3/2 state (here we have assumed that the crystal field is
much weaker than Hund’s coupling).
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the theoretical spin model to the measurements.
For the Hamiltonian of a single layer of Co2+ spins with S = 3/2 forming a square

lattice –see Fig. 4.1– we consider the following anisotropic Heisenberg model

H = J
∑
〈i,j〉

(
Sxi S

x
j + Syi S

y
j

)
+ Jz

∑
〈i,j〉

Szi S
z
j + Λ

∑
i

(Szi )2

+Dz

∑
〈i,j〉

(
Sxi S

y
j − Syi Sxj

)
− gµBB ·

∑
i

Si , (4.1)

where Sαi is the α’s component of the spin on site i, J and Jz are the anisotropic antifer-
romagnetic exchange constants, Λ > 0 is the on-site anisotropy parameter (favoring an
easy-plane configuration), Dz is the z component of the Dzyaloshinskii-Moriya vector (al-
lowed since the midpoints of Co-Co bonds are not inversion centers), and the last term is
the Zeeman interaction with gyromagnetic ratio g, and µB is the Bohr magneton. Here B is
the external static field, and 〈i, j〉 denotes summation over nearest neighbor Co-Co bonds
always connecting sites on different sublattices A and B.

The absence of inversion symmetry on the Co sites allows for a ME coupling. A mi-
croscopic model was devised for the form of this coupling: The so-called p-d hybridization
or metal-ligand hybridization [39] where the spin of the metal ion (Co2+ in our case) de-
forms the charge distribution of the ligands (the tetrahedral cage of O2− ions in our case)
via spin-orbit coupling, thereby creating a net polarization on a site. We note that it is an
on-site mechanism, since only one Co spin is included in the process. Other mechanisms of
spin induced polarization involving two magnetic sites were considered in Ref. [141] (see
also the Introduction 1.2). The electric polarization is quadratic in spin components and it
is given by [36, 37] as

P ∝
4∑

α=1

(S · eα)2 eα, (4.2)

where eα is the unit vector pointing from the center of the (distorted) tetrahedron (the Co2+

ion) toward the four α = 1, . . . 4 ligands (the O2−) at the vertices of the tetrahedron, and S
is the spin of the Co2+ ion. This form of the polarization is quadratic in spin components,
hence time-reversal invariant.

Since Sr2CoSi2O7 is composed of tetrahedra alternating on the sublattices A and B, the
polarization components are

P x
j ∝ − cos 2κj

(
Sxj S

z
j +SzjS

x
j

)
− sin 2κj

(
Syj S

z
j +SzjS

y
j

)
,

P y
j ∝ cos 2κj

(
Syj S

z
j +SzjS

y
j

)
− sin 2κj

(
Sxj S

z
j +SzjS

x
j

)
,

P z
j ∝ cos 2κj

(
(Syj )2−(Sxj )2

)
− sin 2κj

(
Sxj S

y
j +Syj S

x
j

)
, (4.3)

where j is either A (B), with tilt angle κj = κ (κj = −κ) [37], see Fig. 4.1.
The interaction with the oscillating electric and magnetic fields of the light (Eω(t) and

Bω(t), respectively) with the material is described by the –supposed to be perturbatively
weak to be treated by linear response theory– Hamiltonian

HEM(t) = −Eω(t) ·P−Bω(t) ·M. (4.4)
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The total polarization is the sum of the sublattice polarizations and the total magnetization
is the sum of the sublattice magnetizations

P = PA + PB, and M = MA + MB, (4.5)

where the sublattice polarizations and magnetizations are defined as

PA =
∑
i∈A

Pi, and MA = gµB
∑
i∈A

Si, (4.6)

and similarly for sublattice B. The full Hamiltonian with the spin model Eq. (4.1) and
electromagnetic interaction Eq. (4.4) becomes finally

Hint = H +HEM(t). (4.7)

In what follows we briefly describe the experimental methods and results.

4.4 Experiments
In this section we give a very brief summary of the experimental methods and results. This
work was done in close collaboration with experimentalists, and though I was not directly
involved in the measurements, I feel an urge to describe them in some detail.

4.4.1 Experimental methods

Samples of Sr2CoSi2O7 designed for THz spectroscopy4 were thin, disk-shaped single crys-
tals with axis parallel to [100]. The frequency dependence of the absorption of linearly
polarized THz light was measured with varying external magnetic field and temperature.
The static external magnetic field B and the propagation direction of light k were both in
the [100] direction, k ‖B ‖ [100]. This setup of the static magnetic field being parallel to
the wave vector of the light is called the Faraday configuration, and when k⊥B the con-
figuration is called the Voigt configuration (no measurements in Voigt configuration will be
covered here but we describe the possibility of having NDD in the Voigt configuration).

The absorption coefficient α± for magnetic fields ±B is calculated as

α± = −1

d
ln

I(±B, T )

I(B = 0 T, Tref)
, (4.8)

where I(B, T ) is the transmitted intensity in a magnetic field B at temperature T and
I(0 T, Tref) is some reference intensity and d is the sample width. If we are interested

4This is a side note about unit conversions often used in spectroscopy. A photon with energy of
E = 1 meV, has frequency f = 0.242 THz, has a wavenumber k = 8.06 cm−1, and has a wavelength
λ = 1.24 mm. The energy E = 1 meV corresponds to a temperature T = 11.6 K. The energy E = 1 meV
when compared with the Zeeman energy E = gµBB shows that the equivalent magnetic field is B = 8.63 T,
where g = 2 was chosen for the gyromagnetic ratio and µB is the Bohr magneton. These conversion factors
are useful when comparing energy scales: It is seen e.g. that in our case the external magnetic field, the
anisotropy energy, and the temperature are all comparable.
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in the field dependence at some fixed T = Tref , the absorption coefficient is denoted by
α±B, and if B is fixed and T is varied, the absorption coefficient is denoted by α±T . α±

was determined for two polarizations Eω ‖ [010] and Eω ‖ [001], where Eω denotes the
oscillating electric field of the incident light (for the chosen coordinates see Fig. 4.1).

The quantity α+ − α− measures the NDD (note that this is a signed quantity) and is
proportional to the imaginary part of an appropriate magnetoelectric susceptibility. The
presence of NDD was monitored by changing the direction of the magnetic field from +B
to −B instead of changing the light direction (or flipping the sample together with the
external field), i.e. from B ↑↑ k to B ↓↑ k. Due to the two-fold rotation symmetry along
the [001] axis the reversal of B is equivalent to the reversal of k. We turn to the description
of the experimental results.

4.4.2 Experimental results

Figs. 4.2 (a) and (b) show the temperature dependence of the absorption coefficients α±T for
the light propagation directions ±k ‖ [100] between 3 K and 100 K in two polarizations of
the THz radiation in magnetic field ±14 T, where B ‖ [100]. We recall that the measure
of the NDD is α+

T − α−T , so one has to subtract the blue curve from the red one to have a
feeling about the magnitude of dichroism.

Below 7 K, in the magnetically ordered phase, the spectrum is dominated by three res-
onances at 18 cm−1, 28 cm−1 and 32 cm−1 just like in Ba2CoGe2O7 already studied in
Ref. [46]. Also the DC properties, namely the magnetic field dependence of the static po-
larization and magnetization are quite similar in Sr2CoSi2O7 and Ba2CoGe2O7 [36, 137].
This almost identical behavior of the two compounds allows us to identify and characterize
the modes in the ordered phase based on the study of Ba2CoGe2O7 [43].

The 18 cm−1 mode is the Goldstone mode of the easy-plane antiferromagnet gapped
by the in-plane magnetic field whereas the other two resonances correspond to the spin
stretching modes.5 The spectra are clearly different for k ↑↑ B and k ↑↓ B. With increas-
ing temperature the spin-stretching modes merge and fade away above 30 K, so they are not
interesting for us now, since we want to study the high temperature behavior of the system.
However, the lowest energy mode survives up to 100 K: This paramagnetic mode is whose
behavior we want to capture. Furthermore MChD is very sensitive to the polarization of
light in the paramagnetic phase. When Eω ‖ [010], α+

T is nearly zero (see the flat red line in
Fig. 4.2 (a)) while α−T has a strong peak at the resonance (see the pronounced bump on the
blue line in Fig. 4.2 (a)). When Eω ‖ [001], the lowest energy resonance has weak MChD
(the blue and red curves almost overlap in Fig. 4.2 (b)) and it even changes sign between
10 K and 15 K.

Fig. 4.3 (a) and (b) show the magnetic field dependence of α±B at 30 K 6 for the two
polarizations. The average intensity of the resonance line, (α+

B + α−B)/2, observed at this
5Without an in-plane component of the external field the system has aU(1) symmetry about [001] (almost:

There is a small in-plane anisotropy usually neglected in calculations), and the Goldstone mode corresponds
to the free in-plane rotations of the spins. The spin stretching modes are dubbed this way because the spin
can also shrink in these modes allowing for multipolar excitations, this is the consequence of the on-site
anisotropy (possible for S > 1/2 only) discussed later.

6This temperature is high enough to say that we are really in the paramagnetic phase, but low enough to
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Figure 4.2: Temperature dependence of the measured THz absorption spectra (a-b) and
calculated susceptibilities (c-f) of Sr2CoSi2O7 in 14 T. The THz absorption spectra for a
magnetic field B ↑↑ k ‖ [100] (α+

T : red line) and B ↑↓ k (α−T : blue line) are measured
using linearly polarized radiation where in (a) Eω ‖ [010] and Bω ‖ [001], and in (b)
the polarization is rotated by 90◦, so that Eω ‖ [001] and Bω ‖ [010]. The measure of
the non-reciprocal directional dichroism for a given polarization is α+

T − α−T , i.e. the blue
line subtracted from the red one. The spectra measured at each temperature are shifted
by a constant baseline. (c) and (e) are the imaginary parts of the magnetic susceptibility
χmm(ω) and the magnetoelectric susceptibility χme(ω) for the polarization Eω ‖ [010] and
Bω ‖ [001]. (d) and (f) are the imaginary parts of χmm(ω) and χme(ω) for the polarization
Eω ‖ [001] and Bω ‖ [010]. Red (positive) and blue (negative) colors indicate the sign of
the imaginary part of the susceptibility. The saturation of the color corresponds to the mag-
nitude of the corresponding susceptibility matrix elements =χmm(ω) and =χme(ω). The
susceptibilities were calculated by exact diagonalization of a four site cluster. To compare
the measured values with the calculated ones remember: α+

T (ω) − α−T (ω) = 4ω
c
=χme(ω)

as given in Eq. (4.11).

temperature is nearly the same for both polarizations and the dependence of the resonance
frequency on the field also seems to be polarization independent. Although the strength
of the MChD shows the same polarization dependence discussed before: When Eω‖[010]
the MChD is strong, and it is weak when Eω‖[001]. In the next section we define the
magnetoelectric susceptibilities, the way they can be calculated via Kubo’s formula and

have dichroism of a decent magnitude.
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Figure 4.3: Magnetic field dependence of the measured THz absorption spectra (a-b) and
calculated susceptibilities (c-f) of Sr2CoSi2O7 at 30 K. The THz absorption spectra for a
magnetic field B ↑↑ k ‖ [100] (α+

B: red line) and B ↑↓ k (α−B: blue line) are shown for two
light polarizations. The measure of the non-reciprocal directional dichroism for a given po-
larization is α+

B −α−B, i.e. the blue line subtracted from the red one. The spectra are shifted
in proportion to the absolute value of the magnetic field. (c) and (e) are the imaginary parts
of the magnetic susceptibility χmm(ω) and the magnetoelectric susceptibility χme(ω) for
the polarization Eω ‖ [010] and Bω ‖ [001]. (d) and (f) are =χmm(ω) and =χme(ω) for
the polarization Eω ‖ [001] and Bω ‖ [010]. Red (positive) and blue (negative) colors indi-
cate the sign of susceptibility. The saturation of the color corresponds to the magnitude of
=χmm(ω) and =χme(ω). The susceptibilities were calculated by the exact diagonalization
of a four site cluster. To compare the measured values with the calculated ones remember:
α+
B(ω)− α−B(ω) = 4ω

c
=χme(ω) as given in Eq. (4.11).

their relationship to the optical properties.

4.5 Magnetoelectric response and absorption

The linear response (susceptibilities) to the external fields at finite temperature can be de-
scribed by the Kubo formula (for Kubo’s original paper see [140], and for its application to
the magnetoelectric problem described here see [139]). The magnetic susceptibility tensor
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is defined as

χmmµµ (ω) =
∑
i,f

|〈f |Mµ|i〉|2
~ω−Ei+Ef+iδ

e−βEf − e−βEi
Z

, (4.9)

and the magnetoelectric susceptibility tensor is defined as

χmeµν (ω) =
∑
i,f

〈i|Mµ|f〉〈f |P ν |i〉
~ω−Ei+Ef+iδ

e−βEf − e−βEi
Z

, (4.10)

where Z =
∑

i e
−βEi is the partition sum, with inverse temperature β = 1/kBT , |i〉 and

|f〉 are initial and final states of the spin system (4.1) with energies Ei and Ef (i.e. H|i〉 =
Ei|i〉), ω is the angular frequency, and δ is a phenomenological inverse lifetime giving a
finite width to the absorption peaks. Note the indices of the susceptibilities: Upper indices
refer to the type of response (the type of operators in the Kubo formula), and lower indices
are the tensor component indices x, y, z.

The experimentally measured NDD is related to the imaginary7 and time-reversal odd
part of the ME susceptibility[139] 8 as

α+(ω)− α−(ω) =
4ω

c
=χmeµν (ω), (4.11)

where c is the speed of light in vacuum, µ points in the direction of Bω and ν points in the
direction of Eω of the light.

The contribution of a given transition |i〉 → |f〉 to the dissipative (imaginary) part of
the magnetic and ME susceptibility reads

=
{
χmmµµ (ω)

}
i→f ∝ | 〈i|M

µ |f〉 |2δ(ω − ωif ) (4.12)

and
=
{
χmeµν (ω)

}
i→f ∝ <{〈i|M

µ |f〉 〈f |P ν |i〉} δ(ω − ωif ), (4.13)

7={z} denotes the imaginary part of the complex number z, and similarly <{z} denotes its real part.
8The absorption is given by

α±(ω) =
2ω

c
=N±(ω),

where the complex index of refraction N± for the ±k direction of light propagation is

N±(ω) =
√

[ενν + χee
νν(ω)]

[
µµµ + χmm

µµ (ω)
]
± χmeµν (ω).

ενν and µµµ are real background dielectric permittivity and magnetic permeability unrelated to the spin
system, respectively. χmeµν (ω) is the time-reversal odd part of the ME susceptibility. For the derivation and
limitations of this formula see Ref. [139] and references therein. In the limit of small spin contribution to the
susceptibilities χee

νν(ω)� ενν , χmm
µµ (ω)� µµµ, the index of refraction becomes

N±(ω) ≈ √εννµµµ +

√
µµµ

2
√
ενν

χee
νν(ω) +

√
ενν

2
√
µµµ

χmm
µµ (ω)± χmeµν (ω).
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where ~ωif = Ef − Ei is the transition energy (of course the Dirac-deltas broaden to
Lorentzians with finite width δ). It is important to remember that only the real part of the
matrix element product is time reversal odd in Eq. (4.13), and this real part governs the
NDD, see Eq. (4.11). Exact diagonalization calculations (ED) can be performed on finite
(actually, small) clusters of spins to describe the absorption spectra, and we describe them
in the next section.

4.6 Exact diagonalization

Exact diagonalization studies were performed9 on a cluster of four Co2+ ions (two unit
cells) of spin S = 3/2 at finite temperature (an ED calculation on Ba2CoGe2O7 has been
already performed at zero temperature in Ref. [37]). The local Hilbert space is 2S + 1 =
4 dimensional, so the cluster has a Hilbert space of dimension (2S + 1)4 = 256, and
the sums in Eqs. (4.9) and (4.10) run over 2562 = 65536 terms. Although the cluster
seems to be small, the results are in surprisingly good agreement with the high temperature
measurements.

As was already mentioned the low temperature excitations and ground state proper-
ties as well as the DC measurements (e.g. the field dependence of the magnetization) of
Sr2CoSi2O7 [36] bear striking resemblance to the ones of Ba2CoGe2O7 [137], so we did
not try to fit the parameters of the Hamiltonian (4.1) but used the values that were already
successful in describing the excitations of Ba2CoGe2O7 in an ED calculation at zero tem-
perature before [43]: Λ = 13.4 K, J = 2.3 K, Jzz = 1.8 K, Dz = −0.1 K, κ = 22.4◦, and
g = 2.3.10 It is worth mentioning that this is an unusual set of parameters: The anisotropy
is about seven times as large as the exchanges (this has also a profound effect on the low
temperature excitations, for details see [43]). The susceptibilities χmm(ω) and χme(ω)
as given in Eqs. (4.9) and (4.10) were calculated and are presented in Fig. 4.2(c)-(f) and
Fig. 4.3(c)-(f).

Just like in the experiments at sufficiently high temperature and field a single mode is
present in the ED calculations and below 20 K a second mode appears. To our pleasant
surprise, not just the presence of the NDD, but also its sign, and for Eω ‖ [001] even the
sign change between 10 K and 15 K is reproduced by the numerics, see Fig. 4.2(b) and (f).
In the following we try to understand the above mentioned results in a simplified model of
a single Co-ion, and analyze the symmetry properties of this model.

4.7 The single-ion problem
We have seen that the ED calculations describing the NDD of Sr2CoSi2O7 and the exper-
iments are in a remarkably good agreement. To understand the essential physics of the
high temperature MChD we construct the simplest model possible. We consider only one

9The ED calculations presented were performed by Karlo Penc.
10To compare these scales with the experiments the parameters in wavenumber units are given as Λ =

9.31 cm−1, J = 1.6 cm−1, Jzz = 1.25 cm−1, Dz = −0.07 cm−1. A field of B = 1 T with g = 2.3 is
equivalent to an energy of 1.54 K or 1.07 cm−1.
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Figure 4.4: Coordinate systems for the single-ion problem. The tetrahedron-fixed co-
ordinate system {X, Y, Z} (black arrows) and the rotated, field-fixed coordinate system
{‖,⊥1,⊥2} (red arrows). The purple ball in the center is the Co2+ ion with spin S = 3/2,
and the blue tetrahedron is the cage of O2− ions. The quantization axis (with spin com-
ponent S‖) points along the direction of the static external magnetic field h (green arrow),
while the perpendicular axis with spin component S⊥2 is parallel to Z.

Co2+ spin sitting in the center of a tetrahedron, and feeling a magnetic field and the strong
easy-plane anisotropy, i.e. we neglect the interactions in Eq. (4.1) and only keep the on-
site terms. This choice is motivated by the following: The anisotropy and a typical field
of 10 T is about seven times larger than the exchanges, and 30 K (the actual temperature
of the measurements) is about fifteen times larger than the exchanges. Furthermore in the
paramagnetic phase with increasing temperature the correlation between the neighboring
spins decreases. This tetrahedral building block has the same magnetic group as the mag-
netic point group of the real material when placed in a magnetic field11. We calculate the
eigensystem of this model and we analyze the symmetries of the system to find the selection
rules. As a very interesting side effect we will find a way to use the non-unitary symmetries
to tell us something about the reality/imaginarity of the matrix elements of the perturbing
operators. A glimpse at the Kubo formula in Eq. (4.13) shows that in this magnetooptical
situation this information can be just as useful as an old fashioned selection rule.

4.7.1 The Hamiltonian and the symmetries

Spin Hamiltonian and electric polarization

We consider a single S = 3/2 spin in the center of a tetrahedron, and switch on an external
magnetic field of magnitude h = gµBB pointing in some direction in the XY plane. A
comfortable choice of coordinates is shown in Fig. 4.4: The ‖ axis points along the field

11A [100] directed field in the material corresponds to the chiral case of the single-ion model (see Subsec-
tion 4.7.2 for the description of this case), both have 22′2′ as the magnetic point group.
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direction, the ⊥2 axis is parallel to the Z axis, and the ⊥1 is chosen such a way that ⊥1,
⊥2 and ‖ form a right-hand system. We will call this coordinate system field-fixed, and the
relationship between the XY Z and the field-fixed system is given by

SX = cosϕ S‖ − sinϕ S⊥1,

SY = sinϕ S‖ + cosϕ S⊥1, (4.14)
SZ = S⊥2.

The spin components in the field-fixed frame follow the usual commutation relations
[
S⊥1, S⊥2

]
=

iS‖ (and cyclic permutations). Keeping only the on-site terms in Eq. (4.1), and concentrat-
ing on a single spin results in the following Hamiltonian

H = Λ
(
S⊥2

)2 − hS‖ . (4.15)

We choose the quantization axis along the magnetic field, the eigenvalues and eigenvectors
of S‖ are {+3/2,+1/2,−1/2,−3/2} and {⇑, ↑, ↓,⇓}, respectively.

The tetrahedron lacks inversion symmetry, and it is responsible for the polarization (see
Eq. (4.2))12:

PX = ηXY (SZSY + SY SZ),

P Y = ηXY (SZSX + SXSZ), (4.16)
PZ = ηZ(SXSY + SY SX),

and for a regular tetrahedron ηXY = ηZ . The components in the field-fixed system read as

PX = cosϕ P ‖ − sinϕ P⊥1,

P Y = sinϕ P ‖ + cosϕ P⊥1, (4.17)
PZ = P⊥2.

Solution of the Hamiltonian

The matrix representation of the Hamiltonian (4.15) in the basis {⇑, ↑, ↓,⇓} reads

Ĥ =


3
4
Λ− 3

2
h 0 −

√
3

2
Λ 0

0 7
4
Λ− 1

2
h 0 −

√
3

2
Λ

−
√

3
2

Λ 0 7
4
Λ+ 1

2
h 0

0 −
√

3
2

Λ 0 3
4
Λ+ 3

2
h

 , (4.18)

and we denote the 4× 4 matrix representatives of the operators with a hat.

12A perfect tetrahedron has a symmetry group Td ≡ 43m called the achiral or full tetrahedral group having
24 elements including 6 mirror planes and 6 fourfold rotoreflections (S4). This group is apolar. Distorting this
tetrahedron in the Z-direction as in the real material reduces this group to the achiral and apolar D2d ≡ 42m.
This group is isomorphic to the point group of the material in the paramagnetic phase in the absence of
external field.
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A twofold rotation C
‖
2 about the magnetic field is the symmetry of the Hamiltonian

(4.15),13 so its operator Ĉ‖2 commutes with Ĥ,
[
Ĥ, Ĉ‖2

]
= 0. Therefore the eigenvalues ±i

of

Ĉ
‖
2 = eiπŜ

‖
=


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 (4.19)

are good quantum numbers and we will use these eigenvalues to label the states. Since our
spin is half-integer (Ĉ

‖
2)2 = −1̂, where 1̂ is the 4 × 4 unit matrix. Another consequence

of this symmetry is that only the states with the same label ±i are mixed. We denote the
eigenenergies as ε(±i)

j , and the corresponding eigenstates as |ψ(±i)
j 〉.

The eigenvalues of Ĥ in increasing order of the energies are (h,Λ > 0)

ε
(−i)
1 = −h

2
+

5Λ

4
−
√
h2 + hΛ + Λ2, (4.20a)

ε
(+i)
2 =

h

2
+

5Λ

4
−
√
h2 − hΛ + Λ2, (4.20b)

ε
(−i)
3 = −h

2
+

5Λ

4
+
√
h2 + hΛ + Λ2, (4.20c)

ε
(+i)
4 =

h

2
+

5Λ

4
+
√
h2 − ghΛ + Λ2, (4.20d)

and the corresponding unnormalized eigenstates are

|ψ(−i)
1 〉 ∝

(
2h+Λ+2

√
h2+hΛ+Λ2

)
|⇑〉+

√
3Λ |↓〉 , (4.21a)

|ψ(+i)
2 〉 ∝

(
2h−Λ+2

√
h2−hΛ+Λ2

)
|↑〉+

√
3Λ |⇓〉 , (4.21b)

|ψ(−i)
3 〉 ∝

(
2h+Λ+2

√
h2+hΛ+Λ2

)
|↓〉 −

√
3Λ |⇑〉 , (4.21c)

|ψ(+i)
4 〉 ∝

(
2h−Λ+2

√
h2−hΛ+Λ2

)
|⇓〉 −

√
3Λ |↑〉 . (4.21d)

The phases for the eigenvectors above are chosen in such a way that we recover the basis
{|⇑〉 , |↑〉 , |↓〉 , |⇓〉} for h � Λ, e.g. |ψ(−i)

1 〉 → |⇑〉, and so on. The field dependence of
the eigenenergies is shown in Fig. 4.5(b), colors of the different curves correspond to the
quantum numbers ±i.

13One may ask the question: What about the other symmetries of the Hamiltonian
(4.15)? The full symmetry group of the Hamiltonian is D2h(C2h) ≡ m′m′m with elements{
E,C

‖
2 , σ
‖, I,ΘC⊥2

2 ,ΘC⊥1
2 ,Θσ⊥1,Θσ⊥2

}
, where I is space inversion, Θ is time reversal and σ is

a mirror plane perpendicular to the indicated axis, i.e. σ‖ = IC
‖
2 . So why do not we use the other generators

of this group to refine the labeling of the eigenstates? The answer is twofold. First, we will use the time
reversed elements later in a different context. Second, we can choose the inversion I as the other generator
of the unitary subgroup C2h ≡ 2/m =

{
E,C

‖
2 , σ
‖, I
}

, but it is not very useful for us: Space inversion on
spin states can be represented by the unit matrix of dimension 2S + 1 [142]. This argumentation also shows
that if we have σ‖ instead of C‖2 as a symmetry of the Hamiltonian we can use it the same way to classify
spin states and operators as we use C‖2 here.
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Figure 4.5: Transition energies ω (a) and energy levels ε (b) of the single-ion model (4.15)
with easy plane anisotropy Λ in a magnetic field h = gµBB within the easy plane as a
function of h/Λ. States 1 and 3 (red curves) are multiplied by −i after a π-rotation about
the field (C‖2 ), while states 2 and 4 (blue) get a factor of i. Magenta arrows represent
transitions between states with the same symmetry, induced by operators A even under
C
‖
2 , such as S‖, P ‖ (see Table 4.1). Cyan arrows connect states with different symmetries

induced by operators B odd under C‖2 , which include the perpendicular components of the
magnetization and polarization operators. The color of the curves in panel (a) corresponds
to the color of the arrows in panel (b). The orange circles show the experimental results, to
compare the model with the experiments we used the values g = 2.3 and Λ = 13.4 K, or
equivalently Λ = 9.31 cm−1.

Transition matrix elements

In this subsection we uncover rules that govern the existence of transitions between two
states, from a symmetry point of view. These are the selection rules. Let us assume that we
have a Hamiltonian which we perturb somehow (see e.g. Eq. (4.7) perturbed with the elec-
tromagnetic field). When a matrix element of the perturbing operator between the states
of the unperturbed Hamiltonian vanishes, then the transition mediated by the perturbing
operator is forbidden (in first order). Based on the symmetry properties of the perturbing
operator and the states one can derive such rules [134]. A matrix element 〈ψβ| O |ψα〉 of
a perturbing operator O between states of the unperturbed Hamiltonian |ψα〉 and |ψβ〉 can
only be nonvanishing (though nothing guarantees the existence of such a matrix element)
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if it transforms according to the totally symmetric A irrep14 of the group of the unperturbed
Hamiltonian A ⊆ Γβ∗ ⊗ Γ(O) ⊗ Γα. Here O transforms according to the irrep Γ(O), and
|ψα〉 transforms according to the irrep Γα, and the star denotes the complex conjugate rep-
resentation. In our case the unperturbed Hamiltonian is (4.15), and the perturbing operators
are the magnetization and polarization components (4.16) and (4.17), since they couple to
the oscillating electromagnetic fields. In the following two paragraphs we give a digression
as a reminder to a more familiar example of selection rules

We recall a familiar example of selection rules, and use this example as a reference
on how things will change in our magnetooptical context. We put a spin of length S (the
dimension of the Hilbert space is 2S + 1) in a ẑ-directed magnetic field with Hamiltonian
H = −BzSz, and we perturb the system by an x̂-directed oscillating magnetic field H′ ∝
SxBω cos(ωt). The Hamiltonian is invariant under all the elements of rotations about ẑ:
[H, Sz] = 0, these rotations form the group U(1). The eigenvaluesm = S, S−1, . . . ,−S+
1,−S of Sz are therefore good quantum numbers Sz |m〉 = m |m〉, and the eigenenergies
are H |m〉 = εm |m〉 with εm = −Bzm. We wish to emphasize that the mere existence of
the quantum number m is the consequence of the U(1) invariance of the Hamiltonian. In
the perturbing operator we can replace Sx = (S+ + S−)/2 (where S± = Sx ± iSy), and
we see that the transition matrix elements 〈m′| (S+ + S−)/2 |m〉 are only nonvanishing if
m′ = m± 1, this is a form of a selection rule for magnetic dipole transitions.

The above argument can be understood by means of group theory: U(1) being Abelian
its complex unitary projective representations are one-dimensional and they can be indexed
by the number m = 0,±1/2,±1,±3/2, . . . . A rotation Rϕ of angle ϕ about ẑ is repre-
sented on the 2S + 1 dimensional Hilbert space of the spin by the diagonal matrix eiϕŜz =
diag{eiϕS, eiϕ(S−1), . . . , eiϕ(−S+1), eiϕ(−S)}. Therefore the states transform according to
Rϕ : |m〉 → eiϕm |m〉 and Rϕ : 〈m′| → e−iϕm

′ 〈m′|. The spin raising and lowering op-
erators transform according to Rϕ : S± → e±iϕS±, independently of the dimension of
the representation. Consequently the matrix elements transform as Rϕ : 〈m′|S± |m〉 →
eiϕ(m−m′±1) 〈m′|S± |m〉, since they transform according to the product representation
e−iϕm

′ ⊗ e±iϕ ⊗ eiϕm. Finally the matrix elements are invariant under any rotation if
m′ = m± 1, since the phase factor eiϕ(m−m′±1) has to be unity for every angle ϕ. Now let
us connect these results to our one-ion model with Hamiltonian (4.15). The symmetries are
much lower now, see Footnote 13. The perturbing operators are the magnetization and po-
larization components Mα and Pα (the analogues of Sx here), the states

∣∣∣ψ(±i)
j

〉
are given

in Eqs. (4.21) and their irrep indices (the analogues of the magnetic quantum number m
here) are merely the (±i)’s reflecting their transformational properties under C‖2 as given
in Eq. (4.19) (and C‖2 is the analogue of the U(1) rotations Rϕ = eiϕS

z here). After this
digression let us continue with the analysis of the one-ion model and its selection rules.

The transformation properties of the operators and states under the rotation C
‖
2 are

summarized in Table 4.1. Note the transformation properties of the states: Those are the
same what we have calculated by hand using the matrix Ĉ

‖
2 before. Since our spin is

half-integer we need to use the double group corresponding to the group C2 [134]. If an

14Usually we denote the totally symmetric irrep of an abstract group as Γ1+, here we use A, that is standard
in the point group tables.
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Table 4.1: Character table of the double group corresponding to the group C2. In the last
column the operators and states are classified according to their transformation properties.
The group element 1̄ is the 2π-rotation with the property 1̄2 = 1.

Irrep 1 C
‖
2 1̄ C̄

‖
2 Operators

A 1 1 1 1 S‖, P ‖

B 1 −1 1 −1 S⊥1, S⊥2, P⊥1, P⊥2

E1 1 i −1 −i |⇓〉, |↑〉, 〈⇑|, 〈↓|
E2 1 −i −1 i |⇑〉, |↓〉, 〈⇓|, 〈↑|

operatorA transforms according to A and an operator B according to B, and the spin states
according to E1 and E2 of the double group of C2, (see Table 4.1) then the nonvanishing
matrix elements are 〈

ψ
(±i)
β

∣∣∣A ∣∣∣ψ(±i)
α

〉
and

〈
ψ

(∓i)
β

∣∣∣B ∣∣∣ψ(±i)
α

〉
. (4.22)

Allowed transitions between states of the same symmetry are of type A and allowed
transitions between states of different symmetry are of type B. The transitions are depicted
in Fig. 4.5(b), the magenta A-transitions connect states with the same symmetry and the
cyan B-transitions connect states with different symmetry. In Fig. 4.5(a) we show the
calculated and measured transition energies, e.g. ω1→2 = ε2 − ε1.

Now we consider the effect of antiunitary symmetries containing the time-reversal op-
eration Θ on the matrix elements. We show in Appendix G that any linear operator Ô, if
the symmetry operation ΘC⊥2

2 is present (as in the case of a magnetic field applied in the
XY plane), must satisfy Ô = ±Ô∗. Therefore the matrix elements of any linear operator
even (odd) under the symmetry operation ΘC⊥2

2 are either real (pure imaginary).
To summarize: The unitary symmetries determine the selection rules, and the antiuni-

tary symmetry elements force the matrix elements to be either real or pure imaginary. The
reality of the matrix elements is crucial for the presence of NDD: We will consider this
problem in the next subsection.

4.7.2 Directional dichroism in the single-ion model

The imaginary part of the ME susceptibility =
{
χmeµν (ω)

}
gives rise to the NDD [143, 49,

50], see Eq. (4.11). For a given transition |i〉 → |f〉 the dissipative and time-reversal odd
part of the ME susceptibility is proportional to the real part of the matrix element product
of the components of the magnetization and electric polarization operators [139], as was
given in Eq. (4.13) which we reproduce here

=
{
χmeµν (ω)

}
i→f ∝ <{〈i|M

µ |f〉 〈f |P ν |i〉} δ(ω − ωif ). (4.23)

Consequently NDD is non-zero if both of the matrix elements, 〈i|Mµ |f〉 and 〈f |P ν |i〉,
are finite for the same pair of states |i〉 and |f〉. This is allowed by symmetry if Mµ and P ν
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Table 4.2: Matrix elements of the spin and polarization operators for the transitions indi-
cated in the first column, first in small field h, then for small anisotropy Λ in the single-ion
model (4.15). The first non-vanishing order in either the external field h or the anisotropy
Λ is shown, and c stands for a real constant.

transition S‖ S⊥1 S⊥2 P
‖
chiral, P

⊥1
polar P⊥1

chiral, P
‖
polar P⊥2

chiral P⊥2
polar

1→ 2 − c, c ic, ic − ih, ic h, c −
2→ 3 − c, c ih, ic − ic, iΛ c, Λ −
3→ 4 − h2, c ic, ic − ih, ic h, c −
1→ 3 c, Λ − − ic, ic − − c, c
2→ 4 c, Λ − − ic, ic − − c, c
1→ 4 − c, Λ2 ih, iΛ2 − ic, iΛ c, Λ −

transform according to the same irrep of the group of unitary symmetries of the single-ion
Hamiltonian (4.15).

Moreover the product of the Mµ and P ν matrix elements must have a finite real part in
order to have a finite NDD in accordance with Eq. (4.23). We have seen in the previous sub-
section that the matrix elements are either real or pure imaginary because of the presence
of the antiunitary symmetry ΘC⊥2

2 , so to have a real product either both matrix elements
have to be real or both imaginary. So both the operators Mµ and P ν have to be either even
or odd under ΘC⊥2

2 at the same time. The properties of all spin and polarization operator
matrix elements for S = 3/2 in the single-ion model are presented for all the transitions in
Table 4.2: They are either real, imaginary, or symmetry-forbidden.

In the following we analyze the symmetry properties of the operators for different di-
rections of the external field with respect to the tetrahedron to find out the details about the
existence of NDD.15

Magneto-chiral dichroism (chiral case): ϕ = 0

When the external field is parallel to one of the twofold rotation axis, i.e. ϕ = 0 (see
Fig. 4.4), the system has the chiral and apolar symmetry D2 (C2) ≡ 22′2′ (see Fig. 4.6(a)
of the tetrahedron from the point of view of the external field direction, and for the stere-
ographic projection of the group). Note that this group is isomorphic to the point group
of the real material in a [100] directed external field, i.e. the experimental situation (see
Fig. 4.1). The character table and the transformation properties of physical quantities under
this group are given in Table 4.3. The polarization operators in the field-fixed coordinate

15Note that the group used here is the group of the Hamiltonian (4.15), and the tetrahedron dictates the
form of the polarization operator.
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D2(C2) C2v(C1h)D1(C1)

(c) polar(b) chiral and polar(a) chiral

 

 

Figure 4.6: The tetrahedron in the (a) chiral (ϕ = 0), (b) low symmetry, and (c) polar
(ϕ = π/4) cases as seen from the point of view of the static external magnetic field B. The
magenta ball represents the Co2+ ion at the center of the tetrahedron. The stereographic
projections of the magnetic point groups are shown below the tetrahedra for each case,
black color refers to the unitary symmetry elements and red color refers to the time reversed
elements (this depiction of symmetries is explained in [134]).

system read via (4.17)

P
‖
chiral =

ηXY
2i

[
(S+)2 − (S−)2

]
, (4.24a)

P⊥1
chiral =

ηXY
2i

[
S‖(S+ − S−) + (S+ − S−)S‖

]
, (4.24b)

P⊥2
chiral =

ηZ
2

[
S‖(S+ + S−) + (S+ + S−)S‖

]
, (4.24c)

where S± = S⊥1 ± iS⊥2. For ϕ = nπ/2 with n being an integer the situation is the same
(up to a sign), due to the S4 symmetry of the distorted oxygen tetrahedron. Note that the
perpendicular components P⊥1 and P⊥2 change the S‖ quantum number by ±1 (magnetic
dipolar excitation), but P ‖chiral changes it by ±2 (magnetic quadrupolar excitation) [144].

Since the group is apolar none of the components of P transforms according to the
fully symmetric irrep A+, see Table 4.3, and therefore the expectation value of the static
polarization is zero in the ground state. But the operators S⊥2 and P⊥1 belong to the
same irrep B− of D2 (C2), so the dynamic ME susceptibility is allowed. As the oscillating
magnetization S⊥2 and polarization P⊥1 are perpendicular to each other and to the external
magnetic field, we expect NDD in the Faraday geometry, when the light is propagating
parallel to the field: This is the magnetochiral dichroism (MChD). The same is true for the
operators S⊥1 and P⊥2 belonging to the irrep B+, therefore NDD is allowed irrespective
of polarizations of the incident light in Faraday geometry. Direct evaluation of the matrix
elements (see Appendix H and Table 4.2) using the eigenstates given in Eqs. (4.21a)-(4.21d)
corroborates the above symmetry analysis.

From Table 4.3 we can also interpret the selection rules with respect to the quantum
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Table 4.3: Character tables for the magnetic point groups and symmetry-allowed operators
for three orientations of the applied magnetic field in the easy plane, see Fig. 4.4, describing
chiral (ϕ = 0), polar (ϕ = π/4), and low symmetry cases.

ϕ = 0: Chiral case, the point group is D2(C2)

Irrep. 1 C
‖
2 ΘC⊥2

2 ΘC⊥1
2 Operator(s) NDD

A+ 1 1 1 1 S‖ –
A− 1 1 −1 −1 P ‖ –
B+ 1 −1 1 −1 S⊥1, P⊥2 Faraday
B− 1 −1 −1 1 S⊥2, P⊥1 Faraday

ϕ = π/4 : Polar case, the point group is C2v(C1h)

1 σ‖ ΘC⊥2
2 Θσ⊥1

A+ 1 1 1 1 S‖, P⊥2 Voigt
A− 1 1 −1 −1 P⊥1 –
B+ 1 −1 1 −1 S⊥1 –
B− 1 −1 −1 1 S⊥2, P ‖ Voigt

ϕ 6= 0 nor π/4 : The point group is D1(C1)

1 ΘC⊥2
2

Γ+ 1 1 S‖, S⊥1, P⊥2 Both
Γ− 1 −1 S⊥2, P ‖, P⊥1 Both

numbers ±i, i.e. the eigenvalues of the Ĉ‖2 rotation operator (4.19). The S‖ and P ‖ are
even underC‖2 , so they excite only typeA transitions between states with the same quantum
number (see Fig. 4.5 (b)), i.e. between states 1 and 3 and between states 2 and 4. However,
there is no NDD for the A type transitions as P ‖ and S‖ belong to different irreps.

The perpendicular components of P and S have finite matrix elements between states
with different C‖2 quantum numbers, which corresponds to type B transitions, i.e. the tran-
sitions 1 → 2, 1 → 4, 2 → 3 , and 3 → 4 (see Fig. 4.5 (b)). The S⊥2 and P⊥1 are both
odd under ΘC⊥2

2 (Table 4.3), thus both of them have imaginary matrix elements, so their
product is real in Eq. (4.23), and they provide finite imaginary χme⊥2,⊥1(ω) causing a finite
MChD. Similarly, the S⊥1 and P⊥2 are both even under ΘC⊥2

2 , with real matrix elements,
providing a finite imaginary χme⊥1,⊥2(ω). In any other configuration the =

{
χmeµν (ω)

}
= 0.

In consequence, the MChD is present only in the Faraday geometry when k ‖ B.

Toroidal dichroism (polar case): ϕ = π
4

If the external magnetic field is directed parallel to the upper edge of the tetrahedron, ϕ = π
4

in Fig. 4.4, the polarization operators in the field-fixed coordinate system become via (4.17)
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P
‖
polar =

ηXY
2i

[
S‖(S+ − S−) + (S+ − S−)S‖

]
, (4.25a)

P⊥1
polar =

ηXY
2i

[
(S−)2 − (S+)2

]
, (4.25b)

P⊥2
polar =

ηZ
4

[
4(S‖)2 − (S−)2 − (S+)2 − S−S+ − S+S−

]
. (4.25c)

The roles of the parallel and perpendicular operators have exchanged with respect to the
chiral case: The perpendicular operators change the S‖ quantum number by 0 and±2 (spin
quadrupolar transition), and the parallel operator by ±1 (spin dipolar transition). We note
that P ‖polar = P⊥1

chiral and P⊥1
polar = −P ‖chiral. The symmetry group of the spin Hamiltonian

is C2v (C1h) = 2′m′m (see Fig. 4.6(c)), this group is achiral but polar: A static P⊥2 po-
larization is allowed (hence the name polar for this case). The character table and the
transformations of physical quantities under this group are given in Table 4.3.

Since σ‖ is present, the S⊥1 and P⊥2 belong to different irreps, and similarly do S⊥2

and P⊥1: NDD is forbidden in the Faraday geometry. Indeed, in Faraday geometry k‖B,
the oscillating electromagnetic field transforms under σ‖ as Bω → −Bω, Eω → Eω, and
k → −k. The two directions of the radiation propagation are connected by the symmetry
element σ‖, and as a consequence the NDD in the Faraday geometry vanishes [139].

Instead, S⊥2 and P ‖ transform according to the same irrep B−. Consequently a finite
ME susceptibility χme⊥2,‖ will appear in the Voigt geometry when k is parallel to ⊥1 and
Eω‖B (remember in the Voigt configuration the static external field is perpendicular to
the light propagation direction). Similarly, S‖ and P⊥2 both belong to A+, resulting a
finite χme‖,⊥2. Since the operators belonging to the same irrep in Table 4.3 have the same
parity under the ΘC⊥2

2 transformation, their matrix elements are either both real (for S⊥2

and P ‖), or they are both pure imaginary (for S‖ and P⊥2), allowing NDD in the Voigt
configuration in both light polarizations.

As was briefly explained in Footnote 13 the matrices in spin space σ̂‖ and Ĉ‖2 are the
same (4.19), we can repeat all the arguments we have used in the chiral case to determine
the selection rules. The S‖ and P⊥2 operators have finite matrix elements between states
with the same Ĉ‖2 ≡ σ̂‖ quantum number, i.e. the A-type transitions 1 → 3 and 2 → 4 are
allowed. The S⊥2 and P ‖ change the quantum number ±i → ∓i, and B-type transitions
1→ 2, 1→ 4, 2→ 3, and 3→ 4 are allowed.

Low symmetry case: ϕ 6= 0 nor π
4

For arbitrary ϕ the polarization operators can be written as the following linear combina-
tions

P = cos 2ϕ Pchiral + sin 2ϕ Ppolar. (4.26)

Only the ΘC⊥2
2 symmetry remains and it generates the magnetic point group D1(C1) = 2′

(see Table 4.3 and Fig. 4.6(b)). This group is chiral and polar, a static P⊥2 is allowed.
Neither C‖2 nor σ‖ is a symmetry element anymore, so P may have finite matrix elements
between any of the (±i) states. The situation is different for the spin components: As the
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spin states still respect the quantum number of C‖2 (the Hamiltonian (4.15) does not know
anything about the orientation of the tetrahedron), the associated selection rules given in
Eq. (4.22) hold for S‖, S⊥1, and S⊥2. And this is good news: Since the ME susceptibility
is composed from a product of matrix elements of S and P, it inherits the selection rules of
the matrix element of S. All in all, the system shows NDD in the Faraday geometry for the
1 → 2, 2 → 3, 1 → 4, and 3 → 4 transitions with χme ∝ cos 2ϕ coming from the chiral
part, and it shows NDD in the Voigt geometry according to the selection rules set by the
polar case with χme ∝ sin 2ϕ.

Now we finish the study of the single ion problem, and turn to the lattice problem. We
will see that the analysis of such a simple toy model was not done in vain: Some of the
above results –mutatis mutandis– survive to the lattice case.

4.8 The lattice problem
In this section we describe the selection rules when we place the alternating tetrahedra on
the square lattice and reevaluate the results we had for the single-ion model. Furthermore,
we give the analytical form of the transition energies by taking into account the exchange
coupling between the spins in the lowest order in perturbation theory, and as a side effect
we show why the simple minded single-ion model described the experiments so well (see
the orange dots in Fig. 4.5(a)).

4.8.1 Magneto-chiral dichroism and selection rules in the lattice prob-
lem

In the real material the tetrahedra are alternatingly tilted (see Fig. 4.1), so the situation is
neither pure chiral nor pure polar as defined in the previous section. But the situation is
not that bad as it seems at first sight: We can use the space group of the material to say
something about the selection rules. Let us assume –as in the actual measurement– that the
external field points in the [100] direction. The unitary part of the magnetic space group
(aside from lattice translations) consists of the screw axis {C‖2 |[1

2
00]} (black half-arrow

in Fig. 4.1, formerly denoted by 21 ). This operation interchanges the sublattices A and
B. We will use this symmetry to label the eigenstates and operators (this operation is the
symmetry of the Hamiltonian (4.1)). Another symmetry operation (this is present for any
in-plane field direction) is a twofold rotation followed by time reversal {ΘC⊥2

2 |[000]} (red
ellipse in Fig. 4.1): This keeps the sublattices fixed. We have a third screw axes, followed
by time reversal {ΘC⊥1

2 |[01
2
0]} (black half-arrow in Fig. 4.1). The magnetic point group

of this nonsymmorphic space group is isomorphic to the D2 (C2) = 22′2′ magnetic point
group of a single tetrahedron in the chiral case{

1, {C‖2 |[
1

2
00]}, {ΘC⊥2

2 |[000]}, {ΘC⊥1
2 |[0

1

2
0]}
}
∼=
{

1, C
‖
2 ,ΘC

⊥2
2 ,ΘC⊥1

2

}
. (4.27)

Let us examine the selection rules based on the single-ion calculations. The total mag-
netization and total polarization operators are defined in Eq. (4.5). We express them in
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field-fixed coordinates and decompose them into even (M0) and odd (Mπ) parts based on
the unitary symmetry element {C‖2 |[1

2
00]}. To do this we need the transformation properties

of the magnetization components under this symmetry

{C‖2 |[
1

2
00]} :

 M
‖
A

M⊥1
A

M⊥2
A

→
 M

‖
B

−M⊥1
B

−M⊥2
B

 and

 M
‖
B

M⊥1
B

M⊥2
B

→
 M

‖
A

−M⊥1
A

−M⊥2
A

 , (4.28)

and we do the same to the polarization operators. The even and odd parts can then be
expressed as

M0 =
1

2

(
M + {C‖2 |[

1

2
00]}M

)
, (4.29)

Mπ =
1

2

(
M− {C‖2 |[

1

2
00]}M

)
. (4.30)

This way the total magnetization becomes M = M0 + Mπ, and we can do the same
decomposition for the polarization operators.

The effect of the time-reversed operation {ΘC⊥2
2 |[000]} on the spin and polarization

components reads

{ΘC⊥2
2 |[000]} :

 M
‖
A

M⊥1
A

M⊥2
A

→
 M

‖
A

M⊥1
A

−M⊥2
A

 and

 P
‖
A

P⊥1
A

P⊥2
A

→
 −P ‖A
−P⊥1

A

P⊥2
A

 , (4.31)

and similarly on sublattice B.

Selection rules for the evenM0 and P0 components

Using the decomposition (4.29) the even part of M becomes

M
‖
0 = M

‖
A +M

‖
B , (4.32a)

M⊥
0 = 0 , (4.32b)

where ⊥= ⊥1,⊥2. Repeating the above procedure for the polarization results

P
‖
0 = sin 2κ

∑
j

(−1)jP
‖
j,polar − cos 2κ

∑
j

P
‖
j,chiral , (4.33a)

P⊥0 = 0 , (4.33b)

where the index j runs over all the sites being an even integer on A and an odd integer
on the B sublattice; P ‖j,chiral is defined by Eq. (4.24a) and P ‖j,polar by Eq. (4.25a), with the
corresponding spin operators at site j. The light does not interact with the system in the
Faraday geometry in the even channel because P⊥0 = M⊥

0 = 0.
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Selection rules for the oddMπ and Pπ components

Using the odd representation (4.30) for Mπ and similarly for Pπ, and following the steps
we used to obtain the even components above, the corresponding magnetization and polar-
ization components are

M‖
π = 0 , (4.34a)

M⊥
π = M⊥

A −M⊥
B (4.34b)

and

P ‖π = 0 , (4.35a)

P⊥π = sin 2κ
∑
j

(−1)jP⊥j,polar − cos 2κ
∑
j

P⊥j,chiral , (4.35b)

where ⊥= ⊥1,⊥2. Due to the nonvanishing perpendicular components {M⊥1
π , P⊥2

π } and
{M⊥2

π , P⊥1
π } a finite ME susceptibility and NDD appears in the Faraday geometry for the

odd channel.
Now we analyze the effect of the time-reversed operation {ΘC⊥2

2 |[000]} (4.31). Just
like for the single-ion, the M⊥1

π and P⊥2
π belong to the same irrep, as well as the M⊥2

π and
P⊥1
π . The matrix elements are therefore real or pure imaginary, and the products of the

magnetization and polarization matrix elements in the ME susceptibility are real.
Although the symmetry classification obtained above did not consider the DM inter-

action, it describes the selection rules obtained from the exact diagonalization. This is
because the DM interaction is compatible with the D2 (C2) = 22′2′ magnetic point group
considered above. In the next subsection we incorporate the effects of the interactions in
first order of perturbation theory.

4.8.2 Perturbative effects of the exchange coupling
We have not considered the effect of exchange interactions in the Hamiltonian (4.1) yet. In
what follows we start from the single-ion limit J = Jz = Dz = 0 in Eq. (4.1) considered
so far, and include effects of the interactions in the first order of perturbation theory. This
process will result in a tight-binding-like model. We decompose the Hamiltonian (4.1) as

H = H0 +H′, (4.36)

whereH0 is just the sum of the already solved on-site terms (see Eq. (4.15) and below) and
H′ is interaction part we treat perturbatively (one can remember that the anisotropy is seven
times stronger than the strongest exchange, and this strongest exchange is already reached
by a tiny field of 1.5 T).

Neglecting interactions the ground state ofH0 is

|GS〉 =
∏
j

|ψ(−i)
1 (j)〉 , (4.37)
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where j runs over both the A and B sublattice sites. We define the local single-ion excitation
at site l as

|Ψ2(l)〉 = |ψ(+i)
2 (l)〉

∏
j 6=l

|ψ(−i)
1 (j)〉 . (4.38)

For the local wavefunctions |ψ(±i)
α (l)〉 see Eq. (4.21). We can see that all the sites are

in the lowest energy state with energy ε1, except site l that is in the first excited state 2
with excitation energy ε2. We have totally neglected higher energy states or multiple-site
excitations. Denoting the number of (all) sites byN , the noninteracting ground state energy
becomes E0

1 = Nε1 and the excited states |Ψ2(l)〉 have energies E0
2 = (N − 1)ε1 + ε2

and are N -fold degenerate. To see how the above degeneracy is lifted we do a first order
degenerate perturbation calculation in H′. We diagonalize the perturbing matrix H′ on the
subspace spanned by the single-site excitations |Ψ2(l)〉

H′l′l = 〈Ψ2(l′)|H′ |Ψ2(l)〉 . (4.39)

The matrix H′l′l describes a local excitation hopping with equal amplitudes in different
directions16. Since the problem is translationally invariant it can be solved by Fourier
transform.

Here we have translation invariance for the original unit cell containing two Co ions,
with primitive lattice translations a1 = (1, 1) and a2 = (1,−1) in the (x, y) coordinate
system (see Fig. 4.1). The two ions in the unit cell lead to two branches of excitations in the
BZ defined by reciprocal lattice vectors b1 = π(1, 1) and b2 = π(1,−1), corresponding
to the above translations. The spin Hamiltonian does not know anything about the two
orientations of the tetrahedra, so the on-site energies are the same for the A and B sites.
The Hamiltonian reads in Fourier space

Htb(k) = ε

(
1 0
0 1

)
+ tAB

(
0 f ∗(k)

f(k) 0

)
, (4.40)

with k ∈ BZ.
The tight-binding parameters can be inferred from Eq. (4.39):

EGS = Nε1 + 2Nb1,1, (4.41a)
E2 = (N − 1)ε1 + ε2 + (2N − 4)b1,1 + 4b1,2, (4.41b)

ε = E2 − EGS = ε2 − ε1 + 4(b1,2 − b1,1), (4.41c)

16Our cumbersome notation hides that this is nothing more than a simple tight-binding model. Let us forget
for a moment that we have a two-ion unit cell, and consider a simple square lattice. The only information
contained in Eq. (4.38) is that we have an excitation at site l, and we denote it as |l〉. This excitation cannot
do much (since we have restricted ourselves to the subspace of single-site excitations): It can sit in its site
having some energy ε or hop to the neighboring sites with an amplitude tl′l, which we assume to be real. This
results the Hamiltonian

Htb = ε
∑
l

|l〉 〈l|+
∑
l′l

tl′l |l′〉 〈l| ,

where the model parameters can be inferred from the original spin Hamiltonian H. The on-site energy is
just the energy of the local excitation ε = ε2 − ε1, and from Eq. (4.39) the energy gain associated with the
hopping is tl′l = H′l′l.
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whereN is the number of Co-sites in the crystal, b1,1 stands for a bond when both endpoints
are in state 1, and b1,2 is the strength for a bond when one endpoint is in state 1 and the
other in state 2. ε is the diagonal energy, the difference between the ground state energy
EGS and the excitation energyE2 where the state of one site is flipped from 1 to 2, changing
four bonds from b1,1 to b1,2. tAB is the hopping amplitude of the state 2 from one site to its
neighboring one. The diagonal matrix elements from the spin model Eq. (4.39) are

b1,1 = J
(〈
ψA1
∣∣Sx ∣∣ψA1 〉 〈ψB1 ∣∣Sx ∣∣ψB1 〉+

〈
ψA1
∣∣Sy ∣∣ψA1 〉 〈ψB1 ∣∣Sy ∣∣ψB1 〉)+

Jz
〈
ψA1
∣∣Sz ∣∣ψA1 〉 〈ψB1 ∣∣Sz ∣∣ψB1 〉+ DM terms, (4.42a)

b1,2 = J
(〈
ψA1
∣∣Sx ∣∣ψA1 〉 〈ψB2 ∣∣Sx ∣∣ψB2 〉+

〈
ψA1
∣∣Sy ∣∣ψA1 〉 〈ψB2 ∣∣Sy ∣∣ψB2 〉)+

Jz
〈
ψA1
∣∣Sz ∣∣ψA1 〉 〈ψB2 ∣∣Sz ∣∣ψB2 〉+ DM terms, (4.42b)

and the off-diagonal matrix elements are

tAB = J
(〈
ψA2
∣∣Sx ∣∣ψA1 〉 〈ψB1 ∣∣Sx ∣∣ψB2 〉+

〈
ψA2
∣∣Sy ∣∣ψA1 〉 〈ψB1 ∣∣Sy ∣∣ψB2 〉)+

Jz
〈
ψA2
∣∣Sz ∣∣ψA1 〉 〈ψB1 ∣∣Sz ∣∣ψB2 〉+ DM terms, (4.43)

and we will neglect the Dzyaloshinskii-Moriya part “DM terms”. Here we use a notation
for the normalized eigenfunctions (4.21a) and (4.21b) where the site indices A and B are
introduced, but we suppressed the C‖2 quantum numbers (±i). One has to be careful, in
the above equations field-fixed operators have to be used, i.e. Sx → S‖, Sy → S⊥1, and
Sz → S⊥2. The function f(k) in Eq. (4.40) reads

f(k) = 1 + eik·a1 + eik·a2 + eik·(a1+a2). (4.44)

The eigenenergies and eigenvectors of (4.40) read

ω1→2
± (k) = ε± tAB |f(k)| , (4.45)

v1→2
± (k) = (±

√
f ∗(k),

√
f(k)), (4.46)

and in the midpoint k = 0 of the crystallographic BZ the function f(0) = 4 and ω1→2
± (0) =

ε± 4tAB.
Computing the quantities in Eqs. (4.41) and (4.42) with the wavefunctions (4.21) is

straightforward but tiresome. Here we give the excitation energies in the limiting cases of
strong field and strong single-ion anisotropy. We substitute k = 0 in Eq. (4.46), and we
denote ω1→2

+ (0) by ω1→2
π and ω1→2

− (0) by ω1→2
0 referring to the odd and even channels.

We can Taylor expand in Λ/h in the strong field limit h � Λ � J, Jz (we set Dz = 0
in what follows). From the expanded spin operator components given in Eqs. (H.5) one can
infer the tight-binding parameters in Eqs. (4.41) and (4.42) as ε = h+Λ−6J , b1,1 = 9J/4,
b1,2 = 3J/4, and tAB = 3(J + Jz)/4. The excitation energies are

ω1→2
0 = h+ Λ− 9J − 3Jz , (4.47a)
ω1→2
π = h+ Λ− 3J + 3Jz . (4.47b)

Perturbation theory works well for the measurements in the high-field limit. In Subsection
4.8.1 we have seen that only the π modes absorb in Faraday geometry. In ED we also have
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observed the strongest absorption for the ω1→2
π excitation. This is not surprising: This is the

single magnon mode in the weak anisotropy limit Λ� J, Jz. In the absence of anisotropy
Λ = 0, it is just the paramagnetic mode ω1→2

π = h, as can be seen in Eq. (4.47b). It is
worth to compare this to the single-ion result: From Eqs. (H.4) (a)-(b) the first excitation
energy is ω1→2 = ε2 − ε1 = h + Λ + O(Λ2/h). The difference between the perturbative
and single-ion results is a mere 3(J − Jz) (this vanishes for isotropic exchange J = Jz,
and in the experiments is also small). This also explains why the single-ion model works
so well for large fields, h� Λ, J, Jz (see the experimental points in Fig. 4.5(a)).

We can also expand in h/Λ in the strong anisotropy limit Λ � h, J, Jz. From the
expanded spin operator components given in H.2 one can infer the tight-binding parameters
in Eqs. (4.41) and (4.42) as ε = 2h− 8J , b1,1 = +J , b1,2 = −J , and tAB = J + (1/4)Jz.
And the excitation energies are

ω1→2
0 = 2h− 12J − Jz , (4.48a)
ω1→2
π = 2h− 4J + Jz . (4.48b)

The single-ion result Eqs. (H.1)(a)-(b) shows an excitation energy of ω1→2 = ε2 − ε1 =
2h+O(h2/Λ) to be compared to ω1→2

π . The difference between the perturbative and single-
ion results is now larger −4J + Jz, but still moderate (compared to Λ or the fields h used
in the experiment).

4.9 Summary

In this chapter we developed a theory of the non-reciprocal directional dichroism in the
high temperature (paramagnetic) phase of the multiferroic Sr2CoSi2O7. Magneto-chiral
dichroism was observed by our experimental collaborators in this material for the excita-
tions of the S = 3/2 spin of the Co2+ ion up to 100K –an order of magnitude larger than the
Néel temperature TN = 7 K. The temperature dependence of the resonance positions, their
intensities, and the sign of the dichroism for the different spin modes are well described by
exact diagonalization on a small 4-site cluster of S = 3/2 spins.

To elucidate the physics of the system we analyized a simple model consisting of one
S = 3/2 spin in a magnetic field and a strong easy-plane anisotropy via group theory.
Oxygen ions coordinate the spin tetrahedrally and give rise to an electric polarization P
expressed by spin quadrupoles. Both the magnetization M and polarization P couple to
the THz radiation. Finite magnetoelectric susceptibility arises if the components of M and
P transform the same way under the combined symmetry of the tetrahedron and the spin
model containing the external field.

Our most interesting finding turned out to be that the time-reversed (antiunitary) ele-
ments of the magnetic symmetry group can constrain the matrix elements of M and P to
real or purely imaginary values, having a profound effect on the magnetolectric suscepti-
bility. Fig. 4.5 shows that in high fields and low temperatures, when the gap between the
two lowest levels ε2 − ε1 ≤ kBT , the magnetic dipolar transition from the ground state
|1〉 → |2〉 dominates the NDD spectrum.
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The two inequivalent Co2+ ions in the centers of the alternatingly oriented tetrahedra in
the unit cell interact with (slightly anisotropic) Heisenberg exchanges. Incorporating these
interactions perturbatively, and considering the two-ion unit cell helped us refine the single-
ion picture, giving a better agreement with the experiments and the exact diagonalization.



Chapter 5

Thesis statements

Here I enumerate my major results.

1. Using the Luttinger-Tisza method I constructed the ground state (zero temperature)
phase diagram of the classical isotropic Heisenberg model up to third neighbor inter-
actions of arbitrary sign on the face-centered cubic lattice. I gave a detailed analysis
of the commensurate phases: I showed that multiple-Q orders lead to non-collinear
or even non-coplanar orders, and in the case of the Type III antiferromagnet, a chiral
ground state. I demonstrated that the introduction of the third neighbor interaction
leads to a qualitatively new feature of the model: Incommensurate spin spirals with
propagation vectors along special directions in the Brillouin zone appear [102].

2. I showed that at triple points and special phase boundaries of the phase diagram of the
third neighbor classical isotropic Heisenberg model extended ground state manifolds
appear in Fourier space: Three one dimensional manifolds and one two dimensional
manifold. At these points I expressed the Hamiltonian as a sum of complete squares
of spins over appropriate finite motifs tessellating the lattice. Thereby I explicitly
constructed large classes of ground states and explained the degeneracy of the man-
ifolds. These families of exact ground state configurations consist of, among others,
frustratingly interacting ferromagnetic chains and randomly stacked ferro- or antifer-
romagnetic planes [102].

3. I gave a recipe for constructing classical isotropic Heisenberg models on Bravais
lattices possessing codimension-one ground state manifolds (i.e. curves in two, and
spin spiral surfaces in three dimensions). The models are either fine-tuned or have a
few free parameters: In the latter case I showed that varying the parameters allows
for topological (Lifshitz) transitions. For the face-centered and simple cubic lattices
I calculated the low temperature free energy and demonstrated that the thermal or
quantum fluctuations select commensurate phases on the spin spiral surfaces by the
order by disorder mechanism [84].

4. I constructed a one-spin model that describes the non-reciprocal directional dichro-
ism of the magnetoelectric multiferroic åkermanite crystal Sr2CoSi2O7 in its para-
magnetic phase under strong external fields. The model takes into account the ex-
ternal field, the strong in-plane anisotropy, and the electric polarization induced by
the metal-ligand hybridization mechanism. Despite its simplicity the model gives
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the field dependence of the excitation energy correctly. Based on a group theoreti-
cal analysis I derived the magnetoelectric selection rules. Promoting the single-ion
model to a lattice and treating interactions perturbatively I also explained the success
of the one-ion approach in the paramagnetic phase [145].

5. Ordinary selection rules guarantee that matrix elements of perturbing operators of a
symmetric Hamiltonian vanish, provided these operators transform according to cer-
tain irreducible representations of the group of the Hamiltonian. I generalized this
concept and showed that (in magnetic models of arbitrary spin length and arbitrary
magnetic symmetry) the antiunitary symmetry elements of the group of the Hamil-
tonian connect the real and imaginary parts of matrix elements of operators. As a
special case: If a two-fold rotation together with time reversal is a symmetry of the
Hamiltonian, and the perturbing operators are even (odd) under this symmetry their
matrix elements are real (pure imaginary). Applying this result to the magnetiza-
tion and polarization operators in the case of Sr2CoSi2O7 led to new selection rules
as confirmed by the magnetooptical absorption measurements in the paramagnetic
[145] and ordered [146] phases.
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Appendix A

Fourier transform conventions and rela-
tions

In this Appendix we collect our Fourier transform conventions, derive the Fourier form of
a spin Hamiltonian and some useful relations between real and Fourier space.

We adopt the following convention for the Fourier transform of the spins on a lattice:

Sq =
1

N

∑
i

Sie
iq·Ri , Si =

∑
q∈BZ

Sqe
−iq·Ri , (A.1)

and in the following sums i, j run through the unit cells of the crystal, q,q′ run over the
Brillouin zone (BZ), and N is the number of unit cells, taken to be very large. If we chose
1/
√
N in both formulas we would have a unitary transform. We will extensively use the

following form of the lattice sum [7]:∑
i

ei(q−q
′)·Ri = Nδq,q′ , (A.2)

where we have restricted ourselves to the first BZ. Of course a similar formula works the
other way around:

∑
q e

iq·(Ri−Rj) = Nδij .
A basic property of the complex amplitudes is

Sq = S∗−q, (A.3)

which is the consequence of the reality of the real space spins Si = S∗i , and the definition
(A.1). The global/average spin length constraint in Fourier space reads:∑

i

|Si|2 = N ⇔
∑
q∈BZ

|Sq|2 = 1, (A.4)

which is just the manifestation of the isometric property of the Fourier transform (up to the
factor N ). To prove it we substitute the definition (A.1) in (A.4) and use the lattice sum
(A.2) and the reality condition (A.3):

N =
∑
i

|Si|2 =
∑
i

∑
q,q′

Sq·Sq′e
−i(q+q′)·Ri = N

∑
q,q′

Sq·Sq′δq,−q′ = N
∑
q

|Sq|2 , (A.5)

the other direction works similarly.
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The Heisenberg Hamiltonian is given as

H =
∑
〈i,j〉

JijSi · Sj =
1

2

∑
i,δ

Jδ Si · Si+δ , (A.6)

where with 〈i, j〉 we indicate that we sum each bond once, δ = Rj − Ri is a lattice
separation vector. We have used translational invariance Jij ≡ J(Rj − Ri) ≡ Jδ, and
the facor 1/2 compensates for the double counting of the bonds. In order to write the
Hamiltonian in Fourier space we define the Fourier transform of the exchange as

J(q) =
1

2

∑
δ

Jδe
−iq·δ , (A.7)

and we will prove
H = N

∑
q

J(q) Sq · S−q. (A.8)

We substitute the definition (A.1) in (A.6), apply the definition of (A.7) and use the lattice
sum (A.2):

H =
1

2

∑
i,δ

Jδ Si · Si+δ =
1

2

∑
i,δ

∑
q,q′

Jδ Sq · Sq′e
−i(q+q′)·Rie−iq

′·δ = (A.9)

=
∑
q,q′

Sq · Sq′

∑
i

e−i(q+q′)·Ri
1

2

∑
δ

Jδ e
−iq′·δ = (A.10)

= N
∑
q,q′

J(q′) Sq · Sq′δq,−q′ = N
∑
q

J(q) Sq · S−q , (A.11)

where in the last step we made a substitution in the dummy variables q′ → q.
Next we examine the consequences of the local length constraints in Fourier space:

|Si|2 = 1, ∀i ⇒
∑
q

Sq · Sq′−q = δq′,0. (A.12)

In order to prove the implication above we substitute the Fourier decomposition Eq. (A.1)
in the local length constraints |Si|2 = 1:∑

q,q′′

Sq · Sq′′ e
−i(q+q′′)·Ri = |Si|2 = 1 ∀i, (A.13)

this is a set of N equations. We perform a Fourier transform by multiplying the i-th equa-
tion by eiq′·Ri and sum over i:∑

i

∑
q,q′′

Sq · Sq′′ e
−i(q+q′′−q′)·Ri =

∑
i

eiq
′·Ri . (A.14)

Performing the sums with the aid of (A.2) yields∑
q

Sq · Sq′−q = δq′,0, (A.15)

which is true for every configuration, even for the ones onMGS, resulting Eqs. (2.13–2.14).
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Phase boundaries of the J1-J2-J3 model

We give the analytical form of the phase boundaries and the type of phase transitions of the
J1 − J2 − J3 Heisenberg model on the face-centered cubic lattice in Table B.1 below.

Table B.1: Equations of phase boundaries between the phases (shown in Fig. 2.2) with
ordering vectors QA and QB (see Fig. 2.3) are presented in the third column, with the
order of the corresponding transition in the fourth column. The incommensurate ordering
vectors are optimized according to Eqs. (2.44–2.46).

QA QB ε (QA) = ε (QB) Order
Γ (0, 0, 0) ∆ (q∆, 0, 0) J1 + J2 + 6J3 = 0 2nd
Γ (0, 0, 0) Λ (qΛ, qΛ, qΛ) J1 + J2 + 6J3 = 0 2nd
X (1, 0, 0) ∆ (q∆, 0, 0) J1 − J2 − 2J3 = 0 2nd
L
(

1
2
, 1

2
, 1

2

)
Λ (qΛ, qΛ, qΛ) J1 + J2 − 2J3 = 0 2nd

Γ (0, 0, 0) X (1, 0, 0) J1 + 2J3 = 0 1st
Γ (0, 0, 0) W

(
1, 1

2
, 0
)

4J1 + J2 + 4J3 = 0 1st
Γ (0, 0, 0) L

(
1
2
, 1

2
, 1

2

)
J1 + J2 + 2J3 = 0 1st

X (1, 0, 0) L
(

1
2
, 1

2
, 1

2

)
J1 − 3J2 + 2J3 = 0 1st

∆ (q∆, 0, 0) L
(

1
2
, 1

2
, 1

2

)
J2

1 − J1J2 − 2J2
2 − 6J2J3 + 12J2

3 = 0 1st
∆ (q∆, 0, 0) Λ (qΛ, qΛ, qΛ) 3J2 − 4J3 = 0 1st
Γ (0, 0, 0) Σ (qΣ, qΣ, 0) 19J1 + 6J2 + 46J3 + 8

√
6J2

1 + 5J1J2 + 2J2
2 = 0 1st

X (1, 0, 0) Σ (qΣ, qΣ, 0) −11J1 + 10J2 − 14J3 + 8
√

2J2
1 − 3J1J2 + 2J2

2 = 0 1st
L
(

1
2
, 1

2
, 1

2

)
Σ (qΣ, qΣ, 0) ε (QL) = ε (QΣ)1 1st

W
(
1, 1

2
, 0
)

Σ (qΣ, qΣ, 0) ε (QW ) = ε (QΣ)2 1st

1The equation for the phase boundary ε (QL) = ε (QΣ) is:

J4
1 + 3J3

1J2 − 2J2
1J

2
2 − 12J1J

3
2 − 8J4

2 − 64J3
1J3 + 58J2

1J2J3 + 104J1J
2
2J3 − 24J3

2J3

+ 376J2
1J

2
3 − 28J1J2J

2
3 − 728J2

2J
2
3 − 768J1J

3
3 − 264J2J

3
3 + 528J4

3 = 0.

2The equation for the phase boundary ε (QW ) = ε (QΣ) is:

(J2−4J3)(J3
1 +2J2

1J2−4J1J
2
2−8J3

2−50J2
1J3+120J1J2J3−72J2

2J3+172J1J
2
3−232J2J

2
3−152J3

3 ) = 0.



Appendix C

Some notions of chirality for non-coplanar
states

We have seen in Section 2.5 that a commensurate ordering can be non-collinear or even
non-coplanar if we choose multiple arms of the stars of the ordering vector on the fcc lat-
tice. Such non-coplanar (or triple-Q) states can be constructed e.g. by choosing all the
ξ, η and ζ finite in Eq. (2.21). We can also make the analogous choice in Eq. (2.28) or
Eq. (2.41). Unfortunately non-coplanar states are rarely observed in isotropic systems,
since order by disorder (either quantum or thermal) mechanisms favor collinear (or copla-
nar) orderings [17]. Nonetheless, examples of non-collinear or non-coplanar orders can be
found in extended models including ring-exchanges on Bravais lattices, e.g. the tetrahedral
phase on the triangular lattice [148, 149, 150]. The presence of longer range exchanges on
non-Bravais lattices can also result non-coplanar orders, e.g the cuboctahedral orders on
the kagome lattice [151, 152]. Disorder mechanisms can select non-collinear orders [18],
so the fate of these states depends on further details.

Such non-coplanar states can show chirality: The ordering can manifest itself in either
a left handed or a right handed pattern. In the following we recall some notions of chirality
scattered in the literature, and we analyze the commensurate and non-coplanar orders found
in Section 2.5 according to them.

C.1 Scalar chirality
A non-coplanar magnetic order has a finite scalar chirality [99, 153, 154, 115], which we
define on an oriented triangular plaquette with vertices ABC as

χABC = SA · (SB × SC), (C.1)

i.e. as the signed volume of the parallelepiped spanned by the three spins sitting on these
vertices. By this definition the finite value of the scalar chirality on a triangular plaquette is
equivalent to a non-coplanar spin configuration. The faces of elementary octahedra on the
fcc lattice define the triangular plaquettes and the octahedra being edge-sharing no triangle
is shared between two octahedra (see Fig. 2.1(d)), therefore we can use the right hand rule
for the outward pointing normals on the faces of the octahedra to define the orientation
ABC of the vertices. All the commensurate phases found in Section 2.5 can be chiral in
the above sense if we use enough arms of the star of the ordering vector, see Eq. (2.21),
Eq. (2.28) , and Eq. (2.41).
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C.1.1 The X(1, 0, 0) phase, Type I
If we choose all the ξ, η, and ζ in Eq. (2.23) finite, then the resulting Type I order is
non-coplanar and it is depicted in Fig. 2.4(a). The scalar chirality χ is then finite with
|χ| = |4ξηζ| on all faces of every tetrahedron, and the sign alternates on the two types of
tetrahedra.

C.1.2 The L
(

1
2 ,

1
2 ,

1
2

)
phase, Type II

In this phase the spins on antipodal points of elementary octahedra point in opposite direc-
tions as depicted in Fig. 2.4(b).Consequently the scalar chirality is equal on all six faces
of a chosen octahedron. Having four types of octahedra we have four different values of
scalar chiralities in the lattice for a non-coplanar configuration.

C.1.3 The W
(
1, 1

2 , 0
)

phase, Type III
We evaluated the scalar chirality χ directly in the triple-Q phase (when none of the ξ, η,
ζ is zero in Eq. (2.41)) and show the result in Fig. C.1. The chirality equals on the faces
of every elementary tetrahedron, but we have three different types of tetrahedra: On one
fourth of the tetrahedra the chiralities alternate between the χ = 4ξηζ and χ = −4ξηζ and
on the remaining tetrahedra the chirality is zero. The chirality changes sign when translated
by the (±1, 0, 0), (0,±1, 0), and (0, 0,±1) vectors, and it is invariant when translated by
(1, 1, 0) or equivalent vectors.

C.2 Chiral enantiomers

Another notion of chirality closely related to handedness is the following [99]: For a given
spin pattern apply a mirror plane to the configuration that is a symmetry of the underlying
lattice. If the resulting spin configuration cannot be transformed back to the original spin
pattern by any proper space group operation to the original one, we call the configuration
chiral.1 This notion of chirality is the direct generalization of the concept of chirality
introduced for molecules: A molecule is chiral if it cannot be rotated to its mirror image.
These pairs of reflection-related partners are called enantiomers, or enantiomorphic/chiral
partners. In the following we elaborate the above concept and analyze the commensurate
orders found on the fcc lattice according to it.

A space group operation (either proper or improper) is denoted by gδ ≡ {G|δ} and
acts on a lattice point Ri as:

R′i = gδRi ≡ {G|δ}Ri = G ·Ri + δ, (C.2)

1About terminology: In three-dimensional space a rotation is dubbed proper (an element of SO(3)) if it
does not change the orientation of a basis. Point group operations that do not preserve orientation are either
called rotoreflections or improper rotations, this includes the inversion I : Ri → −Ri, the orthogonal group
is the direct productO(3) = SO(3)×{E, I}, withE being the identity. In other words improper rotations are
the elements ofO(3)\SO(3). We also note that every Bravais lattice is inversion symmetric by construction.
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Figure C.1: Tetrahedra with triangular faces having nonvanishing scalar chirality χ in the
triple-QW (1, 1

2
, 0) state are shown within a 32 site cubic cell defined by the lattice vectors

(2, 0, 0), (0, 2, 0), and (0, 0, 2) on the fcc lattice. The red and green color depict triangles
with equal size but opposite signs of χ. The lattice of the corner-sharing alternating red and
green tetrahedra corresponds to two interpenetrating pyrochlore lattices, the two pyrochlore
lattices are shown by solid and dashed lines.

where G is the O(3) matrix of a point group element followed by a lattice translation δ.
On a spin –since it is an axial vector– the point group element acts as S′ = GA · S, where
GA = (det G)G is the axial-vector representative of the group element g (it agrees with
G for proper rotations and it is −G for improper rotations). The inverse of a space group
operation is g−1

δ = {G−1| − G−1 · δ}. The transformation rule for a spin configuration
reads:

S′Ri
= {G|δ}SRi

= GA · Sg−1
δ Ri

. (C.3)

This is the so-called active view of a transformation: We grab the spin pattern together with
the lattice points and transform them as a rigid body.

Any improper rotation is the product of a proper rotation and inversion, e.g. a mirror
plane with normal n̂ is a composition of a twofold rotation around the axis n̂ and inver-
sion. And inversion acts in spin space as the identity, I : S → S. Every Bravais-lattice
is inversion-symmetric, hence instead of a mirror plane we can use inversion to define chi-
rality. This definition has a practical advantage: The spins are invariant under inversion.
Now we can formulate chirality for spin patterns defined on Bravais-lattices: Let us apply
inversion to a spin pattern SRi

:

S′Ri
= {I|0}SRi

= S−Ri
. (C.4)

If there is no proper space group element {G|δ}, with G ∈ SO(3), that can transform
back the spin pattern to the original one in Eq. (C.4) ,

{G|δ}S′Ri
6= SRi

, (C.5)
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then we call the pattern chiral. Here we have considered the case when the mirror plane
contains a lattice point, i.e. the inversion used instead of the mirror plane is centered at that
point, but for other cases –when for example the mirror plane is the perpendicular bisector
plane of a bond (and consequently the inversion center is the midpoint of the bond)– the
above discussion is still valid with the proper modifications.

Now we discuss if the non-coplanar but commensurate spin configurations discussed
in Section 2.5 are chiral in the above sense or not. The spin pattern of the X(1, 0, 0) and
L(1

2
, 1

2
, 1

2
) phases remains intact when inverted about a lattice site (see Fig. 2.4(a) and (b)).

Therefore neither of these states is chiral in the sense defined above.
But the case of the W

(
1, 1

2
, 0
)

considered in Subsection 2.5.4 phase is different. In
the original paper (see Section D and Appendix C of [102]) we have analyzed the effect
of translations and inversion on the W

(
1, 1

2
, 0
)

configurations and found that there are
two disjoint sets of ground states related by inversion: i.e. we have chiral partners (or
enentiomorphic pairs).

C.3 Time-reversal and chirality
In Refs. [151, 155] yet another definition of chirality is given: If time reversal (named
“spin inversion” in Refs. [151, 155]) applied to a spin configuration cannot be changed
back using a proper SO(3) rotation acting on the spins, then the pattern is called chiral (we
will use this notion of chirality below).

By this definition any non-coplanar and commensurate X(1, 0, 0), L(1
2
, 1

2
, 1

2
),

and W
(
1, 1

2
, 0
)

spin configurations are chiral. If we allow translations besides proper rota-
tions, the L(1

2
, 1

2
, 1

2
) and W

(
1, 1

2
, 0
)

orderings are not chiral, since they are invariant under
time reversal followed by a translation. The cuboc orders considered in Refs. [151, 152] are
chiral by means of the time-reversal symmetry considered here [155], and are also chiral
by the definition given in Subsection C.2, since time reversal and spatial inversion about
the center of a hexagon is equivalent in this case: Both of them flip all the spins and this
flipping cannot be changed back by any proper space group operation.



Appendix D

Tables for the affine construction in two
and three dimensions

Here we give the allowed δ∗ vectors needed for the affine construction described in Chap-
ter 3 for all the Bravais lattices in two (Table D.1) and three dimensions (Table D.2). We
used the tables of the Bilbao Crystallographic Server[133].

Table D.1: Allowed δ∗ vectors for the affine construction described in Chapter 3 for all
the two dimensional Bravais lattices. The first column gives the lattice system, the second
one the centering of the Bravais lattice, the third one the symbol of the space group of
the Bravais lattice, the fourth one gives its number, the fifth one the point group of the
lattice (which is isomorphic to the point group of all the allowed δ∗’s), the sixth column
gives the allowed δ∗’s (in primitive lattice vector units, for details of the coordinate system
consult[133]), and the last column gives the multiplicity of the δ∗’s (if they are viewed as
Wyckoff positions).

Lattice System Bravais Lattice Symbol No. G Allowed δ∗-s Mult.
Oblique p2 2 C2 All four points valid. 1

Rectangular
Simple p2mm 6

D2
All four points valid. 1

Centered c2mm 9 0,
(
0, 1

2

)
2

Square p4mm 11 D4 0,
(

1
2
, 1

2

)
1

Hexagonal p6mm 17 D6 0 1



114
A

ppendix
D

.
Tablesfor

the
affine

construction
in

tw
o

and
three

dim
ensions

Table D.2: Allowed δ∗ vectors for the affine construction described in Chapter 3 for all the three dimensional Bravais lattices. The
first column gives the lattice system, the second one the centering of the Bravais lattice, the third one the symbol of the space group of
the Bravais lattice, the fourth one gives its number, the fifth one the point group of the lattice (which is isomorphic to the point group
of all the allowed δ∗’s), the sixth column gives the allowed δ∗’s (in primitive lattice vector units, for details of the coordinate system
consult[133]), and the last column gives the multiplicity of the δ∗’s (if they are viewed as Wyckoff positions).

Lattice System Bravais Lattice Symbol No. G Allowed δ∗-s Multiplicity

Triclinic P1 2 Ci All eight points valid. 1

Monoclinic
Simple P2/m 10

C2h
All eight points valid. 1

Base-centered C2/m 12 0,
(
0, 1

2
, 0
)
,
(
0, 0, 1

2

)
,
(
0, 1

2
, 1

2

)
2

Orthorhombic

Simple Pmmm 47

D2h

All eight points valid. 1
Base-centered Cmmm 65 0,

(
1
2
, 0, 0

)
,
(

1
2
, 0, 1

2

)
,
(
0, 0, 1

2

)
2

Face-centered Fmmm 69 0,
(
0, 0, 1

2

)
4

Body-centered Immm 71 0,
(
0, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 0
)
,
(

1
2
, 0, 1

2

)
2

Tetragonal
Simple P4/mmm 123

D4h
0,
(
0, 0, 1

2

)
,
(

1
2
, 1

2
, 0
)
,
(

1
2
, 1

2
, 1

2

)
1

Body-centered I4/mmm 139 0,
(
0, 0, 1

2

)
2

Rhombohedral R3m 166 D3d 0,
(
0, 0, 1

2

)
3

Hexagonal P6/mmm 191 D6h 0,
(
0, 0, 1

2

)
1

Cubic
Simple Pm3m 221

Oh

0,
(

1
2
, 1

2
, 1

2

)
1

Face-centered Fm3m 225 0,
(

1
2
, 1

2
, 1

2

)
4

Body-centered Im3m 229 0 2



Appendix E

Low temperature free energy of spin spi-
rals

Here we wish to calculate the low temperature free energy of a fluctuating single spin
spiral to find the states selected by thermal fluctuations. We follow [20] and especially
its supplement here. Caveat: This appendix is very technical and formula heavy, and is
basically an expanded and more down-to-earth version of the above mentioned supplement.

We start with the Hamiltonian

H =
1

2

∑
i,j

Jij Si · Sj, (E.1)

and assume that it has a degenerate ground state manifold (denoted byMGS, and having
ground state energy E0 = J(Q), this quantity is constant on the manifold) consisting of spin
spirals of propagation vectors Q parametrizing the manifold. The free energy by definition
is

F(Q) = E0 − TS(Q), (E.2)

with temperature T (which we will assume to be small) and entropy S(Q), and the latter is
explicitly Q dependent, and the thermal order by disorder effect is driven by the difference
of entropies of different states. The above free energy can be calculated by

F = − 1

β
lnZ, (E.3)

where β = 1/T is the inverse temperature and Z is the partition sum defined by

Z =

∫ ∏
i

dΩie
−βH({Si}), (E.4)

and dΩi is the measure on the unit sphere of the i’th spin. In what follows we assume a
spiral ground state and calculate the fluctuations above that state.

The model being isotropic without loss of generality we assume the ground state spin
spiral lying in the xy-plane. We denote the ground state configuration by Si for a spiral
with ordering vector Q:

Si = (S
x

i , S
y

i , 0) = (cos (Q ·Ri) ,± sin (Q ·Ri) , 0), (E.5)
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and ± corresponds to the two chiralities, we will use the + sign in applications. We
parametrize the spin deviations from the ground state as

Si = Si + δSi = ρi + Si

√
1− ρ2

i , Si ⊥ ρi, (E.6)

where ρi and Si
√

1− ρ2
i describe the transverse and longitudinal fluctuations, respectively.

This parametrization automatically satisfies the spin-length constraint |Si|2=1 (it is impor-
tant to keep the exact length constraint at this point). Soon we will assume, that ρ2

i � 1 are
small, but at this point they are arbitrary points in the 3D unit ball: ρ2

i 6 1.
Momentarily we drop the site indices for simplicity. With real η and χ we can write ρ

as:
ρ = ẑη + (ẑ× S)χ = (−Syχ, Sxχ, η), (E.7)

with ẑ being the unit vector in the z-direction. Since ρ2 = η2 + χ2 6 1 the domain of the
parameters (η, χ) is the unit disk. With this parametrization we can describe the hemisphere
with ”north pole” at the tip of S. From this form it is seen that χ describes the in-plane
fluctuations and η the out-of plane ones. Small χ modes are the usual spin waves over the
given spiral but η-modes connect energetically equivalent but different ground state spirals.
Substituting Eq. (E.7) in Eq. (E.6) yields for the fluctuating spin (remember: ρ2 = η2 +χ2):

S = (S
x√

1− ρ2 − Syχ, Sy
√

1− ρ2 + S
x
χ, η). (E.8)

Finally, we need some integration in the partition sum: The measure on the unit sphere
with the new parameters is given by the following Jacobian

dΩ =

∣∣∣∣∂S

∂η
× ∂S

∂χ

∣∣∣∣ dηdχ =
(
1− ρ2

)− 1
2 dηdχ. (E.9)

Now we turn to the calculation of the partition sum, so we reinsert the site indices:

Z =

∫ ∏
i

dηidχi

{(
1− ρ2

i

)− 1
2 e−βH({Si,ηi,χi})

}
, (E.10)

and we emphasize that the Hamiltonian is expressed in the new coordinates, and the inte-
grations are to be performed on the unit disks of ηiχi-planes.1 By putting the Jacobian to
the exponent we can cast the partition sum in the form

Z :=

∫ ∏
i

dηidχie
−S({Si,ηi,χi}), (E.11)

and in this context S is called the action, not to be confused with the entropy S or the spin
length S.2 The action reads:

S({Si, ηi, χi}) = βH({Si, ηi, χi}) +
1

2

∑
i

ln
(
1− ρ2

i

)
, (E.12)

1And to be totally precise, we should also include another parametrization (e.g. by flipping Si → −Si in
Eq. (E.6)) to describe the other hemisphere of the fluctuating spin, but we are interested in small fluctuations
so we do not bother.

2I am fully aware that this notation is unfortunate, but since all these “S”-s are standard I have no brighter
idea than using different fonts.
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where of course we have to substitute the new parameters Eq. (E.8) in the Hamiltonian
(E.1).

No we turn to the small fluctuation (low temperature) approximation, i.e. we assume
ρ2
i � 1, and we extend the integration domains to the whole ηiχi-planes. For small ρ

Taylor expansion leads to ln(1− ρ2) = −ρ2 + O(r3) in Eq. (E.12) and
√

1− ρ2 = 1 −
ρ2/2 + O(ρ3) in Eq. (E.8). Even if we stop at second order (the approximated action is
denoted by S2) in the variables ηi and χi the calculations are tedious, the result is:

S ≈ S2 =
β

2

∑
i,j

(
J̃ijηiηj +Wijχiχj

)
− 1

2

∑
j

(
η2
j + χ2

j

)
. (E.13)

Here J̃ij = Jij − J(Q)δij is the exchange matrix, with its smallest eigenvalue removed:
this makes it positive semidefinite (thereby stabilizing the Gaussian when exponentiated
in Eq. (E.11)), at the Hamiltonian level this is nothing more than a constant energy shift
with no physical consequences (and note, J(Q) is constant on the wholeMGS, so J̃ij is Q-
independent). Wij(Q) = J̃ij(Si · Sj), and this is where the ground state properties and the
Q-dependence enter the picture, see Eq. (E.5), and the last term comes from the Jacobian
of the change of measure. With the aid of Eq. (E.5) we can evaluate

Wδ(Q) = J̃δ(Si · Si+δ) = J̃δ cos(Q · δ) =
1

2
J̃δ
(
eiQ·δ + e−iQ·δ

)
, (E.14)

where as usual δ = Rj−Ri is a lattice separation vector, and the simplicity of this formula
is the consequence of the isotropy of the model, and the simplicity of a spiral ground state.

Now we substitute S2 in Eq. (E.11) and use that we are at very low temperature β � 1
and make a saddle-point approximation which basically removes the last term in Eq. (E.13):3

Z ≈
∫ ∏

i

dηidχie
−β

2

∑
i,j(J̃ijηiηj+Wijχiχj). (E.15)

Here we can use the formula for an N -dimensional Gaussian integral (the matrix A with
components Aij is positive definite, symmetric):∫

RN
dNx e−

1
2

∑
i,j Aijxixj = [det(A/2π)]−

1
2 . (E.16)

To calculate the free energy we substitute Eq. (E.15) as evaluated by Eq. (E.16) in Eq. (E.3)
and use the fact that (that is true under reasonable circumstances)4

ln det A = Tr ln A. (E.17)
3The saddle point approximation (or Laplace’s method), applied to our very simple case consists of the

following. We want to approximate the integral (here we show the method in one dimension for clarity): I =∫
R exp

{
−βJx2/2

}
g(x)dx, with J > 0, β � 1 and g being a healthy function, here g(x) = exp

{
+x2/2

}
.

Since β is large, the Gaussian exp
{
−βJx2/2

}
is very sharply peaked at the origin, so it picks up the largest

contribution from g(x) around the origin, so we can Taylor expand g(x) there. In our case we assume that the
lowest order approximation is good enough, g(x) ≈ g(x = 0) = g0 = 1, so I ≈ g0

∫
R exp

{
−βJx2/2

}
dx =∫

R exp
{
−βJx2/2

}
dx =

√
(2π)/(βJ), and in the last step we used the well known formula for Gaussian

integrals.
4For diagonalizable A this can easily be seen by noting that both the determinant and the trace is invariant

under a change of basis, and that the determinant is just the product of the eigenvalues, and the trace is the
sum of them.
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The Q-dependent part of the low temperature free energy becomes

F(Q) ≈ T
[
Tr ln

(
J̃/2πT

)
+ Tr ln (W(Q)/2πT )

]
, (E.18)

where we have typeset the matrices of J̃ij and Wij(Q) in boldface. The first term does not
discriminate between states on theMGS, but the second one does. Our last task is to eval-
uate the traces above: We diagonalize J̃ and W(Q) by Fourier transform and afterwards
the above traces simply become Brillouin-zone sums. We define the Fourier transforms
as usual (and of course it can be defined for any lattice translation invariant matrix Aδ the
same way, making it diagonal)

J̃(q) =
1

2

∑
δ

J̃δe
−iq·δ, and WQ(q) =

1

2

∑
δ

Wδ(Q)e−iq·δ, (E.19)

and traces in the free energy Eq. (E.18) can be evaluated as BZ-sums, e.g.

Tr ln J̃ =
∑
q∈BZ

ln J̃(q). (E.20)

To summarize: The final result for the free energy is:

F(Q) ≈ T

[∑
q∈BZ

ln
(
J̃(q)/2πT

)
+
∑
q∈BZ

ln (WQ(q)/2πT )

]
. (E.21)

This formula can further be manipulated to taste (see e.g. Eq. (3.20), where we cast it in
a form emphasizing the analogy between quantum and thermal selection mechanisms), but
to find the thermally chosen free energy it is enough to perform the BZ-sum (numerically)
in the second term of Eq. (E.21) with Q on theMGS, and find the Q with the minimal free
energy.
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Magnetooptical response

We have magnetoelectric cross-correlation effects when in a material external magnetic
field induces electric polarization and external electric field induces magnetization. As-
suming lineaar response the effects can be described by the magnetoelectric tensors defined
as:

Pµ = ε0

∑
ν=x,y,z

χeeµν Eν +

√
ε0

µ0

µ0

∑
ν=x,y,z

χemµν Hν , (F.1)

Mµ =
∑

ν=x,y,z

χmmµν Hν +

√
ε0

µ0

∑
ν=x,y,z

χmeµν Eν , (F.2)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability (remember c = 1/
√
ε0µ0

the speed of light) and µ, ν = x, y, z are Cartesian tensor indices. P and M are the electric
polarization and magnetization vectors, respectively, E and H are the electric and mag-
netic field vectors, respectively. χeeµν and χmmµν are the electric and magnetic susceptibilities,
respectively. χemµν and χmeµν are the magnetoelectric tensors that are not independent: The
following relations hold among them (a consequence of the Kubo formula [140]):

χmeµν =
[
χmeµν

]′
+ i
[
χmeµν

]′′
, (F.3)

χemµν =
[
χmeνµ

]′ − i [χmeνµ ]′′ , (F.4)

where
[
χmeµν

]′ and
[
χmeµν

]′′ are the real and imaginary parts of the respective matrix elements.
This is good news: One has to measure or calculate only χmeµν and χemµν follows. All the
fields and susceptibility tensors are allowed to be frequency dependent, and they actually
are: This dependence is what we are interested in.
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Reality of matrix elements in a magnetic
point group

It is well known that unitary symmetry elements of the symmetry group of a Hamiltonian
lead to selection rules, i.e. force some matrix elements of linear operators to become zero.
Here we will show that antiunitary symmetry elements of a magnetic group can relate the
matrix elements of linear operators to each other. In an extreme case these antiunitary
symmetry elements can force the matrices of linear operators to have only real or purely
imaginary matrix elements, as was shown in Appendix A of our paper [145].

We will illustrate our findings on the group D2 (C2), relevant for the ϕ = 0 case of our
singe-ion model (4.15), the case most closely related to the measurements on Sr2CoSi2O7

(see Subsection 4.7.2). Here we use the notation of the field-fixed coordinate system (see
Fig. 4.4), but for a more familiar notation just substitute the indices ⊥1 → x, ⊥2 → y,
‖→ z. The argumentation also works for arbitrary spin length.

The chiral but apolar magnetic point group D2 (C2) ≡ 22′2′ consists of the elements

D2 (C2) =
{

1, C
‖
2 ,ΘC

⊥1
2 ,ΘC⊥2

2

}
, (G.1)

where C2 are twofold rotations about the axis indicated in the upper index, and Θ stands for
time reversal (we mention that ΘC2 ≡ 2′, the first notation is due to Schoenflies, the second
one is called the Hermann–Mauguin notation). For generators of the group we choose C‖2
and ΘC⊥2

2 , and its character table together with the symmetry classification of the spin and
polarization components is summarized in Table 4.3. Our conclusions are valid whenever
ΘC⊥2

2 is a group member, just in the case when ϕ = π/4 and we have the polar symmetry
group

C2v (C1h) =
{
1, σ‖,ΘC⊥2

2 ,Θσ⊥1
}
, (G.2)

see Subsection 4.7.2.
The operator Ĉ⊥2

2 is represented on the S = 3/2 spin space by the matrix:

Ĉ⊥2
2 = eiπŜ

⊥2

=


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 . (G.3)
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The antiunitarity operator of time-reversal is represented by1

Θ̂ = Ĉ⊥2
2 K = eiπŜ

⊥2K =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

K, (G.4)

where K is complex conjugation, conjugating every matrix or vector component on the
right, but leaving the basis functions intact [156]. Therefore the matrix of ΘC⊥2

2 reads:

Θ̂Ĉ⊥2
2 = Ĉ⊥2

2 KĈ⊥2
2 = ei2πŜ

⊥2K = −1̂K, (G.5)

with 1̂ being the 4× 4 identity matrix.
Physical observables –e.g. the spin or polarization components represented by a linear

operatorO, see Table 4.3 for the chiral and polar cases– are either even or odd under ΘC⊥2
2 :

ΘC⊥2
2 {O} = ±O. (G.6)

The corresponding linear operator Ô transforms as(
Θ̂Ĉ⊥2

2

)
Ô
(

Θ̂Ĉ⊥2
2

)−1

= ±Ô. (G.7)

Substituting the form (G.5) results:(
Θ̂Ĉ⊥2

2

)
Ô
(

Θ̂Ĉ⊥2
2

)−1

= KÔK = Ô∗, (G.8)

since acting on an arbitrary vector v:(
KÔK

)
v = KÔ (Kv) = K

(
Ôv∗

)
= Ô∗v. (G.9)

Eqs. (G.7) and (G.8) together mean that:

Ô = ±Ô∗, (G.10)

thus, matrix elements of the operators even (odd) under ΘC⊥2
2 are real (pure imaginary).

This is a powerful result and has a profound effect on the magnetooptical properties as
has been seen in Subsection 4.7.2. To obtain this result we heavily relied on the concrete
form of the antiunitary symmetry operator (G.5). When we have another antiunitary –
time reversed– operator in the magnetic point group it may give us less beautiful results,
but it will still relate the imaginary and real parts of matrix elements of an observable.
We basically repeat the argumentation presented above, but for general spin length S, and
we will use a general antiunitary symmetry element A instead of ΘC⊥2

2 , for our original
derivation, see the end of the Supplement of our paper [146].

1Analogously for S = 1/2, time reversal can be represented by Θ̂ = iσ̂yK, where σ̂y is the second Pauli
matrix.
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We use standard xyz coordinates and consider a spin of length S, with Sz eigenvalues
m,m′ = −S,−S+1, . . . , S−1, S and all our matrices will be of size (2S+1)× (2S+1).
The time reversal operation Θ can be represented as

Θ̂ = Ĉy
2K = eiπŜ

yK = (−1)(S−m)δm′,−m K, (G.11)

with (Ĉy
2 )−1 = ±Ĉy

2 and consequently Θ̂−1 = ±Θ̂, where the + (−) sign stands for the
integer (half-integer) values of S. We assume that the Hamiltonian is invariant under the
antiunitary symmetryA = UΘ (here we use the little more convenient convention where Θ
acts first, this choice has no physical consequences), where U is some geometric symmetry
represented by a unitary matrix Û , with the property Û−1 = Û †. We are interested in
the constraints on the matrix elements of the observable O. We assume that we know the
transformation properties of O under A:

A {O} = O′, (G.12)

and the corresponding matrix Ô transforms as

ÂÔÂ−1 = Ô′. (G.13)

We substitute the matrix form Â = ÛΘ̂ = Û Ĉy
2K in the equation above (G.13):

Ô′ =
(
Û Ĉy

2K
)
Ô
(
Û Ĉy

2K
)−1

=
(
Û Ĉy

2

)(
KÔK

)(
Û Ĉy

2

)−1

. (G.14)

We use Eq. (G.8) in the right hand side

Ô′ =
(
Û Ĉy

2

)
Ô∗
(
Û Ĉy

2

)−1

, (G.15)

and see that the matrices Ô′ and Ô∗ are unitary equivalent with equivalence given by the
unitary matrix Û Ĉy

2 . If we wish we can simplify this formula further using (Ĉy
2 )−1 = ±Ĉy

2

and Û−1 = Û †:

Ô′ = ±
(
Û Ĉy

2

)
Ô∗
(
Ĉy

2 Û
†
)
, (G.16)

where the + (−) sign stands for the integer (half-integer) values of S. In applications it
is worth to choose a coordinate system in which the geometrical symmetry U is somehow
related to the y-axis, thereby simplifying the form of Û Ĉy

2 .
In conclusion, the unitary symmetries determine the selection rules (the non-vanishing

matrix elements), whereas antiunitary elements give constraints on the reality of the re-
maining ones. These rules and the matrix elements calculated by the actual wavefunctions
of the microscopic model (4.15) are given in Appendix H, and are in perfect agreement.



Appendix H

Matrix elements for the single Co-ion prob-
lem

H.1 Large anisotropy and small field: Λ� h

From the series expansion of the single spin energies (4.20) in h/Λ, we have

ε1 =
Λ

4
− h− 3h2

8Λ
+ · · · , (H.1a)

ε2 =
Λ

4
+ h− 3h2

8Λ
+ · · · , (H.1b)

ε3 =
9Λ

4
+

3h2

8Λ
+ · · · , (H.1c)

ε4 =
9Λ

4
+

3h2

8Λ
+ · · · . (H.1d)

The spin operators up to leading order in each component are:

S‖ =


1 0 −

√
3

2
0

0 −1 0 −
√

3
2

−
√

3
2

0 − 3h
4Λ

0

0 −
√

3
2

0 − 3h
4Λ

 , (H.2a)

S⊥1 =


0 1 0 −

√
3

2

1 0
√

3
2

0

0
√

3
2

0 9h2

16Λ2

−
√

3
2

0 9h2

16Λ2 0

 , (H.2b)

S⊥2 = i


0 −1

2
0

√
3h

4Λ
1
2

0 −
√

3h
4Λ

0

0
√

3h
4Λ

0 −3
2

−
√

3h
4Λ

0 3
2

0

 . (H.2c)
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The polarization operators are:

P
‖
chiral = −P⊥1

polar = i


0 0 −

√
3 0

0 0 0 −
√

3√
3 0 0 0

0
√

3 0 0

 , (H.3a)

P
‖
polar = P⊥1

chiral = i


0 − 3h

2Λ
0

√
3

3h
2Λ

0 −
√

3 0

0
√

3 0 3h
2Λ

−
√

3 0 − 3h
2Λ

0

 , (H.3b)

P⊥2
chiral =


0 3h

2Λ
0 −

√
3

3h
2Λ

0 −
√

3 0

0 −
√

3 0 − 3h
2Λ

−
√

3 0 − 3h
2Λ

0

 , (H.3c)

P⊥2
polar =


3h
2Λ

0 −
√

3 0

0 − 3h
2Λ

0
√

3

−
√

3 0 − 3h
2Λ

0

0
√

3 0 3h
2Λ

 . (H.3d)

H.2 Large field and small anisotropy: h� Λ

Expanding in Λ/h in (4.20) results for the energies

ε1 = −3h

2
+

3Λ

4
− 3Λ2

8h
+ · · · , (H.4a)

ε2 = −h
2

+
7Λ

4
− 3Λ2

8h
+ · · · , (H.4b)

ε3 =
h

2
+

7Λ

4
+

3Λ2

8h
+ · · · , (H.4c)

ε4 =
3h

2
+

3Λ

4
+

3Λ2

8h
+ · · · . (H.4d)
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The spin operators are:

S‖ =


3
2

0 −
√

3Λ
2h

0

0 1
2

0 −
√

3Λ
2h

−
√

3Λ
2h

0 −1
2

0

0 −
√

3Λ
2h

0 −3
2

 , (H.5a)

S⊥1 =


0

√
3

2
0 − 9Λ2

16h2√
3

2
0 1 0

0 1 0
√

3
2

− 9Λ2

16h2
0

√
3

2
0

 , (H.5b)

S⊥2 = i


0 −

√
3

2
0 3Λ2

16h2√
3

2
0 −1 0

0 1 0 −
√

3
2

− 3Λ2

16h2
0

√
3

2
0

 . (H.5c)

The polarization operators are:

P
‖
chiral = −P⊥1

polar = i


0 0 −

√
3 0

0 0 0 −
√

3√
3 0 0 0

0
√

3 0 0

 , (H.6a)

P
‖
polar = P⊥1

chiral = i


0 −

√
3 0 3Λ

2h√
3 0 −3Λ

2h
0

0 3Λ
2h

0
√

3

−3Λ
2h

0 −
√

3 0

 , (H.6b)

P⊥2
chiral =


0

√
3 0 −3Λ

2h√
3 0 −3Λ

2h
0

0 −3Λ
2h

0 −
√

3

−3Λ
2h

0 −
√

3 0

 , (H.6c)

P⊥2
polar =


3
2

0 −
√

3
2

0

0 −3
2

0 −
√

3
2

−
√

3
2

0 −3
2

0

0 −
√

3
2

0 3
2

 . (H.6d)
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[15] Kenzi Kanô and Shigeo Naya. Antiferromagnetism. The Kagomé Ising Net.
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