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Résumé

Le but principal de ce travail de thèse est d’approfondir notre connaissance
de la compétition entre degrés de liberté magnétiques et quadrupolaires sur
des réseaux à deux dimensions.

Des études récentes du matériau NiGa2S4 ont révélé plusieurs propriétés
anormales qui pourraient être expliquées par la présence d’un ordre quadrupo-
laire. Comme le modèle de Heisenberg bilinéaire-biquadratique pour des
spins S = 1 donne lieu aux phases ferroquadrupolaire et antiferroquadrupo-
laire, c’est un bon candidat pour la description du système à basse tem-
pérature. Dans ce travail, nous proposons un modèle plus réaliste qui tient
compte de l’anisotropie sur site. Nous avons réalisé une étude détaillée du di-
agramme de phase variationnel de ce modèle et nous avons montré qu’il donne
lieu à nombre de phases non-conventionnelles. Nous avons déduit le spectre
d’excitations des phases quadrupolaires de ce diagramme de phase et nous
avons mis en évidence que l’ordre ferroquadrupolaire est particulièrement
sensible à la nature de l’anisotropie. Finalement, nous avons étudié pertur-
bativement les effets quantiques dans la limite d’une grande anisotropie et
nous avons montré que la dégénérescence non-triviale de la solution en champ
moyen est levée par l’émergence d’une phase supersolide. Nous avons aussi
discuté les conséquences expérimentales de nos résultats dans le contexte de
l’étude de NiGa2S4.

Dans la deuxième partie de la thèse, nous tentons d’approfondir la compré-
hension de l’influence mutuelle entre la frustration géométrique et les degrés
de liberté quadrupolaires en décrivant le diagramme de phase du modèle
bilinéaire-biquadratique pour des spins 1 sur un réseau carré. Notre approche
variationnelle révèle un remarquable plateau d’aimantation 1/2 de caractère
à la fois quadrupolaire et magnétique, au-dessus de la phase “semi-ordonnée”
classiquement dégénérée, et ce résultat est confirmé par des diagonalisa-
tions exactes sur des réseaux de taille finie. Au-dessous du plateau, le
phénomène d’“ordre-par-le-désordre” donne lieu à un état antiferroquadrupo-
laire ordonné sur trois sous-réseaux, état réellement surprenant étant donné
la nature bipartite du réseau carré. Nous avons pris un soin particulier à
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étudier les propriétés du modèle de Heisenberg SU(3), pour lequel il y a
une compétition subtile entre fluctuations thermiques et quantiques. Nos
résultats suggèrent la disparition de l’ordre de Néel à deux sous-réseaux
sur un intervalle fini au-dessous du point SU(3). Nous avons aussi discuté
les conséquences expérimentales pour les états isolants de Mott d’atomes
fermioniques à trois saveurs dans des réseaux optiques.

Mots-clés: ordre quadrupolaire/nématique, interactions biquadratiques,
systèmes frustrés, anisotropie sur site, NiGa2S4, supersolide, plateau d’aiman-
tation, modèle de Heisenberg SU(3), approximation de champ moyen, théorie
d’ondes de saveur, “ordre-par-le-désordre”, diagonalisations exactes
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Abstract

The principal aim of this thesis is to gain a better understanding of the
competition between magnetic and quadrupolar degrees of freedom on two-
dimensional lattices.

Recent experimental investigations of the material NiGa2S4 revealed seve-
ral anomalous properties that might be accounted for within the framework
of quadrupolar ordering. Exhibiting both a ferroquadrupolar and an antifer-
roquadrupolar phase, the S = 1 bilinear-biquadratic Heisenberg model on the
triangular lattice is a possible candidate for describing the low-temperature
behaviour of the system. In this work, we put forward a more realistic model
that includes single-ion anisotropy. We perform a thorough investigation of
the variational phase diagram of this model and we show that it exhibits
a variety of unconventional phases. We derive the excitation spectrum of
the quadrupolar phases in the phase diagram and we point out that ferro-
quadrupolar order is particularly sensitive to the nature of anisotropy. Fi-
nally, we study quantum effects in the perturbative limit of large anisotropy
and we argue that the non-trivial degeneracy of the mean-field solution is
lifted by an emergent supersolid phase. We also discuss our results in the
context of NiGa2S4.

In the second part of the thesis, we aim at gaining an insight into the inter-
play between geometrical frustration and quadrupolar degrees of freedom by
mapping out the phase diagram of the spin-one bilinear-biquadratic model
on the square lattice. Our variational approach reveals a remarkable 1/2-
magnetization plateau of mixed quadrupolar and magnetic character above
the classically degenerate “semi-ordered” phase, and this finding is corro-
borated by exact diagonalization of finite clusters. “Order-by-disorder” phe-
nomenon gives rise to a state featuring three-sublattice antiferroquadrupolar
order below the plateau, which is truly surprising given the bipartite na-
ture of the square lattice. We place particular emphasis on investigating
the properties of the SU(3) Heisenberg model, which is shown to feature a
subtle competition between quantum and thermal fluctuations. Our results
suggest a suppression of two-sublattice Néel order in a finite window below
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the SU(3) point. Experimental implications for the Mott-insulating states of
three-flavour fermionic atoms in optical lattices are discussed.

Keywords: quadrupolar/nematic order, biquadratic interactions, frus-
trated systems, single-ion anisotropy, NiGa2S4, supersolid, magnetization
plateau, SU(3) Heisenberg model, mean-field approximation, flavour-wave
theory, “order-by-disorder”, exact diagonalizations
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Chapter 1

Preface

The term ”magnetic” conventionally refers to systems that exhibit ordering
of atomic dipoles due to quantum-mechanical exchange: as liquids crystal-
lize into solids on cooling, spins in magnets generally develop a long-range
periodic order. However, quantum fluctuations enhanced by frustration and
low dimensionality may suppress the ordering process and lead to the ap-
pearance of qualitatively new quantum phases: these are called spin liquids.
The exploration of such novel phases represents one of the central themes of
contemporary condensed matter physics.

The relevant effects produced by low dimensionality may be demonstrated
by considering the isotropic antiferromagnetic (AFM) nearest-neighbour Hei-
senberg model of spins one-half on a bipartite lattice. In the case of the cubic
lattice, the ground state shows magnetic long-range order with an effective
spin shortening of less than 20%, and even though the value is greater on a
square lattice (it is approximately 40%), long-range magnetic order is still
preserved in two dimensions. In the case of the chain however, the ground
state retains the full spin-rotational symmetry of the Hamiltonian, and the
staggered magnetization vanishes.

While low dimensionality generally enhances quantum fluctuations and
may thus either reduce or completely suppress the order parameter of a clas-
sically stable ordered phase, frustrated interactions on the square lattice may
lead to a variety of qualitatively different behaviours already at the classical
level. In the limit of the triangular lattice, which is achieved by introducing
couplings along one of the diagonal directions, we find that whatever spin
arrangement we try, we cannot minimize simultaneously all single-bond en-
ergies. The classical ground state of the isotropic AFM Heisenberg model on
a triangular lattice will feature a 120-degree ordering of the spins, and since
the AFM interactions are doomed to be less effective in a non-collinear struc-
ture than a collinear one, fluctuation effects become more spectacular in the



2 Preface

quantum limit: for a system consisting of spins one-half, the effective spin
shortening exceeds 50%, which is quite a bit larger than what is found for the
square lattice. However, instead of yielding an ordered state as a compro-
mise, frustrated interactions may also induce disorder via a large degeneracy,
as it happens for the J1-J2 model on the square lattice for J2/J1 ≥ 1/2, and
the quantum limit may then give rise to a number of interesting phenomena,
such as the promotion of an ordered state within the classically degenerate
manifold via the so-called “order-by-disorder” mechanism.

Considerable effort has been dedicated to the investigation of spin-one
systems in the above context, and results have shown in a number of cases
the emergence of phases which both lack a classical analogue and are qual-
itatively different from phases that appear in the extreme quantum case of
spins one-half: the most noteworthy example is perhaps the celebrated Hal-
dane phase of the antiferromagnetic spin-one chain. In the current study, we
will concentrate on the quadrupolar degrees of freedom that are associated
with spin-one systems. A quadrupolar state is a type of non-magnetic state
that breaks SU(2) symmetry by exhibiting a long-range order of quadrupo-
lar operators: instead of the usual vector that is representative of dipolar
order, the order parameter in a quadrupolar phase becomes a tensor of rank
two. A local example of a quadrupole is the Sz = 0 state of an S = 1 spin:
even though the expectation value of the spin components vanishes in such a
time-reversal-invariant state, anisotropic spin fluctuations nevertheless break
SU(2) symmetry. The fluctuations occur mostly in the directions perpendic-
ular to an axis (in our example: the z axis) that is referred to as the director.
The aim of the present work is to gain an insight into the nature of quadru-
polar ordering within the conceptual frameworks of low dimensionality and
frustration.

The thesis is organized as follows. In the first half of chapter 2, we give
a general introduction into the quadrupolar character of spin-one wavefunc-
tions, and we draw a comparison between the quadrupolar states of spins
one and the qualitatively different coherent spin states of spins one-half. The
second half of the chapter is devoted to a study of the bilinear-biquadratic
Hamiltonian, which is the minimal model for describing the competition be-
tween magnetic and quadrupolar degrees of freedom in spin-one systems. We
begin chapter 3 by reviewing the phase diagram of the bilinear-biquadratic
Hamiltonian on the triangular lattice, which has recently been explored in an
attempt to provide a phenomenological explanation for the low-temperature
behaviour of the material NiGa2S4. Motivated both by theoretical curiosity
and the possible experimental relevance, we map out the phase diagram of
the model in the presence of single-ion anisotropy, placing particular empha-
sis on quadrupolar phases. Finally, having thoroughly investigated the effect
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of biquadratic interactions on the triangular lattice, we work our way towards
a better understanding of the interplay between geometrical frustration and
quadrupolar behaviour in chapter 4 by studying the bilinear-biquadratic Ha-
miltonian on the square lattice.





Chapter 2

Introduction to quadrupoles

In this introductory chapter, we discuss the basic elements of quadrupolar
physics in spin-one systems. We will show that a spin-one wavefunction con-
tains quadrupolar degrees of freedom, which can be accessed via a set of
operators that are quadratic in the conventional spin operators, and as a re-
sult, it may describe a state that is invariant under time reversal and has no
magnetic moment. We will parametrize these so-called quadrupolar states
and we will investigate their behaviour in the presence of a magnetic field and
an anisotropy field. We will also introduce an SU(3)-bosonic representation
of S = 1 spins that lies at the heart of the semi-classical theory of quadru-
polar phases. We will begin the second half of the chapter by presenting the
bilinear-biquadratic Hamiltonian that describes the most general isotropic
interaction between neighbouring spins one on a lattice, and after discussing
its symmetry properties, we will investigate its spectrum for elementary sys-
tems. We will introduce furthermore a variational ansatz that may render
this Hamiltonian tractable on two- and three-dimensional lattices by allowing
for a mean-field description of quadrupolar phases. Finally, we will review a
set of mechanisms that may give rise to an effective biquadratic coupling in
realistic spin systems.

2.1 Quadrupolar nature of a single spin one

A common way of introducing a basis in the Hilbert space of a local S = 1
spin is by choosing the z axis as a quantization axis for the spin operator
and selecting the three eigenstates of Sz. However, in order to describe
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quadrupolar physics, we find it more convenient to define the following basis:

|x〉 =
i√
2

(|1〉 − |1̄〉) ,

|y〉 =
1√
2

(|1〉 + |1̄〉) ,

|z〉 = −i|0〉.

(2.1)

A general normalized wavefunction with a fixed phase may then be charac-
terized by four real parameters:

|ψ〉 = eiα sin ϑ cos ϕ|x〉 + eiβ sin ϑ sin ϕ|y〉 + cos ϑ|z〉, (2.2)

where {ϑ, ϕ} ∈ [0, π/2] and {α, β} ∈ [0, 2π[. A particularly attractive feature
of the basis (2.1) is that the time-reversal operator τ leaves it invariant: this
can be easily verified by recalling1 that time reversal changes the sign of |0〉,
while it interchanges |1〉 and |1̄〉, i. e. τ |0〉 = −|0〉, τ |1〉 = |1̄〉 and τ |1̄〉 = |1〉.
Another interesting property of the basis (2.1) is that its elements are zero-
eigenvalue eigenstates of the corresponding spin operators,

Sx|x〉 = Sy|y〉 = Sz|z〉 = 0, (2.3)

and in fact, the action of the spin operators on the basis (2.1) can be written
in a concise form:

Sα|β〉 = i
∑

γ=x,y,z

εαβγ|γ〉. (2.4)

Any hermitian operator Ô acting in the Hilbert space of a spin one can
be decomposed into a sum of the form

Ô =
3∑

α,β=1

Aαβ|α〉〈β|, (2.5)

where the |1〉, |2〉 and |3〉 states form a basis of the Hilbert space and A∗
αβ =

Aβα. Since a three-dimensional self-adjoint matrix is characterized by nine
real parameters, we may introduce eight non-trivial independent physical

1Alternatively, one may envisage |0〉, |1〉 and |1̄〉 as the triplet states of two spins one-
half: |0〉 = 1√

2
(|↑↓〉 + |↓↑〉), |1〉 = |↑↑〉 and |1̄〉 = |↓↓〉. A general S = 1/2 wavefunction of

the form |ψ〉 = exp(−iϕ/2) cos(ϑ/2) |↑〉 + exp(iϕ/2) sin(ϑ/2) |↓〉 describes a spin pointing
in the {ϑ, ϕ} direction, and τ reverses all spin components by definition, thus we may
deduce that, neglecting an overall phase factor, τα |↑〉 = α∗ |↓〉 and τα |↓〉 = −α∗ |↑〉.
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operators2 that are possible on-site order parameters for a system consisting
of spins one. Obviously, three such candidates are the components of the
spin operator, while the remaining five will contain these to a higher order.
Generally speaking, the 2k + 1 components of a rank-k tensor operator T(k)

satisfy the following commutation relations [1]:[
Sz, T (k)

q

]
= qT (k)

q ,[
S±, T (k)

q

]
=

√
k(k + 1) − q(q ± 1)T

(k)
q±1.

(2.6)

Using (2.6), we may systematically construct T
(k)
q for all q ∈ [−k, k]. The

k = 1 case reproduces S+, Sz and S−, whereas for k = 2 we find

T
(2)
2 = S+S+,

T
(2)
1 = −(S+Sz + SzS+),

T
(2)
0 =

√
2

3
(3(Sz)2 − S(S + 1)),

T
(2)
−1 = (S−Sz + SzS−),

T
(2)
−2 = S−S−.

(2.7)

Suitable linear combinations of the five T
(2)
q operators result in five hermitian

operators that we may arrange conveniently in a vectorial form:

Q =


Qx2−y2

Q3z2−r2

Qxy

Qyz

Qzx

 =


(Sx)2 − (Sy)2

1√
3
(2(Sz)2 − (Sx)2 − (Sy)2)

SxSy + SySx

SySz + SzSy

SzSx + SxSz

 . (2.8)

We call the components of Q quadrupolar order parameters. An alternative
way of introducing them is by decomposing the SαSβ quadratic form3 into a
scalar S(S + 1)δαβ/3 representing the spin length, a three-component vector
(Sαβ−Sβα)/2 (dipolar operators) and a symmetric, traceless, rank-two tensor
(Sαβ + Sβα)/2 − S(S + 1)δαβ/3 (quadrupolar operators). It is worth noting

at this point that even though T
(k)
q = 0 for k > 2 in the case of a spin one4,

one may envisage more possible on-site order parameters for higher spins:

2A trivial operator is the identity operator Î =
∑

α |α〉〈α|.
3Note that any operator having a non-vanishing expectation value in a time-reversal-

invariant state (such as the elements of the basis (2.1)) has to contain products of an even
number of spin operators.

4However, T
(k)
q = 0 already for k = 2 in the case of a spin one-half.
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indeed, a spin of size S will feature multipolar states of degrees k up to 2S,
the order parameters being rank-k tensor operators.

In conclusion, apart from spin ordering, a system of local spins one is
inherently capable of showing quadrupolar order. The competition of the
two vectorial order parameters S and Q is reflected in the following equality
that is valid for an arbitrary spin-one wavefunction:

〈S〉2 + 〈Q〉2 =
4

3
. (2.9)

One may show that |S, Sz〉 is an eigenstate of Q2 for any spin S:

Q2|S, Sz〉 =
4

3
S(S + 1)

(
S(S + 1) − 3

4

)
|S, Sz〉, (2.10)

and consequently

(Q2 + S2)|S, Sz〉 =
4

3
S2(S + 1)2|S, Sz〉, (2.11)

we may therefore view (2.9) as a sum rule for the standard deviations of the
possible on-site order parameters of a spin one. We would assume that similar
sum rules can be constructed for higher spins, involving all their multipolar
degrees of freedom.

2.1.1 SU(3)-bosonic representation of an S = 1 spin

We will now present the basic ingredients of an SU(3)-bosonic representation
of spin-one states and operators. The notions introduced here will prove
essential in later sections, when we wish to treat elementary excitations of
quadrupolar phases.

A standard construction of the SU(3) generators is based on three in-
dependent pairs of annihilation and creation operators (often referred to as
three “flavours”), {(ai, ai

†), i = 1, 2, 3}, that obey the following commutation
relations:

[ai, aj
†] = δij, [ai, aj] = 0, [ai

†, aj
†] = 0. (2.12)

Let us define the operators

Qα =
1

2
â†λαâ, α = 1, 2 . . . 8, (2.13)
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where â† = (a1
†, a2

†, a3
†) and λα are the Gell-Mann matrices that satisfy the

commutation relations5

[λα, λβ] = 2ifαβγλγ , α, β, γ = 1, 2, . . . 8 (2.14)

with well-known real structure constants fαβγ . The Qα operators are her-
mitian and one can show that they obey SU(3) Lie-algebra commutation
relations: indeed,

[Qα, Qβ] =
1

4
ai

†ajak
†al(λα,ijλβ,kl − λβ,ijλα,kl) =

=
1

4
ai

†(ak
†aj + δkj)al(λα,ijλβ,kl − λβ,ijλα,kl) =

=
1

4
ai

†ak
†ajal(λα,ijλβ,kl − λβ,ijλα,kl)+

+
1

4
ai

†al(λα,ikλβ,kl − λβ,ikλα,kl) =

=
1

4
ai

†ak
†ajal(λα,ijλβ,kl − λβ,ijλα,kl) +

1

4
ai

†al2ifαβγλγ,il,

(2.15)

and since the four-operator term gives zero as a result of bosonic commutation
relations,

1

4
ai

†ak
†ajal(λα,ijλβ,kl − λβ,ijλα,kl) =

1

4
ak

†ai
†alaj(λα,klλβ,ij − λβ,klλα,ij) =

= −1

4
ak

†ai
†alaj(λα,ijλβ,kl − λβ,ijλα,kl) =

= −1

4
ai

†ak
†ajal(λα,ijλβ,kl − λβ,ijλα,kl),

(2.16)

we end up with

[Qα, Qβ] = ifαβγQγ. (2.17)

In addition to the above property, each Qα conserves the total number of
bosons:

[Qα, N̂ ] = 0, (2.18)

where N̂ = â†â, it is therefore convenient to restrict ourselves to a subspace
of the complete Hilbert space in which the total number of bosons is a fixed

5Note that from now on, we use the convention of summing over any index that appears
twice in an expression.
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number N . This way, one may systematically generate all “triangular” irre-
ducible representations of SU(3), as they are in one-to-one correspondence
with integer numbers [2]. A basis of the selected subspace is given by the
states |n1, n2, n3〉, where ni denote bosonic occupation numbers that satisfy
the constraint

n1 + n2 + n3 = N. (2.19)

It can be shown that |n1, n2, n3〉 is an eigenstate of the operator QαQα:

QαQα|n1, n2, n3〉 =
N

3
(N + 3)|n1, n2, n3〉. (2.20)

In order to represent a local S = 1 spin, we may set N = 1 (the Hilbert
space has dimensionality three) and choose the spin operators in the following
manner:

S =

 Sx

Sy

Sz

 =

 2Q5

−2Q7

−2Q2

 . (2.21)

One may easily verify that the spin commutation relations

[Sα, Sβ] = iεαβγS
γ (2.22)

are indeed satisfied. The quadrupolar operators defined in (2.8) are the
following6:

Q =


Qx2−y2

Q3z2−r2

Qxy

Qyz

Qzx

 =


2Q3

2Q8

−2Q1

−2Q4

−2Q6

 . (2.23)

Via use of the operator-identity

(Q2 + S2) = 4QαQα, (2.24)

equation (2.20), and by showing that

S2|n1, n2, n3〉 = 2|n1, n2, n3〉, (2.25)

one can verify that equations (2.10) and (2.11) are indeed satisfied for our
case of S = 1. Let us however turn our attention now to the physical in-
terpretation of the bosonic operators {a1, a2, a3} and the basis states they

6This is a direct consequence of setting N = 1. Note that choosing spin operators
according to (2.21) is possible for any value of N .
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represent: |1, 0, 0〉, |0, 1, 0〉 and |0, 0, 1〉. Based on (2.4), we may deduce a
bosonic form for the spin operators, and comparing it to (2.21), we find that
the three flavours correspond in fact to the basis (2.1). From now on, we
shall therefore refer to the bosonic operators {a1, a2, a3} as {ay, ax, az}. The
explicit bosonic form of the spin operators is given by

S =

 Sx

Sy

Sz

 =

 i
(
az

†ay − ay
†az

)
i
(
ax

†az − az
†ax

)
i
(
ay

†ax − ax
†ay

)
 , (2.26)

while that of the quadrupolar operators is written as

Q =


Qx2−y2

Q3z2−r2

Qxy

Qyz

Qzx

 =


ay

†ay − ax
†ax

1√
3

(
ax

†ax + ay
†ay − 2az

†az

)
−

(
ay

†ax + ax
†ay

)
−

(
az

†ay + ay
†az

)
−

(
az

†ax + ax
†az

)

 . (2.27)

Before concluding this subsection, we would like to draw the reader’s
attention to a few more mathematical observations that bear physical rele-
vance.

In particular for our study of spin-one systems, it will prove useful to em-
phasize that the representation of the SU(3) Lie algebra that was generated
by the Qα operators defined in (2.13) has a complex conjugate representation,
the generators of which are given by

−Q∗
α =

1

2
â† (−λ∗

α) â, α = 1, 2 . . . 8. (2.28)

It follows from the structure constants fαβγ being real that the −Q∗
α operators

satisfy the same commutation relations as the Qα operators. In order to see
this, it suffices to take the complex conjugate of (2.17):

[Q∗
α, Q∗

β] = −ifαβγQ
∗
γ,

[−Q∗
α,−Q∗

β] = ifαβγ

(
−Q∗

γ

)
.

(2.29)

As the three Gell-Mann matrices corresponding to the spin components de-
fined in (2.21) are purely imaginary, while all the other Gell-Mann matrices
are purely real, we may simply replace Qα by −Q∗

α on the right-hand side of
(2.21), whereas the same replacement on the right-hand side of (2.23) induces
a minus sign. In other words, the two representations are not equivalent.

In order to draw a parallel with the well-known Schwinger-boson construc-
tion, we point out that one may also define SU(2) generators via the method



12 Introduction to quadrupoles

described above, namely by introducing only two pairs of bosonic creation
and annihilation operators that obey (2.12), and consequently replacing the
definition of the generators (2.13) by

Sα =
1

2
â†σαâ, α = x, y, z, (2.30)

where â† = (a1
†, a2

†) and σα are the Pauli matrices satisfying the commuta-
tion relations

[σα, σβ] = 2iεαβγσ
γ, α, β, γ = x, y, z. (2.31)

An important difference from the case of SU(3)-bosons is that one is in
fact able to generate all irreducible representations of the SU(2) Lie algebra
this way: different representations correspond to a different total number of
bosons, i.e. to different spin lengths.

As a closing remark, we add that introducing N bosonic flavours allows
for the construction of the N2 generators of the SU(N) Lie algebra7:

Smm′ = am
†am′ , m,m′ = 1, 2 . . . N. (2.32)

It is easily checked that the operators above indeed satisfy SU(N) commuta-
tion relations8:

[Smm′ , Snn′ ] = δm′nSmn′ − δmn′Snm′ . (2.33)

This property paves the way to a straightforward generalization of the con-
cepts introduced in this subsection, which eventually allows for a systematic
treatment of bosonic excitations of general multipolar phases of high (S > 1)
spins.

2.1.2 Coherent spin states vs quadrupolar states

A coherent spin state |Ω〉 is a state in which the spin length is maximal,
i.e. (〈Ω|S|Ω〉)2 = 1 in the case of a spin one9. Such a state describes a spin
pointing in the direction of the unit vector Ω and is fully characterized by
the polar angles {ϑ, ϕ}:

〈Ω|S|Ω〉 = SΩ = S

 sin ϑ cos ϕ
sin ϑ sin ϕ

cos ϑ

 , (2.34)

7Note that the number of non-trivial generators is N2 − 1.
8One may also check that the commutation relations remain intact even if the operators

ai are fermionic instead of being bosonic.
9It is useful to note right from the outset that the Hilbert space of a spin one-half

consists only of coherent spin states.
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where ϑ ∈ [0, π] and ϕ ∈ [0, 2π[. The coherent spin state |Ω〉 is furthermore
an eigenstate of the spin component parallel to the vector Ω:

(Ω · S) |Ω〉 = S|Ω〉. (2.35)

For the case of a spin one, the coherent spin states may conveniently be
written in the form

|Ω〉 =
1 + cos ϑ

2
e−iϕ|1〉 +

sin ϑ√
2
|0〉 +

1 − cos ϑ

2
eiϕ|1̄〉, (2.36)

and they obey the completeness relation

Î =
3

4π

∫ π

ϑ=0

∫ 2π

ϕ=0

dϑdϕ sin ϑ|Ω〉〈Ω|. (2.37)

Applying the identity operator Î in the form (2.37) to an arbitrary spin-one
state |ψ〉, one finds

|ψ〉 = Î|ψ〉 =
3

4π

∫ π

ϑ=0

∫ 2π

ϕ=0

dϑdϕ sin ϑ〈Ω|ψ〉|Ω〉, (2.38)

i.e. |ψ〉 may be expressed as a superposition of coherent spin states with
amplitudes 〈Ω|ψ〉. This result allows for a pictorial representation of spin-
one wavefunctions that we will make use of later on.

A quadrupolar state |d〉 of a spin one is a state in which the spin length
is zero: (〈d|S|d〉)2 = 0. However, spin fluctuations are anisotropic in such
a time-reversal-invariant state, as they occur only in a plane perpendicular
to an axis that is referred to as the director. As an example, one may ver-
ify that the state |0〉 is a quadrupolar state with the axis z as the director:
indeed, spin components vanish (time-reversal invariance up to a phase fac-
tor), furthermore (Sx)2 |0〉 = |0〉 and (Sy)2 |0〉 = |0〉, while (Sz)2 |0〉 = 0. A
quadrupolar state is fully characterized by the polar angles {ϑ, ϕ} defining
the unit vector

d =

 sin ϑ cos ϕ
sin ϑ sin ϕ

cos ϑ

 (2.39)

that points along the director axis. Quadrupolar states may be written in a
convenient form using the basis (2.1):

|d〉 = dx|x〉 + dy|y〉 + dz|z〉, (2.40)

where di are the components of the vector d. This form reveals the nematic
nature of a quadrupolar state: |−d〉 = −|d〉, i.e. the quadrupolar states
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characterized by d and −d are physically equivalent. Bearing that in mind,
we shall nonetheless often refer to the vector d as the director, rather than
to the axis along which it points. The quadrupolar state |d〉 is an eigenstate
of the spin component parallel to the director d:

(d · S) |d〉 = 0. (2.41)

We have shown that while a single S = 1/2 spin is always in a coherent
spin state (or dipolar state), an S = 1 spin may also be a quadrupole, which
might lead us to expect that a further increase of the dimensionality of the
local Hilbert space would yield even more exotic multipolar states. This is
indeed the case, as we will briefly demonstrate for S = 3/2 wavefunctions.
Let us compose a basis |Sz〉 with the help of three spins one-half:∣∣∣∣32

〉
= |↑↑↑〉 ,

∣∣∣∣12
〉

=
1√
3

(|↓↑↑〉 + |↑↓↑〉 + |↑↑↓〉) , (2.42)∣∣∣∣−3

2

〉
= |↓↓↓〉 ,

∣∣∣∣−1

2

〉
=

1√
3

(|↑↓↓〉 + |↓↑↓〉 + |↓↓↑〉) . (2.43)

Since τ |↑〉 = |↓〉 and τ |↓〉 = − |↑〉, it follows that

τ

∣∣∣∣32
〉

=

∣∣∣∣−3

2

〉
, τ

∣∣∣∣12
〉

= −
∣∣∣∣−1

2

〉
, (2.44)

τ

∣∣∣∣−3

2

〉
= −

∣∣∣∣32
〉

, τ

∣∣∣∣−1

2

〉
=

∣∣∣∣12
〉

, (2.45)

which makes it clear that it is impossible to construct a time-reversal-invariant
state for an S = 3/2 spin, for essentially the same reason as it is for a spin one-
half. As a matter of fact, this conclusion can be reached for half-integer-spins
in general, as they can be composed of an odd number of spins one-half, and
therefore, according to the celebrated Kramers-theorem, an arbitrary half-
integer-spin wavefunction |ψ〉 will be orthogonal to τ |ψ〉. On the other hand,
it is quite easy to write down a spin-three-half state in which the spin length
is zero: take as an example the state

|O〉 =
1√
2

(∣∣∣∣32
〉

+

∣∣∣∣−3

2

〉)
. (2.46)

Having seen that |O〉 is neither a dipole nor a quadrupole (in the sense that
it is not time-reversal-invariant), we conclude that we have found a state
of octupolar character. Now, based on [3], we may write the coherent spin
states of a general spin S in the form

eiϕ|Ω〉 =

(
cos

ϑ

2

)2S

exp

{
tan

ϑ

2
eiϕS−

}
|Sz = S〉 , (2.47)
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Figure 2.1: Spherical plots of the amplitudes |〈Ω|ψ〉|2 for (from left to right)
an S = 1/2 dipole (|ψ〉 = |↑〉), an S = 1 quadrupole (|ψ〉 = |0〉) and an
S = 3/2 state of octupolar character (|ψ〉 = |O〉).

where we have introduced the phase factor on the left-hand side in order to
remain consistent with the expression (2.36), and we note furthermore that
the completeness relation (2.37) can be easily extended to the case of an
arbitrary spin by replacing the prefactor 3/4π by (2S +1)/4π. With the help
of these results, we have created spherical plots of the amplitudes |〈Ω|ψ〉|2 for
a spin-one-half dipole, a spin-one quadrupole and a spin-three-half octupole:
these are shown in figure 2.1.

2.1.3 Parametrization of spin-one states

Coherent spin states and quadrupolar states are only the two “extreme”
types of states that a spin one may assume. A general spin-one state will
reveal both spin and quadrupolar character (see (2.9)), and its physically
relevant properties will in fact be fully determined by four independent real
parameters (see (2.2)). It follows that fixing the length and the direction of
the spin vector does not lead to a unique physical state, as three parameters
are sufficient to account for these properties10. While one may think of a
variety of ways of characterizing spin-one wavefunctions, we will often prefer
to adopt the parametrization of [4] that introduces a pair of three-dimensional
vectors. In this subsection, we explain the details of this parametrization.

We shall write a general spin-one state |ψ〉 in the form

|ψ〉 = (ux + ivx)|x〉 + (uy + ivy)|y〉 + (uz + ivz)|z〉, (2.48)

10For spins one-half, however, the polar angles {ϑ, ϕ} of the spin vector already define
a wavefunction that is unique up to a phase factor.
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where the real vectors u and v satisfy the normalization constraint

u2 + v2 = 1, (2.49)

and the overall phase of |ψ〉 is adjusted so that the following condition holds:

u · v = 0. (2.50)

The expectation value of the spin operator in the state |ψ〉 is

〈ψ|S|ψ〉 = 2u × v, (2.51)

and the spin length is given by

(〈ψ|S|ψ〉)2 = 4u2v2. (2.52)

Coherent spin states correspond to u2 = v2 = 1/2, while a quadrupolar state
will have either u2 = 0 or v2 = 0, with the non-vanishing vector defining the
director. One may in fact refer to the larger of the two vectors as the director
in the case 0 < (〈ψ|S|ψ〉)2 < 1 as well: it will become apparent in the next
paragraph why this extended concept of a director holds no ambiguity.

Let us assume first that an arbitrary normalized spin-one state may indeed
be written in the form (2.48) with the conditions (2.49) and (2.50) satisfied,
and take a look at what different {u,v} choices are equivalent in the sense
that the corresponding wavefunctions are related to each other by a phase
transformation. Let us define a restricted phase transformation of the state
|ψ〉 so that the resulting state

|ψ′〉 = eiγ|ψ〉 (2.53)

can also be characterized by vectors u′ and v′ satisfying conditions (2.49)
and (2.50). The vectors u′ and v′ can be written as

u′ = cos γ u − sin γ v,

v′ = cos γ v + sin γ u,
(2.54)

which makes it clear that they automatically satisfy (2.49). Their scalar
product is

u′ · v′ =
(
cos2 γ − sin2 γ

)
u · v + cos γ sin γ

(
u2 − v2

)
, (2.55)

so we can deduce that an equivalent formulation of condition (2.50) is

sin(2γ)
(
u2 − v2

)
= 0. (2.56)
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If u2 = v2, (2.56) is satisfied for an arbitrary γ, and a phase transformation
becomes equivalent to a simultaneous rotation of u and v around a common
axis perpendicular to their plane11. However, if u2 6= v2, we have to restrict
γ: the case γ = 0 is the identity, γ = π corresponds to taking the opposite of
both u and v, while γ = π/2 and γ = −π/2 correspond to taking the opposite
of one of the vectors and changing their order, i.e to the cases {−v,u} and
{v,−u}. Therefore, without loss of generality, we may adopt the convention
of choosing the pair of vectors {u,v} in such a way that u2 > v2, and we
may refer to u as the director12.

We will now verify the initial assumption of the previous paragraph. Let
us take a normalized spin-one wavefunction of the form (2.48) with the vec-
tors {u,v} satisfying condition (2.49), but not condition (2.50): we will show
that a suitable phase transformation of the form (2.53) will result in a state
|ψ′〉 that is characterized by vectors that satisfy both conditions. The vectors
u′ and v′ are given by (2.54), and they automatically satisfy (2.49). How-
ever, their scalar product (2.55) vanishes if and only if the following equation
holds:

cos (2γ) 2u · v + sin (2γ)
(
u2 − v2

)
= 0. (2.57)

If u2 6= v2, the phase γ is well-defined by

tan 2γ =
2u · v

v2 − u2
, (2.58)

where γ ∈]− π/4, π/4[. Note that choices of γ outside of this interval would
simply correspond to choosing between equivalent sets of {u′,v′}, as dis-
cussed in the previous paragraph. If u2 = v2, one may choose γ = π/4, for
instance.

Finally, we wish to illustrate the practical use of this parametrization
in distinguishing between physically different wavefunctions that feature the
same spin vector 〈S〉, with a spin length lower than one (in other words, the
spin is not “fully developed”). It is evident from (2.51) that the director
u has to lie in the plane perpendicular to the spin vector, and combining
equations (2.49) and (2.52), we find that its length is completely determined
by the spin length:

u2 =
1

2

(
1 +

√
1 − (〈ψ|S|ψ〉)2

)
. (2.59)

Nonetheless, the director may still freely rotate around in the plane, and each

11In this particular case, the vectors u′, v′, u and v all have the same length 1/
√

2.
12Note that coherent spin states do not have a director.
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Figure 2.2: Plot of every non-vanishing spin and quadrupole component of
the wavefunction |ψ〉 = cos η|x〉+i sin η|y〉. While 〈Sz〉 is symmetric, 〈Qx2−y2〉
is antisymmetric around η = π/4.

resulting configuration will correspond to a different quadrupole moment13.
Let us exemplify this statement with the help of a simple trial wavefunction:

|ψ〉 = cos η|x〉 + i sin η|y〉, (2.60)

where η ∈]0, π/2[. The wavefunction |ψ〉 describes a dipole moment 〈S〉 =
(0, 0, sin 2η) that is symmetric around η = π/4, the director however, while
being undefined for η = π/4, is either the x axis or the y axis, depending on
whether η < π/4 or η > π/4. This indicates that the quadrupole moment
will not show the same symmetry as the dipole moment, and indeed, 〈Q〉 =
(− cos 2η, 1/

√
3, 0, 0, 0). In figure 2.2, we plot all non-vanishing components

of 〈S〉 and 〈Q〉.

2.1.4 Orientating quadrupoles with a field

Let us investigate the effect of a magnetic field on quadrupolar states. We will
assume as a starting point that we have a lattice structure comprising spins
one, and due to local isotropic interactions, the system is in a so-called ferro-
quadrupolar phase: every site features a quadrupolar state and the directors
are parallel to each other, however, global SU(2) symmetry implies that this
common director may point anywhere14. The question we ask ourselves now

13Note however that configurations that are related to each other by a rotation of π are
physically equivalent.

14We will encounter such phases later on in this work.
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is the following: what happens if we turn on a small uniform magnetic field
of the form −hSz? Since the dipole moment vanishes in a quadrupolar state,
there is no first-order selection within the degenerate manifold, and therefore
in order to find the answer, we have to take into account the deformation of
the local wavefunctions. Since the model retains rotational symmetry around
the z axis, we may assume without loss of generality that the directors lie
in the zx plane in the h → 0 limit. The lowest-order deformation of such a
state

|ψ0〉 = sin ϑ|x〉 + cos ϑ|z〉 (2.61)

may be described by the wavefunction

|ψ〉 = |ψ0〉 + δ
(
cos ηeiα|ψ1〉 + sin ηeiβ|ψ2〉

)
, (2.62)

where δ ¿ 1 and

|ψ1〉 = − cos ϑ|x〉 + sin ϑ|z〉,
|ψ2〉 = |y〉

(2.63)

define a basis together with |ψ0〉. With the help of (2.4), we find

Sz|ψ〉 = −iδ sin ϑ sin ηeiβ|ψ0〉 + iδ cos ϑ sin ηeiβ|ψ1〉+
+ i

(
sin ϑ − δ cos ϑ cos ηeiα

)
|ψ2〉,

(2.64)

and therefore the first non-vanishing correction to the energy is given by

−h
〈ψ|Sz|ψ〉
〈ψ|ψ〉

= −2hδ sin ϑ sin η sin β. (2.65)

The energy may be minimized by taking either {ϑ = π/2, η = β = ±π/2} or
{ϑ = −π/2, η = −β = ±π/2}, and we end up with

|ψ〉 = ± (|x〉 + iδ|y〉) . (2.66)

In conclusion, the director turns perpendicular to the magnetic field, and the
quadrupole starts developing a dipole moment parallel to the field [4, 5].

If the ferroquadrupolar phase is submitted to a uniform field that corre-
sponds to a quadrupolar operator, the directors may be orientated without
a deformation of the local wavefunctions. Perhaps the simplest example of
this kind of mechanism is evoked by a single-ion anisotropy field of the form
D (Sz)2. Taking the same wavefunction |ψ0〉 as in the preceding paragraph,
we find

D〈ψ0| (Sz)2 |ψ0〉 = D sin2 ϑ, (2.67)
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i. e. the non-vanishing expectation value of the anisotropy field leads to a
lift of the ground-state degeneracy. An easy-plane field (D > 0) will pin the
director to the z axis, while an easy-axis field (D < 0) will only confine it
to the xy plane. We mention that in real materials, single-ion anisotropy
generally arises due to a combined effect of the crystal field and the spin-
orbit coupling. In particular, let us briefly consider a lattice featuring Ni2+

ions in an octahedral environment. In this case, the crystal field splits d-
orbitals into two groups, corresponding to a lower t2g level and a higher eg

level, and the resulting electronic configuration t62ge
2
g will have a total spin

S = 1. Since the orbital moment is completely quenched, spin-orbit coupling
may be treated in higher-order perturbation theory, and it is reasonable to
expect the emergence of single-ion anisotropy in such a calculation, as this is
the simplest magnetic-field-independent term that a single-ion effective spin
Hamiltonian may feature for S > 1/2 spins15. The fact that the crystal field
does not make a distinction between the positive and the negative z axis is
nicely encapsulated in the time-reversal invariance of single-ion anisotropy,
furthermore, in contrast to Dzyaloshinsky-Moriya interactions [6, 7], which
are also quadratic in spin operators, single-ion anisotropy is compatible with
the inversion symmetry of a lattice. For a more detailed discussion on this
topic, we refer the reader to the excellent book by Patrik Fazekas [8].

Finally, let us discuss the magnetization process of a spin one that is
prepared in a quadrupolar state via an easy-plane anisotropy field. We write
the Hamiltonian as

H = D (Sz)2 − h · S, (2.68)

however, we will only treat the cases where the magnetic field is either parallel
or perpendicular to the director. A magnetic field applied along the director
(h = hez) leaves the ground state unharmed below the critical value hc = D,
at which there is a level-crossing with the state |1〉: considering a system
of decoupled spins, one would find a jump in the magnetization per site
from zero to one at the critical magnetic field, which is the hallmark of
a first-order phase transition. On the other hand, if the applied magnetic
field is perpendicular to the director (h = hex), a quite different behaviour
is observed. As the magnetic field is increased, the ground state evolves
continuously from the non-magnetic state to the fully polarized one:

|ψ〉 = cos η|z〉 − i sin η|y〉, (2.69)

where

tan η =

√
D2 + 4h2 − D

2h
. (2.70)

15Single-ion anisotropy is forbidden for spin-one-half ions, which is perhaps most easily
seen by noting that the square of any Pauli matrix is the identity operator.
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Figure 2.3: Spherical plots of the amplitudes |〈Ω|ψ〉|2 for three states of the
form (2.69): (from left to right) a pure quadrupole (η = 0), a state with
magnetization 1/2, and a fully polarized state (η = π/4).

The intermediate state η ∈]0, π/4[ has a director along the z axis and a
dipole moment of length sin 2η pointing in the x direction. Consequently,
for a system of independent spins, one would expect to observe a smooth
magnetization curve as a function of the magnetic field. We present spherical
plots of the amplitudes |〈Ω|ψ〉|2 at three different stages of the magnetization
process in figure 2.3.

2.2 The biquadratic interaction

The general form of an isotropic coupling between two spins one is given by
the bilinear-biquadratic Hamiltonian:

H = J cos ϑ S1S2 + J sin ϑ (S1S2)
2 , (2.71)

where J > 0 sets an energy scale and ϑ ∈ [0, 2π[ controls the sign and the
relative strength of the two independent terms. Introducing higher powers
of the scalar product S1S2, or any other scalar operator16 in fact, does not
change the form of (2.71), since these extra terms can be rewritten as a
linear combination of bilinear and biquadratic terms. One may verify this
statement by using the well-known formula

D(j1) ⊗ D(j2) =

j1+j2∑
⊕j=|j1−j2|

D(j), (2.72)

where D(j) denotes the spin-j representation of SU(2). Indeed, a pair of S = 1
spins may form a singlet, a triplet and a quintuplet, therefore the independent

16Scalar operators are SU(2)-invariant, i.e. they commute with the total spin.
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operators acting in the Hilbert space may be classified according to(
D(0) ⊕ D(1) ⊕ D(2)

)
⊗

(
D(0) ⊕ D(1) ⊕ D(2)

)
=

= 3D(0) ⊕ 6D(1) ⊕ 6D(2) ⊕ 3D(3) ⊕ D(4), (2.73)

i.e. we find two non-trivial scalar operators, six dipolar operators, six quadru-
polar operators, three octupolar operators and one hexadecupolar operator.
It is interesting to contrast this result to the case of a bond of spins one-half
[9], where one would find only one non-trivial scalar operator S1S2, three
vectorial operators S1 + S2, S1 − S2 and S1 × S2, as well as a quadrupolar
operator17. We may conclude that (2.71) is indeed the most general SU(2)-
invariant Hamiltonian for a pair of spins one18.

A closer look at the formula (2.73) suggests that one may systematically
construct all independent scalar operators for a pair of spins S by taking the
scalar products of each on-site order parameter. This implies that it should
be possible to reexpress the biquadratic term (S1S2)

2 as a linear combination
of S1S2 and Q1Q2, and indeed, a straightforward calculation reveals that

Q1Q2 =
4

3
(S1S2)

2 − 2

3
(S1 × S2)

2 +
1

3
S1S2, (2.75)

which, combined with

(S1 × S2)
2 = εαβγεατνS

β
1 Sγ

2 Sτ
1Sν

2 =

= (δβτδγν − δβνδγτ ) Sβ
1 Sγ

2 Sτ
1Sν

2 =

= Sβ
1 Sβ

1 Sγ
2 Sγ

2 − Sβ
1 Sγ

1 Sγ
2 Sβ

2 =

= S2(S + 1)2 − Sβ
1 Sγ

1 (Sβ
2 Sγ

2 + iεγβαSα
2 ) =

= S2(S + 1)2 − (S1S2)
2 + iεαβγS

β
1 Sγ

1 Sα
2 =

= S2(S + 1)2 − (S1S2)
2 − S1S2,

(2.76)

17Note that SU(2) symmetry and the Z2 geometrical symmetry of the bond are indepen-
dent from each other, therefore each order parameter will either stay invariant or change
sign if the indices 1 and 2 are interchanged. Remembering that triplet (singlet) states
are symmetric (antisymmetric) in spin space and denoting by A1 (A2) the symmetric
(antisymmetric) representation of Z2, one finds(

D(1) ⊗ A1 ⊕ D(0) ⊗ A2

)
⊗

(
D(1) ⊗ A1 ⊕ D(0) ⊗ A2

)
=

= 2D(0) ⊗ A1 ⊕ 2D(1) ⊗ A2 ⊕ D(1) ⊗ A1 ⊕ D(2) ⊗ A2. (2.74)

18For a pair of spins S, one would find 2S non-trivial scalar operators, thus a general
isotropic Hamiltonian may contain powers of the scalar product S1S2 up to 2S.
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leads eventually to

Q1Q2 = 2 (S1S2)
2 + S1S2 −

2

3
S2(S + 1)2. (2.77)

Substituting (2.77) into (2.71) and setting the spin length to one yields a
new form of the bilinear-biquadratic Hamiltonian:

H = J

(
cos ϑ − sin ϑ

2

)
S1S2 + J

sin ϑ

2
Q1Q2 + J

4 sin ϑ

3
. (2.78)

2.2.1 SU(3) symmetry of the bilinear-biquadratic Ha-
miltonian

We shall now discuss the symmetry properties of the bilinear-biquadratic
pair-Hamiltonian (2.71) of spins one. Let us introduce three bosonic flavours
satisfying (2.12) on each site, with the condition that operators belonging
to different sites are independent. Denoting by ai and bi (i = 1, 2, 3) the
flavours on site 1 and 2, respectively, we may thus write

[ai, bj] = [ai, bj
†] = 0, i, j = 1, 2, 3. (2.79)

Using the SU(3) generators Q
(1)
α and Q

(2)
α constructed on each site according

to (2.13), one may define the operators

QT
α = Q(1)

α + Q(2)
α , α = 1, 2 . . . 8, (2.80)

which are easily shown to be hermitian and to obey the SU(3) Lie-algebra
commutation relations (2.17). The generators QT

α provide a means of verify-

ing that the coupling Q
(1)
α Q

(2)
α is SU(3)-invariant: indeed,

[Q(1)
α Q(2)

α , QT
β ] = [Q(1)

α Q(2)
α , Q

(1)
β + Q

(2)
β ] =

= [Q(1)
α , Q

(1)
β ]Q(2)

α + Q(1)
α [Q(2)

α , Q
(2)
β ] =

= ifαβγ

(
Q(1)

γ Q(2)
α + Q(1)

α Q(2)
γ

)
=

= 0,

(2.81)

since the structure constants fαβγ are completely antisymmetric. Using (2.21)
and (2.23), and thereby restricting the Hilbert space to that of local spins

one, we may express Q
(1)
α Q

(2)
α in terms of spin and quadrupolar operators,

Q(1)
α Q(2)

α =
1

4
(S1S2 + Q1Q2) , (2.82)
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and a glance at (2.78) tells us therefore that the bilinear-biquadratic Hamil-
tonian (2.71) is SU(3)-invariant at the points ϑ = π/4 and ϑ = 5π/4, where
it assumes the form of an isotropic SU(3) Heisenberg model. For this reason,
we shall refer to the points ϑ = π/4 and ϑ = 5π/4 as antiferro and ferro SU(3)
points, respectively. Actually, it can be shown via use of the complex conju-
gate representation (2.28) on one of the sites (take site 2 for instance) that
there exist two additional points of SU(3) symmetry: indeed, the coupling

−Q
(1)
α Q

∗(2)
α commutes with the SU(3) generators {Q(1)

α −Q
∗(2)
α , α = 1, 2 . . . 8},

and it can be rewritten for spins one as

−Q(1)
α Q∗(2)

α =
1

4
(S1S2 − Q1Q2) , (2.83)

hence the Hamiltonian (2.71) is SU(3)-invariant at the points ϑ = π/2 and
ϑ = 3π/2 as well.

Introducing single-ion anisotropy of the form

HD = D
(
(Sz

1)
2 + (Sz

2)
2) (2.84)

generally reduces the SU(2) symmetry of the Hamiltonian (2.71) to U(1)×Z2,
however, the case of the SU(3)-symmetric points is somewhat special. Rewrit-
ing the anisotropy term as

HD = 4D
(
Q

(1)
2 Q

(1)
2 + Q

(2)
2 Q

(2)
2

)
, (2.85)

one may verify that it commutes with the first three components of QT

defined in (2.80). Let us take the first component QT
1 as an example:

[Q
(1)
2 Q

(1)
2 + Q

(2)
2 Q

(2)
2 , QT

1 ] =

= [Q
(1)
2 Q

(1)
2 + Q

(2)
2 Q

(2)
2 , Q

(1)
1 + Q

(2)
1 ] =

= Q
(1)
2 [Q

(1)
2 , Q

(1)
1 ] + [Q

(1)
2 , Q

(1)
1 ]Q

(1)
2 +

+ Q
(2)
2 [Q

(2)
2 , Q

(2)
1 ] + [Q

(2)
2 , Q

(2)
1 ]Q

(2)
2 =

= if21γ

(
Q

(1)
2 Q(1)

γ + Q(1)
γ Q

(1)
2 + Q

(2)
2 Q(2)

γ + Q(2)
γ Q

(2)
2

)
=

= if213

(
Q

(1)
2 Q

(1)
3 + Q

(1)
3 Q

(1)
2 + Q

(2)
2 Q

(2)
3 + Q

(2)
3 Q

(2)
2

)
,

(2.86)

where we have used the fact that the only non-zero structure constant fαβγ

that has two of the indices {1, 2, 3} has the third one as well. The anticom-
mutators can be rewritten with the help of the bosonic expressions (2.13),
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and following steps similar to those in (2.15), we indeed find

{Q2, Q3} =
1

4
ai

†ak
†ajal(λ2,ijλ3,kl + λ3,ijλ2,kl)+

+
1

4
ai

†al(λ2,ikλ3,kl + λ3,ikλ2,kl) =

= 0,

(2.87)

since the first three Gell-Mann matrices are of the form

λi =

(
σi 0
0 0

)
, (2.88)

i. e. they anticommute with each other, and the four-operator term van-
ishes for a local spin one. The first three components of QT form an SU(2)
subalgebra of SU(3), and therefore the result

[HD, QT
α ] = 0, α = 1, 2, 3 (2.89)

unveils the remaining SU(2)×Z2 symmetry of the complete Hamiltonian H +
HD at the ferro and antiferro SU(3) points. Let us note that these symmetry
considerations are valid for the SU(3) points ϑ = π/2 and ϑ = 3π/2 as
well, as one may demonstrate by using the complex conjugate representation
(2.28) on one of the two sites.

Finally, let us take another look at the form of the Hamiltonian (2.71) at
the ferro and antiferro SU(3) points. Denoting the total number of bosons on

each site by Ni (i = 1, 2), we may rewrite the operator Q
(1)
α Q

(2)
α in a bosonic

form as

Q(1)
α Q(2)

α =
1

2

∑
ij

ai
†ajbj

†bi −
1

6
N1N2, (2.90)

and setting the spin length to one (N1 = N2 = 1), we find the identity

S1S2 + Q1Q2 = 2P12 −
2

3
, (2.91)

where the so-called transposition operator

P12 =
∑
ij

ai
†ajbj

†bi (2.92)

exchanges the states of the two sites19. Injecting (2.91) into (2.78), we derive
yet another expression for the bilinear-biquadratic Hamiltonian:

H = J (cos ϑ − sin ϑ)S1S2 + J sin ϑ (1 + P12) . (2.93)

19The Schwinger-bosonic construction of the SU(2) algebra (2.30) allows for a similar
identity: setting the spin length to one-half, one finds 2S1S2 + 1/2 = P12.
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Figure 2.4: Singlet (S), triplet (T) and quintuplet (Q) energy levels of the
Hamiltonian (2.71) of a spin-one bond. We find level-crossings at the four
SU(3)-symmetric points, as well as at two extra points satisfying tan ϑ = 1/3.

2.2.2 The bond and the triangle

We have shown earlier that (2.71) is the most general spin-rotationally in-
variant Hamiltonian for a bond of spins one. In order to derive its spectrum,
it is sufficient to notice that it can be rewritten as

H =
J2

4
(S1 + S2)

4 +

(
J1

2
− 2J2

)
(S1 + S2)

2 + (4J2 − 2J1) , (2.94)

where we have used the notation J1 = J cos ϑ and J2 = J sin ϑ for brevity.
The energy levels can be divided into a non-degenerate singlet level, a three-
fold degenerate triplet level and a five-fold degenerate quintuplet level, and
the corresponding eigenvalues are

ES = 4J2 − 2J1,

ET = J2 − J1,

EQ = J2 + J1.

(2.95)

A plot of the energy levels is presented in figure 2.4. The crossing of the
singlet and quintuplet levels at ϑ = π/4 and ϑ = 5π/4 is due to the fact
that the Hamiltonian (2.71) becomes an SU(3) Heisenberg model at these
points, and therefore it only gives rise to an energy difference between SU(3)
multiplets. The corresponding eigenstates of (2.92) are easily derived with
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the help of the bosonic representation: denoting the three flavours defined
on each site by a, b and c, we find that the symmetric states |aa〉, |bb〉, |cc〉,
|ab〉 + |ba〉, |ac〉 + |ca〉 and |bc〉 + |cb〉 belong to the eigenvalue 2J2, while
the antisymmetric states |ab〉 − |ba〉, |ac〉 − |ca〉 and |bc〉 − |cb〉 belong to
the eigenvalue 0. We note that, using a common shorthand-notation for
irreducible SU(3) representations (for reference, see [10]), the transformation
properties of these states under the SU(3) algebra can be summed up in
a concise manner as 3 ⊗ 3 = 6 ⊕ 3̄. Similarly, the crossing of the triplet
and quintuplet levels at the SU(3) points ϑ = π/2 and ϑ = 3π/2 may be
interpreted as 3 ⊗ 3̄ = 8 ⊕ 1. Finally, we note that a degeneracy of the
singlet and triplet levels occurs for tan ϑ = 1/3, where the Hamiltonian
(2.71) becomes equivalent to a projector to the quintuplet subspace:

H = 2J1PS=2 −
2J1

3
, (2.96)

with

PS=2 =
1

24

(
(S1 + S2)

2 − 2
)
(S1 + S2)

2 . (2.97)

If we extend such a coupling with J1 > 0 over a chain of spins one and
impose periodic boundary conditions, we end up with a unique ground state,
the so-called valence-bond solid state [11].

While we do not wish to enter a thorough discussion on this subject,
we nonetheless deem it worthwhile to mention that the spin-one bilinear-
biquadratic chain exhibits a particularly rich phase diagram that includes the
famous Haldane phase with a homogeneous ground state, a gapped spectrum
and an exponential decay of correlations. The gap collapses at ϑ = −π/4,
where an exact solution is provided by the Bethe ansatz (see references in
[11]), and the decay of correlations follows a power law. This critical point
marks the boundary of the Haldane phase with another singlet phase, the
so-called dimerized phase, in which the spectrum of excitations is gapped and
spin correlations are short-ranged again, however, the ground state breaks
translational symmetry and becomes two-fold degenerate. The dimerized
phase spans the whole −3π/4 < ϑ < −π/4 region [12], which includes the
integrable point ϑ = −π/2 [13]. The ferro SU(3) point separates the dimer-
ized phase from a ferromagnetic phase, and it has the particular property
of allowing for long-range ferroquadrupolar correlations, despite the system
being one-dimensional, owing to the fact that the ferroquadrupolar order pa-
rameter commutes with the Hamiltonian at this point [14]. Finally, we note
that the exactly-solvable Lai-Sutherland point ϑ = π/4 [15, 16] separates
the Haldane phase from a critical phase with three soft modes at k = 0 and
k = ±2π/3 [17]. Interestingly enough, the dominant correlations in the crit-
ical phase are antiferroquadrupolar, and they have a period of three lattice
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spacings. For further references and a discussion on recent developments, see
[18]. Reference [8] contains an instructive comparison of the properties of
the spin-one-half chain and the spin-one chain.

Finally, let us add some remarks on the spin-one triangle. One may
construct fourteen independent SU(2)-invariant physical operators in this
case, but restricting ourselves to two-spin interactions leaves us with only
six, namely the bilinear and the biquadratic terms defined on each bond20:
using (2.93), the Hamiltonian can thus be written as

H = J (cos ϑ − sin ϑ) (S1S2 + S2S3 + S3S1) +

+ J sin ϑ (3 + P12 + P23 + P31) .
(2.98)

Even though the Hamiltonian (2.98) can not be expressed simply in terms
of the total spin operator, unlike the Hamiltonian (2.71) of a bond, one may
nonetheless carry out a useful decomposition21 with the help of the following
hermitian SU(3) generators that are defined analogously to (2.80):

QT
α = Q(1)

α + Q(2)
α + Q(3)

α , α = 1, 2 . . . 8. (2.99)

Using (2.91) and (2.82), we rewrite the Hamiltonian (2.98) as

H = J (cos ϑ − sin ϑ)

(
1

2
(S1 + S2 + S3)

2 − 3

)
+

+ J sin ϑ
(
4 + 2

(
Q(1)

α Q(2)
α + Q(2)

α Q(3)
α + Q(3)

α Q(1)
α

))
,

(2.100)

and finally, using the definition of the spin operators (2.21), as well as the
N = 1 case of (2.20), we derive the expression

H = J (cos ϑ − sin ϑ)
(
2
(
QT

5 QT
5 + QT

2 QT
2 + QT

7 QT
7

)
− 3

)
+ J sin ϑ QT

αQT
α .

(2.101)
We note the appearance of the Casimir operator QT

αQT
α , which commutes

with all of the generators22, i. e.

[QT
αQT

α , QT
β ] = QT

α [QT
α , QT

β ] + [QT
α , QT

β ]QT
α =

= ifαβγ

(
QT

αQT
γ + QT

γ QT
α

)
=

= 0,

(2.102)

20In the case of a spin-one-half triangle however, there are only four independent scalars:
apart from the bilinear interactions, one may also define a scalar chirality of the form
S1 (S2 × S3), which is easily shown to be hermitian, as well as to commute with the total
spin.

21This decomposition is available for all geometries where each site is connected to all
other ones. The bond, the triangle and the tetrahedron are examples of such “complete
graphs”.

22An analogous Casimir operator in SU(2) Lie algebras is the operator S2.
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hence we find that the total spin ST and the pair of Dynkin coefficients (q1, q2)
representing SU(3) multiplets23 are all good quantum numbers and can be
used to label eigenstates of the Hamiltonian (2.98). Without entering into
further details (for the complete spectrum, see [18]), we note that 3 ⊗ 3 ⊗
3 = 10 ⊕ 8 ⊕ 8 ⊕ 1. At the ferro SU(3) point, the ground state is ten-fold
degenerate, and it belongs to the A1 (completely symmetric) representation
of the D3 point group of the triangle, while at the antiferro SU(3) point
(and in its vicinity), it is a non-degenerate SU(3) singlet belonging to the A2

representation of D3. The points ϑ = π/2 and ϑ = 3π/2 lose their SU(3)-
symmetric character due to the presence of frustration. Let us conclude
by highlighting an important difference between the spin-one bond and the
spin-one triangle: for ϑ ∈ [π/4, π/2[, the earlier has a triplet ground state,
while the lowest-lying level of the latter is a singlet, which means that the
bond is more easily magnetized than the triangle in this particular region.
Interestingly enough, this simple observation remains quite relevant when
one applies a variational treatment to the square and the triangular lattices.

2.2.3 Variational approach for spin-one systems

In this subsection, we will introduce the basic elements of a variational scheme
that will be used extensively throughout the present work. The key approx-
imation of the method lies in neglecting quantum entanglement between the
S = 1 spins that are defined on different sites, however, all on-site quantum-
mechanical degrees of freedom are treated accurately, including those of quad-
rupolar nature. Mathematically speaking, we approximate the ground state
of a lattice of L sites with a site-factorized wavefunction of the form

|ψ〉 =
n∏

j=1

∏
i∈λj

|ψj(i)〉, (2.103)

where the normalized spin-one wavefunction |ψj(i)〉 is defined on site i, while
the index j accounts for the fact that one may allow for different wavefunc-
tions on different sites: the number of different single-site wavefunctions is
n, and λj denotes the ensemble of sites featuring the same wavefunction. As
the phase of |ψj(i)〉 may be chosen arbitrarily24, |ψ〉 is determined by 4n real
parameters, where n ≤ L. Our aim is to minimize the expectation value
〈ψ|H|ψ〉, where H is the Hamiltonian of the lattice.

23Dynkin coefficients provide a unique labeling, in contrast to our earlier notation, which
is only used for small representations. Expressions such as 3 ⊗ 3 = 6 ⊕ 3̄ can thus be
rewritten as (1, 0) ⊗ (1, 0) = (2, 0) ⊕ (0, 1).

24Changing the phase of any |ψj(i)〉 corresponds to an overall phase transformation of
|ψ〉 and thus leaves expectation values invariant.
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It has to be emphasized that while such a variational approach may give
a useful insight into the physics of two- or higher-dimensional systems [19],
where at zero temperature one often encounters a symmetry-breaking long-
range-ordered state that can be characterized by a relevant on-site order
parameter, it is generally of limited use in the study of one-dimensional sys-
tems, where, unless the order parameter is a conserved quantity, quantum
fluctuations are expected to restore the continuous symmetry of the Hamilto-
nian. One may think of the spin-one bilinear-biquadratic chain for instance,
where out of the four phases, the ferromagnetic one is the only one that
features long-range order, and it is not possible to describe the other three
phases in terms of a site-factorized wavefunction of the form (2.103). On
the other hand, when it is applicable, the variational ansatz (2.103) may not
only give a good approximation of the ground state in terms of its dominant
correlations, but it also serves as a natural starting point for studying the
excitation spectrum and the effect of quantum fluctuations by means of a
flavour-wave expansion. We will discuss these issues in detail further on, but
it might already be useful to quote an analogy with spin-one-half systems,
where on-site wavefunctions describe classical dipole moments in essence, and
quantum fluctuations may be induced systematically via a 1/S-expansion.
The underlying concepts can be extended in a straightforward manner to
systems of higher spins, however, the on-site wavefunctions may quickly de-
velop a considerable complexity, and consequently, the minimization problem
becomes more complicated as well. We also mention that several attempts
have been made to render the variational treatment suitable for the study of
one-dimensional systems [19, 20].

In order to provide a simple but rather instructive demonstration, we will
now apply the variational method to a spin-one bilinear-biquadratic bond:
this is a problem that was first studied in the excellent paper by Papanicolaou
[19]. While one may be tempted to overlook the importance of investigating
elementary systems within the variational framework, the results we derive
here will actually prove to be essential when we attempt to construct the
variational ground state of realistic two-dimensional lattices. One finds that
the minimization is greatly simplified for some selected values of ϑ, namely at
the antiferromagnetic (AFM) and ferromagnetic (FM) points that feature a
pure bilinear coupling, and at the so-called antiferroquadrupolar (AFQ) and
ferroquadrupolar (FQ) points, where only quadrupole moments are coupled
(with a positive and a negative coefficient, respectively). We present the
result of the minimization at these particular points first.

AFM point (ϑ = 0) : Both sites feature coherent spin states with the spin
vectors pointing in opposite directions.
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FM point (ϑ = π) : Coherent spin states with coinciding spin vectors.

AFQ point (ϑ = arctan 2 ≈ 0.35π) : A glance at (2.78) tells us that we
have to minimize 〈Q1Q2〉, which can be rewritten as

〈Q1Q2〉 = |d1
∗ · d2|2 + |d1 · d2|2 −

2

3
, (2.104)

where the components of the vector di give the projection of |ψi〉 to
the states of the basis (2.1). We see that 〈Q1Q2〉 is minimized if |ψ2〉
is orthogonal both to |ψ1〉 and its time-reversal transform: it follows
that one of the sites has to have a pure quadrupole with a director d,
while the other one will feature either a quadrupole with its director
perpendicular to d, or a spin vector of arbitrary length pointing along
d.

FQ point (ϑ = arctan 2 + π ≈ 1.35π) : 〈Q1Q2〉 is maximized by two quad-
rupolar states with parallel directors25.

A numerical minimization reveals that each of the above solutions extends
over a finite ϑ-interval, and the four resulting regions are separated from each
other by SU(3)-symmetric points26: this is perhaps most visible on the plot
of the energy-minimum as a function of ϑ that we show in figure 2.5. It is
important to emphasize that the AFQ solution is peculiar in the sense that
fixing the state on the first site as a quadrupole with a well-defined director
does not completely determine the state on the second site. In fact, as we
show in figure 2.6, the state on the second site may interpolate continuously
between a pure quadrupole and a coherent spin state: the director may ro-
tate around that of the first site, and the spin length may also be chosen
arbitrarily. The degeneracy of the bond-solution has a remarkable conse-
quence, when one extends the AFQ coupling to a spin-one triangle. While a
dipole moment is no longer admitted in this case, the energy of every bond
can be minimized simultaneously via three quadrupolar states with mutually
perpendicular directors, hence the frustration effect is lifted (see figure 2.7).
At the same time, since the variational solution is unique up to global SU(2)

25We note that for two quadrupolar states, 〈Q1Q2〉 = 2 (d1 · d2)
2 − 2

3 is maximized
(minimized) by a parallel (perpendicular) arrangement of directors, therefore we say that
a negative (positive) quadrupolar exchange favours a ferroquadrupolar (antiferroquadrupo-
lar) state.

26This finding is easily verified analytically [19]. In fact, in analogy with (2.104), we
may rewrite the bilinear coupling as 〈S1S2〉 = |d1

∗ · d2|2 − |d1 · d2|2, and we may deduce
that the total energy can only be minimized by configurations in which |d1

∗ · d2|2 and
|d1 · d2|2 both attain extreme values.



32 Introduction to quadrupoles

Π

4

Π

2

5 Π

4

3 Π

2
2 Π
J

-2.0

-1.5

-1.0

-0.5

0.5

1.0

E

J

Figure 2.5: Variational energy of the spin-one bilinear-biquadratic bond. The
dots are the results of a numerical minimization, while the curves come from
conjecturing particular types of solutions: AFM (red curve), AFQ (green
curve), FM (blue curve) and FQ (purple curve). The four distinct regions
are separated by the SU(3)-symmetric points.

Figure 2.6: Degeneracy of the AFQ solution for a bond. Keeping one of
the sites in a quadrupolar state, one may find either a quadrupole (left), a
partially developed dipole (middle) or a fully polarized state (right) on the
second site. Directors and dipole moments are represented by blue lines and
red arrows, respectively.
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Figure 2.7: Interplay of frustrated geometry and antiferroquadrupolar cou-
pling. While the variational solution for a triangle is unique up to global
SU(2) rotations (left), the square admits a number of possible configurations
(two examples are shown in the middle and on the right). Directors and
dipole moments are represented by blue lines and red arrows, respectively.

rotations, non-trivial degeneracies are eliminated. The importance of frus-
trated geometries in this aspect is further exemplified by the case of a single
square, where it can be shown that a configuration with minimum energy will
feature two quadrupoles with parallel directors along one of the diagonals of
the square, but the states on the other two sites can be varied independently
from each other, and even if both states are magnetic, they might feature
different spin lengths or the dipoles might point in opposite directions (al-
though they will have to align themselves with the common director of the
quadrupoles). We depict two examples in figure 2.7.

Let us now treat the SU(3)-symmetric points separately.

antiferro SU(3) point (ϑ = π/4) : With the help of (2.93), we may de-
duce that the quantity to minimize is 〈P12〉 = |〈ψ1|ψ2〉|2, i. e. the states
on the two sites have to be orthogonal to each other. A wide range
of possibilities includes the solutions for the AFM point and the AFQ
point, and one finds that a peculiar type of antiferromagnetic state
is also satisfactory: it features two spin vectors of the same length
pointing in opposite directions, and the directors of the two states are
perpendicular to each other.

ferro SU(3) point (ϑ = 5π/4) : The two sites must feature the same states.

ϑ = π/2 : A variety of solutions includes those of the AFQ point and the FM
point, as well as a peculiar type of ferromagnetic state which features
the same spin vector on both sites, while the directors of the two states
are perpendicular to each other.

ϑ = 3π/2 : The minimum is given by the solutions of the AFM point and
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the FQ point, and by an intermediate type of state which features two
spin vectors of the same length pointing in opposite directions, while
the directors remain the same on both sites (in other words, the two
states are connected via time reversal).

It turns out that these points of higher symmetry do not only admit the
solutions of the two regions that they separate from each other, but also al-
low for configurations that interpolate continuously between these solutions.
Simple examples of such intermediate states could be

|ψ1〉 = cos η|x〉 + i sin η|y〉,
|ψ2〉 = cos η|y〉 + i sin η|x〉

(2.105)

for ϑ = π/4,

|ψ1〉 = cos η|x〉 + i sin η|y〉,
|ψ2〉 = cos η|x〉 + i sin η|y〉

(2.106)

for ϑ = 5π/4,

|ψ1〉 = cos η|x〉 + i sin η|y〉,
|ψ2〉 = cos η|y〉 − i sin η|x〉

(2.107)

for ϑ = π/2, and

|ψ1〉 = cos η|x〉 + i sin η|y〉,
|ψ2〉 = cos η|x〉 − i sin η|y〉

(2.108)

for ϑ = 3π/2, with η ∈ [0, π/4]: these configurations are depicted in figure
2.8. It is interesting to notice a particular difference between the SU(3) points
ϑ = π/2 and ϑ = 3π/2: while the earlier possesses a number of exotic varia-
tional ground states that are different from the ones we mentioned explicitly,
the latter does not admit other configurations but the ones that interpolate
between the AFM and the FQ solutions27. As a consequence, if we consider
a spin-one triangle with pure biquadratic couplings28, we get very different
types of behaviour depending on the sign of the coupling. For a negative
sign, the variational ansatz yields a simple ferroquadrupolar configuration,

27The exact spectrum of the bond may provide an explanation for this difference: since
the triplet and quintuplet levels cross at these points, the ground state is eight-fold de-
generate for ϑ = π/2, while it is non-degenerate for ϑ = 3π/2 (see figure 2.4), therefore
practically any state written up at random has a good chance of belonging to the ground-
state manifold for ϑ = π/2.

28We remind the reader that this model does not possess SU(3) symmetry.
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Figure 2.8: Interpolating configurations at the SU(3) points. In each row
from top to bottom, we represent pictorially the wavefunction (2.105),
(2.106), (2.107) and (2.108), respectively. Blue lines symbolize directors,
while red arrows symbolize dipole moments.
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however, for a positive sign, we still end up with an extensive degeneracy29.
These observations suggest that the ferroquadrupolar region of the bilinear-
biquadratic model extends further for the triangle than for the bond (i. e. it
penetrates the ϑ > 3π/2 domain), moreover, the point ϑ = π/2 remains
a separating point between the ferromagnetic and the antiferroquadrupolar
regions for the triangle as well. Finally, we add that the interpolating state
found for the bond at ϑ = π/2 allows for a particular configuration on the
triangle, in which one of the sites is quadrupolar, the other two feature iden-
tical spin vectors that are parallel to the director of the quadrupole, and the
directors of the two magnetic states are perpendicular to each other30.

2.2.4 Origins of the biquadratic coupling

Classical spin systems with frustrated antiferromagnetic interactions often
possess a high degeneracy in the ground-state manifold, and are therefore
particularly susceptible to perturbations. Several cases are known where the
introduction of a physically-motivated extra term induces a selection mech-
anism that favours a collinear configuration of the spins, and this effect can
be conveniently modeled with the help of a phenomenological biquadratic in-
teraction. As an example, one might think of the coupling between spin and
lattice degrees of freedom that originates in the dependence of the exchange
integrals on the atomic positions in a crystal [21]. Since the exchange inte-
grals are linear functions of the displacement coordinates, while the elastic
energy of the deformation shows quadratic behaviour, a frustrated system
may gain energy by distorting the lattice: naturally, the lattice distortion
and the associated energy gain depend on the particular spin configuration,
and this leads to a lift of degeneracy in the ground-state manifold. This phe-
nomenon is discussed in detail for the case of a single tetrahedral molecule
with four spins in [22], and one indeed finds that collinear states are selected.
If we assume that the exchange integral for a pair of spins i and j depends only
on the inter-atomic distance (a reasonable assumption for direct exchange),
furthermore that the elastic energy associated with a bond distortion can be
written as κ(δrij)

2/2, where δrij is the variation of the bond length and κ is
the elastic constant, we end up with the so-called bond-phonon model:

Hbp =
∑
〈i,j〉

{
J(1 − αδrij)SiSj +

κ

2
(δrij)

2
}

, (2.109)

29Naturally, the solutions include the fully polarized ferromagnetic configuration, as well
as the antiferroquadrupolar state with three mutually perpendicular directors.

30We only mention in a footnote that this result explains the emergence of an exotic
2/3-magnetization plateau in the vicinity of ϑ = π/2 for the triangular lattice bilinear-
biquadratic model [5].
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where α is the spin-lattice coupling constant. Considering δrij as indepen-
dent parameters, we may integrate them out31 and find an effective spin
Hamiltonian:

Hbp
eff = J

∑
〈i,j〉

{
SiSj − b (SiSj)

2} , (2.110)

where b = Jα2/2κ is a dimensionless constant. We may conclude that due to
the emergent biquadratic term, a collinear arrangement of spins will become
favourable. It was suggested on the basis of the bond-phonon model, as
well as the improved site-phonon model which induces an effective coupling
between different bond variables, that lattice distortion may play a crucial
role in the stabilization of the robust half-magnetization plateau phase that
was found in some spinel oxides [24, 25]. Let us point out however that the
introduction of extra coupling terms is not the only way of lifting the ground-
state degeneracy in classical frustrated systems. It was shown on a quite
general basis that both quantum and thermal fluctuations tend to favour
collinear spin configurations, and they may eventually give rise to long-range
order in a vast variety of systems [26, 27, 28, 29]: this is the so-called “order-
by-disorder” phenomenon [30]. The associated ground-state selection may
often be modeled by introducing an effective biquadratic exchange term: the
case of the anisotropic Heisenberg model (or XXZ model) will be discussed
in detail in appendix B.

Having motivated the study of biquadratic terms in classical spin systems,
we will abandon this topic for the remainder of the present work. In fact,
these classical biquadratic terms are not only conceptually very different from
the quantum-mechanical biquadratic interaction that addresses the quadru-
polar nature of spins one, but the physical intuition gained from the study of
the earlier might also be misleading in the study of the latter32. One must em-
phasize that the variational approach based on site-factorized wavefunctions
is not quite the same as the classical treatment where the spins become unit
vectors, and this remains true even if we restrict the Hilbert space to coher-
ent spin states. This is easily demonstrated already for a single biquadratic
bond: considering a pair of coherent spin states, 〈(S1S2)

2〉 ∼ 〈P12〉 − 〈S1S2〉
is minimized only by a ferromagnetic configuration, a classical biquadratic
term however gives the same for parallel and antiparallel spins, and it is
minimized only by a pair of perpendicular spins. Even though the difference
in this particular case might simply be attributed to the apparent presence

31Note that this step breaks down for quantum spins due to non-commutativity [23].
32The 1/3-magnetization plateau on the triangular lattice, however, can be seen as a

counterexample, as it may be stabilized either via an effective biquadratic term modeling
quantum fluctuations around the classical limit [28], or via the introduction of a true
quantum-mechanical biquadratic term in a spin-one system [5].
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of quadrupolar components in the coupling, one might wonder about the
possibility of frustrating a spin-one system with pure bilinear couplings to
such an extent that it starts accessing the quadrupolar degrees of freedom in
the on-site wavefunctions. This certainly does not happen yet for a spin-one
triangle, as the variational approach yields 120-degree order with fully devel-
oped spins in this case. Bearing these remarks in mind, we will nonetheless
often refer to the variational treatment as “classical” for two reasons: firstly,
because even though on-site wavefunctions describe quantum-mechanical de-
grees of freedom, there is no entanglement between wavefunctions belonging
to different sites33, and secondly, because site-factorized wavefunctions pro-
vide a starting point for the flavour-wave expansion that is analogous to the
semi-classical spin-wave expansion.

In the upcoming chapters, we will consider the biquadratic interaction as
a true quantum-mechanical term stemming from virtual fermionic transitions
that are associated with the Hubbard model in the limit of strong repulsion.
Having electrons in mind, one may not expect the emergence of biquadratic
terms in the non-degenerate Hubbard model, since it accounts for the physics
of Mott insulators with localized spins one-half, however, the presence of
orbital degeneracy may quite naturally give rise to an effective biquadratic
coupling. In order to demonstrate this, we present the case of the simple
eg molecule, following the discussion in [8]. Let us consider two sites, each
with a two-fold degenerate orbital: the electronic operators corresponding
to the one-particle states can be written as c†jaσ and c†jbσ, where j ∈ {1, 2}
is the site index, a and b represent the orbitals, and σ ∈ {↑, ↓} stands for
the spin variable. Assuming that the hopping does not mix the orbitals,
furthermore that all hopping processes have an equal amplitude t, we may
write the one-particle hopping term as

Hhop = −t
∑

σ

(
c†1aσc2aσ + c†2aσc1aσ + c†1bσc2bσ + c†2bσc1bσ

)
. (2.111)

We will denote the on-site Hubbard repulsion for electrons in the same or-
bital by U , and for electrons in different orbitals by Uab, and we introduce
an exchange constant J > 0 that ensures that if two electrons occupy dif-
ferent orbitals on the same site, they form a spin triplet. The two-particle

33For this reason, the variational ansatz may also be called a mean-field ansatz.
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interaction can then be written as

Hint = U
∑

j

(nja↑nja↓ + njb↑njb↓) + Uab

∑
j

∑
σ,σ′

njaσnjbσ′−

− 2J
∑

j

nja↑ − nja↓

2

njb↑ − njb↓

2
−

− J
∑

j

(
c†ja↑cja↓c

†
jb↓cjb↑ + c†ja↓cja↑c

†
jb↑cjb↓

)
,

(2.112)

where the last term, the spin-flip term, is the only non-diagonal one. Let
us consider the system at half-filling (four electrons), in the limit of strong
interaction defined by U,Uab, J À t. In the absence of the hopping terms
(t = 0), the ground-state manifold is spanned by configurations featuring
two electrons on each site, one in each orbital, and the two electrons of
a given site form a triplet. Since the local triplets are independent, the
ground state is nine-fold degenerate. However, if charge fluctuations are
not entirely suppressed but still remain relatively small, they introduce an
effective coupling between the spin degrees of freedom of the on-site triplets,
in the spirit of perturbation theory. Naturally, since Hhop + Hint is isotropic
with respect to the spin variables, the effective Hamiltonian Heff will be an
SU(2)-invariant spin-one model: in order to find Heff , it is therefore sufficient
to calculate the energy of the |S = 2, Sz = 2〉 quintuplet state, the |S =
1, Sz = 1〉 triplet state and the |S = 0, Sz = 0〉 singlet state. Elementary
spin algebra reveals the form of these states:

|S = 2, Sz = 2〉 = |1〉 ⊗ |1〉,

|S = 1, Sz = 1〉 =
1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) ,

|S = 0, Sz = 0〉 =
1√
3

(|1〉 ⊗ |1̄〉 + |1̄〉 ⊗ |1〉 − |0〉 ⊗ |0〉) ,

(2.113)

where |0〉, |1〉 and |1̄〉 represent the on-site triplet states. Let us denote the
three states on the left-hand side of (2.113) by |Q〉, |T 〉 and |S〉 for brevity,
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and express them with the help of the fermionic operators:

|Q〉 = c†1a↑c
†
1b↑c

†
2a↑c

†
2b↑|vac〉,

|T 〉 =
1

2

[(
c†1a↓c

†
1b↑ + c†1a↑c

†
1b↓

)
c†2a↑c

†
2b↑−

−c†1a↑c
†
1b↑

(
c†2a↓c

†
2b↑ + c†2a↑c

†
2b↓

)]
|vac〉,

|S〉 =
1√
3

[
c†1a↑c

†
1b↑c

†
2a↓c

†
2b↓ + c†1a↓c

†
1b↓c

†
2a↑c

†
2b↑−

−1

2

(
c†1a↓c

†
1b↑ + c†1a↑c

†
1b↓

)(
c†2a↓c

†
2b↑ + c†2a↑c

†
2b↓

)]
|vac〉,

(2.114)

where |vac〉 is the electronic vacuum. The energy of the quintuplet level is
easy to find, since neither hopping, nor spin-flip events may occur in the
state |Q〉, i. e. it is an eigenstate of the Hamiltonian. The associated energy-
eigenvalue is

EQ = 2Uab − J. (2.115)

Acting with the Hamiltonian on the triplet state, we find an ionized state:

(Hhop + Hint) |T 〉 = (2Uab − J) |T 〉 − 2t|Texc〉, (2.116)

where

|Texc〉 =
1

2

[
c†1a↑c

†
2a↑

(
c†1b↑c

†
1b↓ + c†2b↑c

†
2b↓

)
+

+c†1b↑c
†
2b↑

(
c†1a↑c

†
1a↓ + c†2a↑c

†
2a↓

)]
|vac〉,

(2.117)

however, since

(Hhop + Hint) |Texc〉 = (2Uab + U) |Texc〉 − 2t|T 〉, (2.118)

the states |T 〉 and |Texc〉 span a two-dimensional subspace of the Hamiltonian.
Subtracting the constant EQ from the energy of both states, we may find the
triplet-quintuplet splitting by solving the equation∣∣∣∣−λ −2t

−2t −λ + U + J

∣∣∣∣ = 0 (2.119)

and picking the solution λ that vanishes in the t → 0 limit. The result is

ET − EQ =
U + J

2

(
1 −

√
1 +

16t2

(U + J)2

)
, (2.120)
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which may be expanded to quartic order in t as

ET − EQ ≈ − 4t2

U + J
+

16t4

(U + J)3
. (2.121)

The energy of the singlet level can be found in a similar way, however, the
calculation is a bit more tedious, therefore we will only quote the result from
[8]:

ES − EQ ≈ − 6t2

U + J
+

+
12t4

(U + J)2

(
3

U + J
− 2

2(U + Uab) + J
− 2

2(U − Uab) + J

)
.

(2.122)

The lowest-order term is easily verified with the help of second-order pertur-
bation theory: indeed,

Hhop|S〉 =
√

6t|Sexc〉, (2.123)

where the excited state

|Sexc〉 =
1√
8

[(
c†1a↑c

†
2a↓ − c†1a↓c

†
2a↑

)(
c†1b↑c

†
1b↓ + c†2b↑c

†
2b↓

)
+

+
(
c†1b↑c

†
2b↓ − c†1b↓c

†
2b↑

) (
c†1a↑c

†
1a↓ + c†2a↑c

†
2a↓

)]
|vac〉

(2.124)

is connected to |S〉 via a matrix element
√

6t, and the excitation energy is
U + J . Let us compare the energy levels we obtained to those of a spin-one
bilinear-biquadratic Hamiltonian: a glance at (2.95) reveals that we need to
satisfy

ET − EQ = −2J1,

ES − EQ = 3(J2 − J1),
(2.125)

which gives

J1 =
2t2

U + J
− 8t4

(U + J)3
,

J2 =
4t4

(U + J)2

(
1

U + J
− 2

2(U + Uab) + J
− 2

2(U − Uab) + J

)
,

(2.126)

up to fourth order in t. Considering only second-order virtual hopping
processes, we recover a pure antiferromagnetic Heisenberg coupling, which
should not come as a surprise, since these processes only involve the exchange
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of a single electron of spin one-half. However, starting from fourth order in
t, the bilinear interaction alone is insufficient to account for the splitting of
the energy levels, and we find an effective biquadratic term which, assuming
that U − Uab ¿ U , has a negative coefficient. Since the bilinear-biquadratic
Hamiltonian is the most general spin-rotationally invariant Hamiltonian for
a pair of spins one, virtual hopping processes of higher order will only renor-
malize the coupling coefficients J1 and J2 in the present case. If our molecule
had higher on-site spins, further terms would emerge in subsequent orders of
t, however, the biquadratic interaction would still be the dominant correction
to the Heisenberg Hamiltonian: in fact, this coupling was first found exper-
imentally for Mn2+ ions with an S = 5/2 spin [31, 32]. On the other hand,
if one considers a molecule comprising several spin-one sites, terms such as
(S1S2)(S2S3) might appear already at the fourth order in t, in addition to
plaquette exchange and further-neighbour pair exchange that are present in
spin-one-half systems as well [33].

Our study of the eg molecule might lead us to think that the effective bi-
quadratic interaction will generally have a small negative coefficient. While
this is certainly a reasonable expectation in most cases, we have to keep in
mind that we have completely neglected the role of higher-lying states in the
preceding discussion. In fact, if we introduce a low-lying third orbital c that
is separated by a small crystal-field splitting from the orbitals a and b, we
will allow for additional second-order hopping processes that favour a ferro-
magnetic alignment of spins34, and this may eventually reduce the value of
J1 quite considerably, perhaps even push it in the negative regime. Cancel-
lation effects in the leading order of perturbation theory enhance the role of
higher-order contributions, and a dominant biquadratic term with J2 < 0 was
shown to emerge in several situations of orbital quasi-degeneracy [34, 35]. We
mention that the underlying mechanism seems to be experimentally realized
in the spin-one chain system LiVGe2O6 [36]. While a sizeable biquadratic
interaction with J2 > 0 still remains to be found within the framework of the
electronic Hubbard model, an effective spin-one model with J1 = J2 > 0 is
easily recovered if we consider three-flavour fermions in the limit of strong
interaction. Let us take a simplified SU(3)-symmetric Hubbard model with
a single orbital:

H = −t
∑
〈i,j〉,α

(c†iαcjα + c†jαciα) + U
∑
i,α<β

niαniβ, (2.127)

34Starting out from the state |Q〉 for instance, an electron now has the opportunity to
hop back and forth via the c orbital of the neighbouring site, and the intermediate state
will have a relatively low energy due to Hund’s coupling that favours parallel spins on a
given site. As a result, the quintuplet configuration will gain energy.
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where c†iα and ciα create and annihilate a fermion at site i with flavour α,
respectively, and niα = c†iαciα. Considering L/3 fermions on a lattice of L sites
(1/3-filling), the ground-state manifold has a degeneracy of 3L in the absence
of hopping: each particle occupies a different site with an arbitrary flavour.
Virtual hopping processes will induce an effective interaction between the
flavour degrees of freedom, and to second order in t/U , the low-energy physics
is captured by the SU(3) antiferromagnetic Heisenberg model with a coupling
constant J = 2t2/U :

Heff = J
∑
〈i,j〉

Pij, (2.128)

where Pij is the familiar transposition operator that exchanges the states of
sites i and j, i. e. Pij|αiβj〉 = |βiαj〉. The effective model Heff can be seen as
a spin-one bilinear-biquadratic model at the antiferro SU(3) point ϑ = π/4.





Chapter 3

Quadrupolar ordering on the
triangular lattice in the
presence of single-ion
anisotropy

In recent years, considerable effort has been dedicated to the exploration of
the phase diagram of the spin-one bilinear-biquadratic model on the trian-
gular lattice. These extensive studies have been partly motivated by exper-
imental investigations of the material NiGa2S4 (see figure 3.1) that revealed
anomalous low-temperature properties indicating the emergence of a spin-
liquid state [37]. Extending the Heisenberg model with a phenomenological
biquadratic term, Tsunetsugu and Arikawa have shown that several of these
properties, in particular the absence of magnetic Bragg peaks, the finite value
of the susceptibility at zero temperature and the characteristic T2-behaviour
of the specific heat, might be accounted for within the framework of an-
tiferroquadrupolar ordering [38]. Läuchli, Mila and Penc mapped out the
complete phase diagram of the model in a magnetic field: having compared
the two emergent quadrupolar phases, they pointed out experimentally rel-
evant properties that depended on the sign of the biquadratic coupling and
they emphasized that the occurrence of ferroquadrupolar order in the ma-
terial remained a possibility as well [5]. A parallel study by Bhattacharjee,
Shenoy and Senthil highlighted the role of anisotropy in the context of dis-
tinguishing between the two different types of nematic order [39]. We should
mention that the unambiguous identification of such elusive states of matter
remains quite a challenge from the experimental point of view [40, 41, 42],
and alternative theoretical attempts were also made to explain the measure-
ments [43, 44], however, the recent finite-temperature results of Stoudenmire,
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Figure 3.1: Crystal structure of NiGa2S4. The material is a Mott insulator
featuring a highly two-dimensional structure with triangular layers of NiS2.
Magnetism is associated with the S = 1 spin of the Ni2+ ions. The figures
are taken from [37].

Trebst and Balents reasserted the possible relevance of quadrupolar physics
to NiGa2S4 [45].

In this chapter, we are aiming to enter the above discussion via a de-
tailed study of the effect of single-ion anisotropy on quadrupolar phases.
More specifically, we will consider spins one on a triangular lattice with
nearest-neighbour bilinear-biquadratic interactions in the presence of a uni-
form anisotropy field:

H = J
∑
〈i,j〉

[
cos ϑ SiSj + sin ϑ (SiSj)

2] + D
∑

i

(Sz
i )

2 . (3.1)

We will perform a thorough investigation of the variational phase diagram of
the model (3.1), employ flavour-wave theory to derive the excitation spectrum
of the emergent quadrupolar phases, and carry out a perturbative analysis of
the effect of quantum fluctuations in the limit of large (easy-plane or easy-
axis) anisotropy. We will conclude the chapter by discussing our results in
the context of NiGa2S4.

3.1 Phase diagram of the bilinear-biquadratic

model with an anisotropy field

Let us calculate the ground-state phase diagram of the model (3.1) within
the framework of the variational ansatz (2.103) that was introduced in the
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previous chapter1. The following considerations reveal that one may assume
three-sublattice order in the minimization of 〈ψ|H|ψ〉, i. e. the wavefunction
(2.103) can be chosen to be of the form∏

i∈ΛA

|ψA(i)〉
∏

i∈ΛB

|ψB(i)〉
∏

i∈ΛC

|ψC(i)〉, (3.2)

where Λj denotes the ensemble of sites belonging to sublattice j. Let us
rewrite the Hamiltonian (3.1) as a sum of triangular plaquette terms:

H =
2L∑

α=1

Hα, (3.3)

where L is the total number of sites. Denoting the spins of plaquette α by
{Si,α, i = 1, 2, 3} and using the convention S4,α ≡ S1,α, we may write the
plaquette Hamiltonian as

Hα =
J

2

3∑
i=1

[
cos ϑ Si,αSi+1,α + sin ϑ (Si,αSi+1,α)2] +

D

6

3∑
i=1

(
Sz

i,α

)2
, (3.4)

where the factors 1/2 and 1/6 account for the fact that every spin belongs
to six different plaquettes and every bond has two neighbouring plaquettes.
A priori, the plaquette energies may not be minimized independently from
each other, and thus, denoting the ground-state energy of Hα by Eα, one
may only state that 2LEα is a lower bound of the ground-state energy of
the total Hamiltonian. Nonetheless, there is an essentially unique way of
constructing spin configurations that minimize all plaquette energies, and
thus the energy of the total Hamiltonian as well. Indeed, let us select a
plaquette of the triangular lattice and choose a configuration that minimizes
its energy: this arrangement of spins can then be extended in an unambiguous
way over the whole lattice, leading to a three-sublattice ordered state of the
form (3.2) that minimizes 〈ψ|H|ψ〉. Choosing a plaquette configuration that
does not minimize the energy of the selected plaquette, or deviating from
the prescribed way of extending the plaquette solution over the whole lattice
both lead to states of higher energy2. We may conclude therefore that it

1We will often refer to the resulting phase diagram as the mean-field or classical phase
diagram.

2On the other hand, one may envisage a case where the plaquette solution is such that
fixing two of the spins does not determine the third spin completely, thus there are several
different ways of constructing ground states over the whole lattice, starting from a single
plaquette. The triangular lattice Ising antiferromagnet could serve as an example of such
a case.
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is sufficient to minimize the energy of three spins on a triangle in order to
minimize 〈ψ|H|ψ〉. The energy per site of a three-sublattice ordered state is
given by

ε = 〈ψ4|H4|ψ4〉, (3.5)

where

H4 = J cos ϑ [S1S2 + S2S3 + S3S1] +

+ J sin ϑ
[
(S1S2)

2 + (S2S3)
2 + (S3S1)

2] +

+
D

3

[
(Sz

1)
2 + (Sz

2)
2 + (Sz

3)
2] (3.6)

and

|ψ4〉 = |ψ1〉|ψ2〉|ψ3〉. (3.7)

In some simple cases, the ground state may be found analytically, however,
for a general set of parameters {ϑ,D/J}, the minimization has to be carried
out numerically3. In appendix A, we present the principal elements of a
stability analysis that may complement these numerical investigations.

3.1.1 Isotropic case: D = 0

We should emphasize that familiarity with the variational solution for a single
bilinear-biquadratic bond proves invaluable in the swift determination of the
phase diagram of the model (3.1) in the isotropic case D = 0. In fact, with the
help of the results of subsection 2.2.3, an interested reader may immediately
deduce five-eighth of the complete phase diagram. However, since the present
problem has already been investigated [38, 5], we prefer to skip a discussion
on technicalities that are associated with exploring the ground-state manifold
of the model, and state the final results straightaway instead. We find four
distinct phases: an antiferroquadrupolar (AFQ) phase for π/4 < ϑ < π/2, a
ferromagnetic (FM) phase in the region π/2 < ϑ < 5π/4, a ferroquadrupolar
(FQ) phase in the interval 5π/4 < ϑ ≤ θ, and finally, an antiferromagnetic
(AFM) phase in the parameter ranges θ < ϑ ≤ 2π and 0 ≤ ϑ < π/4, where
we have denoted by θ = 2π−arctan 2 ≈ 1.65π a second-order phase boundary
between the FQ and AFM phases. A plot of the energy of a bond is shown as
a function of ϑ in figure 3.2. In the FM phase, the same coherent spin state is
found on every site, while the FQ and AFQ phases feature pure quadrupolar

3We have optimized the Random Search method of Mathematica 5.2 for this task. In
our experience, this method is far more efficient in finding global minima of ε than other
built-in direct search methods of Mathematica such as Nelder-Mead, Differential Evolution
or Simulated Annealing.
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Figure 3.2: Energy of a bond in the three-sublattice ordered state on the
triangular lattice. The dots are the results of a numerical minimization,
while the curves come from conjecturing particular types of phases: AFM
(red curve), AFQ (green curve), FM (blue curve) and FQ (purple curve).
The point θ ≈ 1.65π denotes a second-order phase transition. The variational
energy of an isolated spin-one bond is also shown for comparison (black curve)
in the region where the bonds of the triangular lattice are frustrated.
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states: in the earlier, the quadrupoles are identical, while in the latter, a
three-sublattice order is formed via three different quadrupolar states with
mutually perpendicular directors. None of the bonds are frustrated in the
region π/4 ≤ ϑ ≤ 3π/2, however, the shift in the boundary of the FQ phase
to the ϑ > 3π/2 region is a manifest sign of frustration at work: eventually,
the FQ phase becomes locally unstable at ϑ = θ, and the ensuing continuous
transition gives rise to a peculiar AFM phase. This latter features three
dipole moments of equal length forming 120-degree order: the directors of
the three states are collinear for ϑ < 0, they are undefined for ϑ = 0 as
the spin vectors become fully developed, and they subtend an angle of 120
degrees with each other for ϑ > 0. In order to provide a full description of
the AFM phase, we introduce the single-site wavefunctions

|ψ1〉 = cos η|z〉 − i sin η|y〉,

|ψ2〉 = cos η|z〉 + i sin η

(√
3

2
|x〉 +

1

2
|y〉

)
,

|ψ3〉 = cos η|z〉 + i sin η

(
−
√

3

2
|x〉 +

1

2
|y〉

)
,

(3.8)

where η ∈]0, π/2[. The set (3.8) corresponds to three spins in the xy plane
with an angle of 120 degrees between each pair of them: the spin length
is sin(2η), the quadrupolar exchange between any two states is given by
〈QiQj〉 = 4

3
− 4 sin2 η + 10

4
sin4 η, and the directors of the three states are

parallel to the z axis for η < π/4, whereas they form 120-degree order in the
xy plane for η > π/4. A minimization of ε with respect to η gives

sin2 η =
3 sin ϑ + 6 cos ϑ
3
2
sin ϑ + 12 cos ϑ

,

ε

J
= 6 sin ϑ − (3 sin ϑ + 6 cos ϑ)2

3 sin ϑ + 24 cos ϑ
.

(3.9)

We see that the expressions (3.9) are consistent with the properties of the
AFM phase that we mentioned earlier. At the antiferro SU(3) point, we
find sin η =

√
2/3, which ensures the orthogonality of the set (3.8). In the

ϑ → θ limit, we recover a ferroquadrupolar state with directors parallel to
the z axis. Finally, let us say a few words about the three phase boundaries
that were not shifted by the presence of frustration. We should not feel
surprised to find that both the ferro and the antiferro SU(3) points admit the
configurations that are representative of the neighbouring phases, however,
the same property holds for the ϑ = π/2 point, despite the fact that its
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SU(3)-symmetric character is lost due to frustration. All three points possess
a variety of variational solutions, and while this degeneracy is easily captured
for the SU(3)-symmetric points4, it is quite difficult to characterize at the
point ϑ = π/2. Nonetheless, it is interesting to note that, as follows from
our earlier discussion on interpolating states (see figure 2.8, for instance),
a peculiar deformation of the antiferroquadrupolar arrangement is allowed
both for ϑ = π/2 and ϑ = π/4. Two of the quadrupoles may develop dipole
moments along the director of the third quadrupole, while the directors of
the three states remain mutually perpendicular: for ϑ = π/2, the two dipole
moments are identical, while for ϑ = π/4, they add up to zero.

Before moving on to the case of finite anisotropy, let us give an overview
of the effect of quantum fluctuations on the phase diagram of the isotropic
model [5]. It is clear that the symmetry-breaking long-range ordered states
that stem from the variational approach may only be stabilized in the ther-
modynamic limit, however, exact diagonalization of small clusters provides
nonetheless a useful numerical insight into the physics of the quantum sys-
tem. Different phases may be identified by calculating the correlation func-
tions and by investigating the low-energy spectrum: should a long-range
ordered state emerge in the thermodynamic limit, finite-size scaling will re-
veal its dominant correlations, furthermore, a particular set of eigenstates,
the so-called Anderson tower, is expected to gradually collapse on the ground
state upon an increase of the system size [46]. We should emphasize that the
symmetry properties of the states that form the tower are intimately linked
to those of the proposed long-range ordered state [47]. An introduction to
the related concept of symmetry-breaking is given in [48], and the Anderson
towers that were obtained for the present problem may be found in [18]. It
turns out that the mean-field description of the phase diagram is basically
correct on qualitative grounds, which is certainly an important motivating
factor for the variational study of the model (3.1) in the D 6= 0 case. How-
ever, quantum fluctuations give rise to a further shift in the boundary of
the FQ phase towards the ϑ = 0 point, and this change is quite consider-
able, as the numerical analysis indicates θED ≈ 1.9π. The proximity of this
quantum phase transition to the Heisenberg point, together with the finding
that long-range ferroquadrupolar order may coexist with short-range helical
magnetic order, are among the principal arguments in support of the idea
that the elusive properties of NiGa2S4 may be attributed to the presence of
strong ferroquadrupolar correlations in this material.

4For ϑ = 5π/4, all sites feature the same state, whereas at the point ϑ = π/4, the
requirement is that the three states that are representative of the three sublattices form a
basis in the Hilbert space of a spin one.
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3.1.2 Easy-plane anisotropy field: D > 0

Let us begin by highlighting two observations that will prove particularly
helpful in understanding the variational phase diagram of the model (3.1) in
the D > 0 case. Firstly, we should point out that the quantum-mechanical
model possesses a unique ferroquadrupolar ground state with all directors
aligned parallel to the z axis in the D/J → ∞ limit, and in the variational
approach, one should recover this solution at a sufficiently large but finite
D/J ratio for an arbitrary fixed value of ϑ. We note that the variational
energy of the configuration is ε/J = 6 sin ϑ. Secondly, all four phases that are
present for the isotropic model feature a high level of degeneracy, therefore
it is natural to expect that the behaviour of the system in the D/J → 0
limit will be governed by a lift of degeneracy that is associated with the
symmetry-reducing character of the anisotropy field.

The phase diagram features six distinct phases, and it is shown in fig-
ure 3.3. The ferroquadrupolar phase mentioned earlier occupies the region
5π/4 ≤ ϑ ≤ θ down to arbitrarily small values of the anisotropy field, how-
ever, lowering D for other values of ϑ may give rise to three different phases
via a second-order phase transition.

θ − 2π < ϑ < π/4 : Three-sublattice order emerges at D/J = 3 sin ϑ+6 cos ϑ.
We enter a phase where we find three spin vectors of equal length in
the xy plane with an angle of 120 degrees between them, and the three
states feature coinciding directors that are parallel to the z axis. The
phase is described by the wavefunctions (3.8), and a minimization with
respect to η yields

sin2 η =
3 sin ϑ + 6 cos ϑ − D

J
3
2
sin ϑ + 12 cos ϑ

,

ε

J
= 6 sin ϑ −

(
3 sin ϑ + 6 cos ϑ − D

J

)2

3 sin ϑ + 24 cos ϑ
.

(3.10)

Decreasing D leads to an increase in the spin length, and if ϑ > 0, we
eventually end up with coherent spin states at D/J = 9 sin ϑ/4 (dashed
line in figure 3.3): below this value of the anisotropy, the parameter η
in the wavefunctions (3.8) becomes greater than π/4, i. e. the directors
show 120-degree order in the xy plane. In the D → 0 limit, we recover
the AFM phase.

π/4 < ϑ ≤ arctan 4 ≈ 0.4π : At D/J = 9 sin ϑ, the directors of the three
sublattices open up to form an umbrella configuration, however, the
states remain purely quadrupolar. The three directors have the same z
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Figure 3.3: Variational phase diagram of the spin-one bilinear-biquadratic
model with an easy-plane anisotropy field on the triangular lattice. Solid
(dotted) lines denote second-order (first-order) phase boundaries. The arrows
represent partially polarized magnetic moments: along the dashed lines, at
least one of the spins is in a coherent spin state. Solid black lines represent
quadrupolar directors. Inset: a magnified view of the phases with fan-like
spin configurations.
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component, and they subtend an angle of 120 degrees with each other
in the xy plane. The phase is described by the wavefunctions

|ψ1〉 = cos η|z〉 + sin η|x〉,

|ψ2〉 = cos η|z〉 + sin η

(
−1

2
|x〉 +

√
3

2
|y〉

)
,

|ψ3〉 = cos η|z〉 + sin η

(
−1

2
|x〉 −

√
3

2
|y〉

)
,

(3.11)

and a minimization with respect to η leads to

sin2 η =
9 sin ϑ − D

J
27
2

sin ϑ
,

ε

J
= 6 sin ϑ −

(
9 sin ϑ − D

J

)2

27 sin ϑ
.

(3.12)

The overlap between the wavefunctions of nearest-neighbour sites is
given by 1 − 3 sin2 η/2, and it vanishes in the D → 0 limit, where we
recover the usual AFQ phase.

arctan 4 < ϑ < 5π/4 : The quadrupoles start developing identical dipole mo-
ments in the xy plane at D/J = 12(sin ϑ − cos ϑ), but the directors
remain pinned to the z axis. The wavefunctions are given by

|ψ1〉 = |ψ2〉 = |ψ3〉 = cos η|z〉 − i sin η|y〉, (3.13)

and a minimization with respect to η yields

sin2 η =
12(sin ϑ − cos ϑ) − D

J

24(sin ϑ − cos ϑ)
,

ε

J
= 6 sin ϑ −

(
12(sin ϑ − cos ϑ) − D

J

)2

48(sin ϑ − cos ϑ)
.

(3.14)

Lowering the anisotropy leads to an increase in the spin length, and if
ϑ ≥ π/2, we recover the FM phase with fully developed dipole moments
in the D → 0 limit. However, if ϑ < π/2, a second-order transition
occurs at D = 36 cos ϑ, which will be discussed in detail further on.

The case of ϑ = π/4 is somewhat special, due to the remaining SU(2) sym-
metry of the model (3.1) along this line. The general variational solution can
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be written in the form

|ψ1〉 = cos η|z〉 + sin η|i〉,
|ψ2〉 = cos η|z〉 + sin η|j〉,
|ψ3〉 = cos η|z〉 + sin η|k〉,

(3.15)

where η ∈]0, π/2[, and the wavefunctions |i〉, |j〉 and |k〉 are linear combina-
tions of |x〉 and |y〉 that satisfy the constraint

〈i|j〉 = 〈j|k〉 = 〈k|i〉 = −1

2
. (3.16)

A minimization with respect to η results in the same expression as (3.12),
and it is easily seen that the variational solution admits the configurations
of the two phases that are separated from each other by the ϑ = π/4 line.

The inset of figure 3.3 reveals that the phase diagram is rather exotic in
the arctan 4 < ϑ < π/2 region. Here, an instability of the large-D ferro-
quadrupolar phase gives rise to a phase with spontaneous magnetization in
the xy plane, however, the directors remain parallel to the z axis and the
ordering wavevector is still k = 0. This phase is different in almost every
aspect from the three-sublattice ordered quadrupolar umbrella phase that re-
tains time-reversal invariance, and which is expected to be stable for D ¿ J ,
however, a partial resolution of this discrepancy is achieved by a tilting of
the directors from the z axis at D/J = 36 cos ϑ. The concomitant second-
order transition leads to the appearance of two fan-like spin configurations:
the arrangement of spins found for smaller (larger) values of ϑ features a
non-vanishing (vanishing) magnetization component along the z axis.

mz 6= 0 fan configuration : Two sublattices feature identical wavefunc-
tions, therefore two of the three spin vectors coincide with each other,
however, the third spin vector is of different length and its z compo-
nent is of opposite sign. All spins point in the same direction in the xy
plane, and there is a net magnetization along the z axis in favour of the
two coinciding spins. Furthermore, even though the directors are no
longer parallel to the z axis, they still remain in a common plane with
it. Setting the spin vectors in the yz plane with a positive y component,
we may conveniently characterize this phase using the wavefunctions

|ψ1〉 = i cos η1|x〉 + sin η1 (− cos ϕ1|y〉 + sin ϕ1|z〉) = |ψ2〉,
|ψ3〉 = i cos η2|x〉 + sin η2 (− cos ϕ2|y〉 + sin ϕ2|z〉) ,

(3.17)

where π/4 < η1,2 < π/2, furthermore 0 < ϕ1 < π/2 and π/2 < ϕ2 <
π. The value of these parameters may be obtained numerically as a
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function of {ϑ,D/J}. We note that the replacement ϕi → π − ϕi

in a variational ground state with magnetization (0,my,mz) leads to
another one with magnetization (0,my,−mz).

mz = 0 fan configuration : Two of the spin vectors are reflections of each
other with respect to the xy plane, while the third one is of different
length and its z component is zero. All spin vectors point in the same
direction in the xy plane, and all directors remain in a common plane
with the z axis. This phase may be characterized with the help of the
wavefunctions

|ψ1〉 = i cos η1|x〉 + sin η1 (cos ϕ|y〉 + sin ϕ|z〉) ,

|ψ2〉 = i cos η1|x〉 + sin η1 (− cos ϕ|y〉 + sin ϕ|z〉) ,

|ψ3〉 = i cos η2|x〉 + sin η2|z〉,
(3.18)

where π/4 < η1,2 < π/2 and 0 < ϕ < π/2. For sufficiently large ϑ,
lowering the anisotropy leads eventually to η2 → π/4, i. e. the spin in
the xy plane becomes fully polarized (this happens along the dashed
line in the inset of figure 3.3). A further decrease in D/J pins the
director of this spin to the xy plane, hence it becomes perpendicular
to the director of the other two spins. This region is easily accessed by
the above wavefunctions if we modify the domain of the parameter η2

to 0 < η2 < π/4.

The boundary between the two phases with fan-like spin configurations corre-
sponds to a first-order transition, and both phases have a first-order bound-
ary with the quadrupolar umbrella phase that is eventually stabilized for
a sufficiently low anisotropy field. It is interesting to note that the quad-
rupolar umbrella phase is actually locally stable up to the value D/J =
9 sin(2ϑ)/(sin ϑ − 2 cos ϑ), as one may confirm with the help of the stabil-
ity analysis described in appendix A. However, since the energies defined in
equations (3.12) and (3.14) cross below this value of the anisotropy field, we
may conclude that a first-order transition shall indeed occur in the region
0 < D/J < 9 sin(2ϑ)/(sin ϑ− 2 cos ϑ). The location of this transition can be
determined numerically.

3.1.3 Easy-axis anisotropy field: D < 0

This subsection discusses the phase diagram of the model (3.1) with D < 0.
In contrast to the case of easy-plane anisotropy, the |D|/J → ∞ limit does
not feature a unique ground state: in fact, any state is a ground state in
which none of the sites have a |0〉 component, we thus have a macroscopic
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degeneracy of 2L, where L is the total number of sites. Therefore, as far
as the variational approach is concerned, the minimization of the energy is
simplified for “sufficiently large” anisotropy: this threshold value |D∗|/J de-
pends on ϑ, and it can be determined either numerically or with the help
of simple analytic arguments, by looking for the disappearance of the lo-
cal |0〉 components. In the region of the FM phase for instance, i. e. for
ϑ ∈]π/2, 5π/4[, even an infinitesimal anisotropy field suffices to lift the con-
tinuous degeneracy, and we find a two-fold degenerate ferromagnetic state
with all spins completely polarized along the (positive or negative) z axis.
However, we should point out that the maximum value of |D∗|/J , reached for
ϑ = arctan 4 ≈ 0.4π, is about 4.37, therefore the region of the complete phase
diagram where the anisotropy can not be considered “sufficiently large” is
quite considerable nonetheless.

Let us first investigate the case |D| > |D∗|. Since the |0〉 components
vanish on every site, the single-site wavefunctions characterizing a three-
sublattice ordered state assume the form

|ψi〉 = e−iϕi/2 cos
ϑi

2
|1〉 + eiϕi/2 sin

ϑi

2
|1̄〉, (3.19)

where ϑi ∈ [0, π] and ϕi ∈ [0, 2π[. As a consequence, the x and y components
of the spin vectors vanish, and 〈Sz

i 〉 = cos ϑi. The interaction terms in the
Hamiltonian are simplified as follows:

〈SiSj〉 = cos ϑi cos ϑj,

〈Pij〉 = |〈ψi|ψj〉|2 =

∣∣∣∣ei(ϕi−ϕj)/2 cos
ϑi

2
cos

ϑj

2
+ e−i(ϕi−ϕj)/2 sin

ϑi

2
sin

ϑj

2

∣∣∣∣2 .

(3.20)

Let us now define an S = 1/2 wavefunction |ψ′
i〉 by carrying out the replace-

ments |1〉 → | ↑〉 and |1̄〉 → | ↓〉 in the wavefunction |ψi〉: this way, we have
defined a pseudo-spin that points in the {ϑi, ϕi} direction, i. e.

〈σx
i 〉 =

1

2
sin ϑi cos ϕi,

〈σy
i 〉 =

1

2
sin ϑi sin ϕi,

〈σz
i 〉 =

1

2
cos ϑi.

(3.21)

Note that the term “pseudo” originates from the fact that |ψ′
i〉 does not ac-

tually describe an angular momentum. While one may define SU(2) algebra
in an arbitrary two-dimensional Hilbert space with the help of the Pauli ma-
trices, a real spin one-half would reverse its components under time reversal.
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In fact, it can be easily deduced from the equality 〈Sz
i 〉 = 2〈σz

i 〉 that the xy
components of the pseudo-spin represent the quadrupolar character of the
original spin-one wavefunction, and indeed, time reversal will only reverse
the z component of the pseudo-spin. It is furthermore straightforward to
show that

〈SiSj〉 = 4〈σz
i σ

z
j 〉,

〈Pij〉 = 〈pij〉,
(3.22)

where pij = 2~σi~σj + 1/2 is the transposition operator for the pseudo-spins.
Since the anisotropy term is already minimized in the absence of |0〉 compo-
nents, the total energy per site is given by

ε = 〈ψ′
4|H ′

4|ψ′
4〉 +

9

2
sin ϑ − |D|, (3.23)

where

H ′
4 = J2 sin ϑ [σx

1σx
2 + σy

1σ
y
2 + σx

2σx
3 + σy

2σ
y
3 + σx

3σx
1 + σy

3σ
y
1 ] +

+ J(4 cos ϑ − 2 sin ϑ) [σz
1σ

z
2 + σz

2σ
z
3 + σz

3σ
z
1]

(3.24)

and
|ψ′

4〉 = |ψ′
1〉|ψ′

2〉|ψ′
3〉. (3.25)

We may conclude that within the framework of the variational approach,
the spin-one bilinear-biquadratic model with a sufficiently large easy-axis
anisotropy presents an identical problem to that of the S = 1/2 XXZ model.
Moreover, one may notice that the variational treatment of this latter effec-
tively leads us to solve the classical XXZ model, since, neglecting an overall
phase factor, spin-one-half wavefunctions are in one-to-one correspondence
with coherent spin states. Amusingly enough, the ground states of the clas-
sical XXZ model on the triangular lattice may be obtained via analytical
means: for a complete solution, we refer the reader to appendix B, here we
will restrict ourselves to interpreting the results. With respect to the original
spin-one system, we find two pure quadrupolar phases featuring directors in
the xy plane: the directors are parallel in the region 5π/4 < ϑ ≤ θ, while
they form 120-degree order for π/4 < ϑ < arctan 4 ≈ 0.4π. A ferromagnetic
state is realized with fully developed spins (local |1〉 or |1̄〉 wavefunctions) in
the region arctan 4 < ϑ < 5π/4, while a non-trivial one-parameter contin-
uous degeneracy is found in the ground-state manifold for θ < ϑ < 2π and
0 < ϑ < π/4. The point ϑ = arctan 4 also features a peculiar degeneracy:
with the help of a freely-varying continuous parameter, we may interpolate
between a ferromagnetic configuration of coherent spin states and a quadru-
polar state with a 120-degree ordering of the directors in the xy plane. At
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Figure 3.4: Variational phase diagram of the spin-one bilinear-biquadratic
model with an easy-axis anisotropy field on the triangular lattice. Solid (dot-
ted) lines denote second-order (first-order) phase boundaries. Filled (empty)
arrows represent completely (partially) polarized magnetic moments. Solid
black lines represent quadrupolar directors. The phase with a non-trivial
degeneracy is shown in gray colour. Note the presence of a tiny antiferro-
magnetic phase where the common plane of the spins does not contain the
easy axis.

the ϑ = 0 point, two sites of any given triangular plaquette will be fixed in
a 11̄ configuration, however, the wavefunction of the third site is arbitrary,
hence we encounter a macroscopic degeneracy in the ground-state manifold.
Finally, for ϑ = π/4 (ϑ = 5π/4), the pseudo-spin model is isotropic5, there-
fore we find |〈ψi|ψj〉| = 1/2 (|〈ψi|ψj〉| = 1) for any pair of nearest-neighbour
sites.

The preceding discussion might have lead us to expect a particularly rich
phase diagram in the region θ − 2π < ϑ < π/4, and figure 3.4 confirms
this notion indeed. However, let us first explore the case of an arbitrary
anisotropy field in the region π/4 ≤ ϑ ≤ θ. It turns out that the threshold
value |D∗|/J vanishes for π/2 ≤ ϑ ≤ θ, therefore the results presented in

5The remaining SU(2) symmetry that was uncovered in subsection 2.2.1 manifests itself
at these points.
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the previous paragraph are directly applicable to the complete range of D
in this interval. On the other hand, simple considerations reveal that for
π/4 < θ < π/2, a quadrupolar umbrella configuration should be stabilized in
the |D|/J ¿ 1 limit: this phase may be seen as a continuation of the one that
we encountered in the case of easy-plane anisotropy, and an increasing easy-
axis anisotropy field will have the same qualitative effect of opening up the
umbrella, as a decreasing easy-plane anisotropy field had. If ϑ ≤ arctan 4,
the directors are eventually pinned to the xy plane at D/J = −9 sin ϑ/2,
as one may check with the help of (3.12), however, the completion of this
smooth process is prevented for ϑ > arctan 4 by a first-order transition to
the ferromagnetic phase: the corresponding boundary, D/J = −9 sin ϑ/2 +√

81 sin ϑ(sin ϑ − 4 cos ϑ)/2, may be obtained by comparing the energy of the
two phases. Finally, let us add that the quadrupolar umbrella configuration
is admitted along the line ϑ = π/4, where the general variational solution is
a continuation of the one found in the case of easy-plane anisotropy.

A closer look at figure 3.4 reveals that there are four antiferromagnetic
phases in the region |D| < |D∗|. As ϑ is increased in the interval ]θ−2π, π/4[,
these phases emerge one-by-one via a series of second-order phase transitions,
we will therefore find it convenient to describe them in order of their appear-
ance. In these antiferromagnetic phases, the spin vectors are in general only
partially polarized, furthermore the single-site wavefunctions representing
three-sublattice order are rather complicated, therefore we will restrict our
analysis to the arrangement of dipole moments. We should emphasize how-
ever that in our calculations, we have only encountered degeneracies that
were associated with trivial symmetries of the model (3.1), such as the sym-
metry of rotation around the z axis, reflection symmetry with respect to the
xy plane, or the symmetry of permutation with respect to the three sublat-
tices. In other words, we have found a well-defined and essentially unique
configuration of the spin vectors for an arbitrary set of parameters {ϑ,D/J}
in this domain of the phase diagram. In the first phase, two of the spin vec-
tors are reflections of each other with respect to the z axis, while the third
spin vector is of different length, its z component is of opposite sign, and it is
parallel to the z axis. This configuration gives rise to a spontaneous magne-
tization component along the z axis. At the boundary of the second phase,
the third spin tilts away from the z axis, and the first two spins cease to be
mirror spins (their length also starts to differ), which leads to the appearance
of a net magnetization component in the xy plane as well. We should point
out however that the three spins remain in a common plane with the z axis.
Entering the third phase, we find the same configuration as in the first phase,
except that this time, the role of the z axis is played by an arbitrary axis
in the xy plane. The z component of the total magnetization vanishes in
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Figure 3.5: Magnetization components of a triangular plaquette for ϑ =
π/18. One may observe three second-order phase transitions driven by an
increasing easy-axis anisotropy field. The final transition marks the begin-
ning of the phase with a non-trivial degeneracy.

this phase, due to the fact that one of the spins is in the xy plane, while the
other two spins are reflections of each other with respect to it. Finally, upon
rotating this configuration around the spin vector that is pinned to the xy
plane, we obtain the arrangement of dipole moments that is characteristic
of the fourth antiferromagnetic phase. The three spin vectors remain in a
common plane which no longer contains the z axis, and as a result, the spin
chirality vector

κ =
2

3
√

3
(S1 × S2 + S2 × S3 + S3 × S1) (3.26)

will have a non-vanishing z component. In conclusion, if we take a triangu-
lar plaquette and calculate its magnetization components perpendicular and
parallel to the easy axis, furthermore its chirality component parallel to the
easy axis, we may consider the resulting quantities mxy, mz and κz as the
order parameters of the three phase transitions that occur in the ϑ-interval
]θ − 2π, π/4[ for |D| < |D∗|. A plot of these order parameters is shown as a
function of the anisotropy field for two representative values of ϑ in figures
3.5 and 3.6. It is particularly interesting to observe the reentrant behaviour
that the phase transition between the third and the fourth antiferromagnetic
phases exhibits along the lines of constant ϑ.
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Figure 3.6: Magnetization and spin chirality of a triangular plaquette for
ϑ = 29π/120 ≈ 0.24π. The magnetization (chirality) component shown is
perpendicular (parallel) to the easy axis. Upon an increase of the anisotropy
field, we find an intermediate phase with κz 6= 0.

3.2 Excitation spectrum of quadrupolar pha-

ses

We have previously mapped out the variational phase diagram of the spin-one
bilinear-biquadratic model with a single-ion anisotropy field on the triangular
lattice. In this section, we shall study the excitation spectrum of the quad-
rupolar phases that appear in the phase diagram, via the use of flavour-wave
theory. This method relies on the SU(3)-bosonic representation of S = 1
spins that was introduced in subsection 2.1.1: the local spin operators can
be written as

Si =

 Sx
i

Sy
i

Sz
i

 =

 i
(
az

†ay − ay
†az

)
i
(
ax

†az − az
†ax

)
i
(
ay

†ax − ax
†ay

)
 , (3.27)

while the transposition operator becomes

Pij =
∑

µ,ν=x,y,z

aµ
†aνbν

†bµ. (3.28)
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The local bosonic operators {ax, ay, az} and {bx, by, bz} correspond to the
time-reversal-invariant basis states

|x〉 =
i√
2

(|1〉 − |1̄〉) ,

|y〉 =
1√
2

(|1〉 + |1̄〉) ,

|z〉 = −i|0〉

(3.29)

on sites i and j, respectively. The initial form of our Hamiltonian will be the
following:

H = J
∑
〈i,j〉

{(cos ϑ − sin ϑ)SiSj + sin ϑ (1 + Pij)} + D
∑

i

(Sz
i )

2 . (3.30)

3.2.1 Ferroquadrupolar phase

Let us first investigate the case of easy-plane anisotropy. We consider quan-
tum fluctuations around the variational ground state by generalizing the local
SU(3)-bosonic representation to an arbitrary “triangular” one, in which the
total number of bosons is M on every site6. This local constraint may be
eliminated [19]: for each site i, we carry out the replacements

az, az
† −→

√
M − ax

†ax − ay
†ay, (3.31)

and thus we end up with two independent bosonic operators per site7. The
classical (variational) limit corresponds to a condensation of the replaced
bosons, and thus quantum fluctuations are taken into account via a 1/M -
expansion:√

M − ax
†ax − ay

†ay =
√

M −
(
ax

†ax + ay
†ay

)
2
√

M
+ O

(
1√
M3

)
. (3.32)

An expansion of order M of the interaction terms between site i and j leads
to

SiSj = M
(
ax

†bx + axbx
† − ax

†bx
† − axbx

)
+

+ M
(
ay

†by + ayby
† − ay

†by
† − ayby

)
+ O(1)

(3.33)

6The original system may be recovered by setting M = 1.
7One may check that the replacements leave the local SU(3) commutation relations

intact.
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and

Pij = M2 − M
(
ax

†ax + ay
†ay + bx

†bx + by
†by

)
+

+ M
(
ax

†bx + ay
†by + axbx

† + ayby
†) + O(1).

(3.34)

As far as the anisotropy term is concerned, we might be tempted to sim-
ply take the expansion of Sz

i and multiply it by itself. However, since the
expression of Sz

i does not contain the boson az, we end up with a quartic
operator of order 1: neglecting this operator would correspond to neglecting
the effect of anisotropy, while multiplying it by M for instance would force
us to treat it using approximative methods. As a matter of fact, we would
also encounter a difficulty if the ax boson were condensed instead of az: in
that case, we would find a quadratic term of order M , however, we would not
recover the constant of order M2 that should appear in the classical energy.
The situation can be remedied by noting that the SU(3)-bosonic representa-
tion makes it possible to express any on-site operator as a quadratic form.
We first rewrite the anisotropy term using the definitions (2.8) that are valid
for spins one:

(Sz
i )

2 =
1

3

(√
3Q3z2−r2

i + 2
)

. (3.35)

The bosonic representation of Q3z2−r2

i is given in (2.27):

Q3z2−r2

i =
1√
3
(3ax

†ax + 3ay
†ay − 2), (3.36)

and so we finally end up with

(Sz
i )

2 = ax
†ax + ay

†ay. (3.37)

Note that the anisotropy term is an on-site term, therefore it has to be
multiplied by M in the spirit of the flavour-wave expansion: as a result, it
will have the same order of magnitude as the interaction terms that appear
in the Hamiltonian (3.30). All in all, in order M2 we recover the classical
interaction energy, and in order M we find a Hamiltonian that is quadratic in
the bosonic operators. We may introduce propagating states over the whole
lattice via a Fourier transformation of the form

aµi =

√
1

L

∑
k∈BZ

eik·Riaµ(k),

aµi
† =

√
1

L

∑
k∈BZ

e−ik·Riaµ
†(k),

(3.38)
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where L denotes the total number of sites of the triangular lattice, and the
sum extends over all k vectors in the Brillouin zone. Summing up all inter-
action terms leads to∑

i

(SRi
SRi−a1 + SRi

SRi−a2 + SRi
SRi+a1+a2) =

= 3M
∑

µ=x,y

∑
k

{
(γ(k) + γ(k)∗)aµ

†(k)aµ(k)−

−γ(k)aµ
†(k)aµ

†(−k) − γ(k)∗aµ(k)aµ(−k)
} (3.39)

and ∑
i

(PRiRi−a1 + PRiRi−a2 + PRiRi+a1+a2) =

= 3M
∑

µ=x,y

∑
k

(γ(k) + γ(k)∗ − 2)aµ
†(k)aµ(k),

(3.40)

while the anisotropy term yields∑
i

(Sz
i )

2 =
∑

µ=x,y

∑
k

aµ
†(k)aµ(k), (3.41)

where a1 = aex and a2 = −aex/2 + aey

√
3/2 are elementary lattice vectors

of the triangular lattice, furthermore γ(k) = (e−ik·a1 + e−ik·a2 + eik·(a1+a2))/3.
Denoting the Hamiltonian of order M by H(2), we may finally write

H(2)

6JM
=

=
∑

µ=x,y

∑
k

{(
cos ϑ

γ(k) + γ(k)∗

2
− sin ϑ +

D

6J

)
aµ

†(k)aµ(k)−

−(cos ϑ − sin ϑ)

(
γ(k)

2
aµ

†(k)aµ
†(−k) +

γ(k)∗

2
aµ(k)aµ(−k)

)}
.

(3.42)

The x and y bosons are decoupled from each other and they behave iden-
tically, which leads to a two-fold degeneracy of the spectrum of excitations.
For sufficiently high D/J , the Hamiltonian H(2) can be diagonalized via a
Bogoliubov transformation:

H(2)

6JM
=

∑
µ=x,y

∑
k

ω(k)αµ
†(k)αµ(k)+

+
1

2

∑
µ=x,y

∑
k

(ω(k) − (cos ϑγ(k)′ − sin ϑ + d)) ,

(3.43)
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where we have introduced the variables d = D/6J and γ(k)′ = (γ(k) +
γ(k)∗)/2, and the dispersion is given by

ω(k) =

√
(d + cos ϑγ(k)′ − sin ϑ)2 − (cos ϑ − sin ϑ)2 γ(k)′2. (3.44)

Lowering the anisotropy field leads eventually to the closing of the gap, and
one may show that for arbitrary ϑ, this occurs either at k = 0 or at the
corners of the Brillouin zone. A three-sublattice instability emerges at D/J =
6 cos ϑ + 3 sin ϑ for 2π − θ < ϑ ≤ π/4, furthermore at D/J = 9 sin ϑ for
π/4 ≤ ϑ ≤ arctan 4, whereas the gap closes at k = 0 along the line D/J =
12(sin ϑ − cos ϑ) for arctan 4 ≤ ϑ < 5π/4. On the other hand, no instability
is found for a finite anisotropy field in the region 5π/4 ≤ ϑ ≤ θ, and taking
the d → 0 limit, we recover8 the excitation spectrum that is characteristic of
the isotropic model [5]. The phase boundaries indicated by the flavour-wave
method are in perfect agreement with the variational calculus9. Figure 3.7
shows the closing of the gap for ϑ = arctan 4.

If the single-ion anisotropy field is of easy-axis type, ferroquadrupolar
order is locally stable in the region 5π/4 ≤ ϑ ≤ θ for an arbitrary D/J .
While this phase is conceptually different from the gapped ferroquadrupolar
phase discussed above, its excitation spectrum may be derived quite easily
with the help of the results of the previous paragraph. Assuming that the
directors are aligned parallel to the x axis, we may convince ourselves that
a 1/M -expansion of the interaction terms is obtained by replacing the index
x with z in the expressions (3.33) and (3.34). However, the anisotropy term
is more subtle: multiplying

(Sz
i )

2 = M − az
†az (3.45)

by M , we recover a classical on-site energy term of order M2, and we may
deduce furthermore that the dispersion of z-type bosons will acquire a gap.

8We should mention that the dispersion obtained in [5] actually corresponds to ω(k)/2.
We believe that this slight discrepancy is due to a misprint.

9This is essentially due to the fact that we may associate the corresponding second-
order phase transitions with the closing of the gap, i. e. the appearance of zero modes in
the spectrum. Whenever the flavour-wave expansion yields a zero mode for a wavevector,
a “classical” flavour-wave expansion, in which the bosonic operators are replaced with
complex numbers, will also feature a zero mode for the same wavevector. Finally, this
latter method can not indicate a second-order instability on the triangular lattice that the
stability analysis of appendix A would not detect.
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Figure 3.7: Closing of the gap of the ferroquadrupolar phase for ϑ =
arctan 4 ≈ 0.4π. The two-fold degenerate branch of excitations softens si-
multaneously at k = 0 and at the corners of the Brillouin zone. The lattice
constant is chosen as unity.

The Hamiltonian of order M becomes

H(2)

6JM
=

=
∑
k

{(
cos ϑ

γ(k) + γ(k)∗

2
− sin ϑ

)
ay

†(k)ay(k)−

−(cos ϑ − sin ϑ)

(
γ(k)

2
ay

†(k)ay
†(−k) +

γ(k)∗

2
ay(k)ay(−k)

)}
+

+
∑
k

{(
cos ϑ

γ(k) + γ(k)∗

2
− sin ϑ − D

6J

)
az

†(k)az(k)−

−(cos ϑ − sin ϑ)

(
γ(k)

2
az

†(k)az
†(−k) +

γ(k)∗

2
az(k)az(−k)

)}
,

(3.46)

and following a Bogoliubov transformation, we end up with

H(2)

6JM
=

∑
k

{ωy(k)αy
†(k)αy(k) + ωz(k)αz

†(k)αz(k)}+

+
1

2

∑
k

(ωy(k) + ωz(k) − 2 (cos ϑγ(k)′ − sin ϑ) − |d|) ,

(3.47)
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where d and γ(k)′ are the familiar variables, and the dispersions are given
by

ωy(k) =

√
(cos ϑγ(k)′ − sin ϑ)2 − (cos ϑ − sin ϑ)2 γ(k)′2,

ωz(k) =

√
(|d| + cos ϑγ(k)′ − sin ϑ)2 − (cos ϑ − sin ϑ)2 γ(k)′2.

(3.48)

The ωy branch retains a gapless mode at k = 0, which is the Goldstone-
mode associated with the broken U(1) symmetry. Approaching ϑ = θ, a
three-sublattice instability is indicated by a softening of the ωy dispersion
at the corners of the Brillouin zone, in accordance with the variational re-
sults. We note that the zero-point energy vanishes for ϑ = 5π/4, where the
ferroquadrupolar state becomes an exact eigenstate of the Hamiltonian.

3.2.2 Quadrupolar umbrella phase

The umbrella phase is actually a helical phase: we may assume for instance
that on site Ri we have the wavefunction

|ψi〉 = cos η|z〉 + sin η (cos ϕi|x〉 + sin ϕi|y〉) , (3.49)

and the distribution of the angles ϕi over the lattice satisfies ϕj −ϕi = 2π/3
if Rj − Ri = {−a1,−a2, a1 + a2}. The angle η and the classical energy are
given in (3.12), as a function of ϑ and D/J . In order to derive a flavour-wave
expansion around a classical ground state, we may introduce a local SU(3)
rotation of the form a1i

a2i

a3i

 = Ui
†

axi

ayi

azi

 (3.50)

in such a way that the classical limit will correspond to a condensation of
a1i: in the present case, it is convenient to choose the rotation matrix as

Ui
† =

sin η cos ϕi sin η sin ϕi cos η
cos η cos ϕi cos η sin ϕi − sin η
− sin ϕi cos ϕi 0

 . (3.51)

We may now express the local spin operators as

Sαi =
(
a1i

† a2i
† a3i

†) sαi

a1i

a2i

a3i

 , α = x, y, z, (3.52)
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with the help of the definition sαi = Ui
†λαUi, where λx =

( 0 0 0
0 0 −i
0 i 0

)
, λy =( 0 0 i

0 0 0
−i 0 0

)
and λz =

( 0 −i 0
i 0 0
0 0 0

)
are Gell-Mann matrices. Carrying out a 1/M -

expansion, we find

Sαi = Msαi
11 +

√
M(sαi

12a2i + sαi
13a3i + sαi

21a2i
† + sαi

31a3i
†)+

+
(
(sαi

22 − sαi
11)a2i

†a2i + sαi
23a2i

†a3i + sαi
32a3i

†a2i + (sαi
33 − sαi

11)a3i
†a3i

)
+

+ O

(
1√
M

)
.

(3.53)

Let us select a pair of nearest-neighbour sites i and j with bosons aµ and
bµ, respectively: up to order M , the scalar product of the spin operators,
SiSj =

∑
α SαiSαj, assumes the form

SiSj = M2
∑

α

sαi
11s

αj
11+

+ M
√

M
∑

α

{
sαi
11(s

αj
12b2 + sαj

13b3 + sαj
21b2

† + sαj
31b3

†)+

+sαj
11(sαi

12a2 + sαi
13a3 + sαi

21a2
† + sαi

31a3
†)

}
+

+ M
∑

α

{
sαi
11((s

αj
22 − sαj

11)b2
†b2 + sαj

23b2
†b3+

+ sαj
32b3

†b2 + (sαj
33 − sαj

11)b3
†b3)+

+ sαj
11((sαi

22 − sαi
11)a2

†a2 + sαi
23a2

†a3+

+ sαi
32a3

†a2 + (sαi
33 − sαi

11)a3
†a3)+

+ (sαi
12a2 + sαi

13a3 + sαi
21a2

† + sαi
31a3

†)·

·(sαj
12b2 + sαj

13b3 + sαj
21b2

† + sαj
31b3

†)
}

+

+ O(
√

M).

(3.54)

Since Sαi is a hermitian operator, the diagonal elements of sαi must be real:
however, since the elements of the matrix Ui

† are real while the matrix λα is
purely imaginary, we find that for any given site,

sα
mm = (sα

mm)∗ = (U †
mkλ

α
klUlm)∗ = U †

mk(−λα
kl)Ulm = −sα

mm, (3.55)
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therefore sαi
mm = 0. It follows that (3.54) is greatly simplified, and the first

non-vanishing term is of order M :

SiSj = M
∑

α

{
(sαi

12a2 + sαi
13a3 + sαi

21a2
† + sαi

31a3
†)·

·(sαj
12b2 + sαj

13b3 + sαj
21b2

† + sαj
31b3

†)
}

+

+ O(
√

M).

(3.56)

Inserting the rotation matrix given in (3.51), we end up with

SiSj =

= M

{(
a2 a3

) (
− cos δ cos η sin δ

− cos η sin δ − cos2 η cos δ − sin2 η

)(
b2

b3

)
+

+
(
a2

† a3
†) (

− cos δ cos η sin δ
− cos η sin δ − cos2 η cos δ − sin2 η

)(
b2

†

b3
†

)
+

+
(
a2

† a3
†) (

cos δ − cos η sin δ
cos η sin δ cos2 η cos δ + sin2 η

)(
b2

b3

)
+

+
(
b2

† b3
†) (

cos δ cos η sin δ
− cos η sin δ cos2 η cos δ + sin2 η

)(
a2

a3

)}
+

+ O(
√

M),

(3.57)

where δ = ϕj − ϕi.
In the absence of anisotropy, the only other term we need to take into

account is the interaction Pij, the 1/M -expansion of which can be simplified
using the fact that nearest-neighbour sites i and j have orthogonal wavefunc-
tions for D/J = 0, i. e. the first rows of the matrices Ui

† and Uj
† are orthog-

onal vectors. In such cases, we may always find a third vector {U31, U32, U33}
so that

U † =

U †
i,11 U †

i,12 Ui,13†
U †

j,11 U †
j,12 U †

j,13

U31 U32 U33

 (3.58)

is an SU(3) rotation matrix, and define a common SU(3) rotation on both
sites: a′

1

a′
2

a′
3

 = U †

ax

ay

az

 (3.59)

and b′1
b′2
b′3

 = U †

bx

by

bz

 , (3.60)
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where we have denoted the bosons on site i and j by a and b, respectively.
Since Pij is invariant with respect to SU(3) rotations,

Pij =
∑

µ,ν=x,y,z

aµ
†aνbν

†bµ =
∑

µ,ν=1,2,3

a′
µ
†a′

νb
′
ν
†b′µ, (3.61)

we may easily carry out the 1/M -expansion:

Pij = M
(
a′

2
†a′

2 + b′1
†b′1 + a′

2
†b′1

† + a′
2b

′
1

)
+ O(1). (3.62)

The operators a′
2 and b′1 can be expressed using the locally rotated bosons:

a′
2 = u′

12a2 + u′
13a3,

b′1 = u12b2 + u13b3,
(3.63)

where u = Ui
†Uj and u′ = u†, and so we eventually find

Pij = M
{
(u21a2

† + u31a3
† + u12b2 + u13b3)·

·(u′
21b2

† + u′
31b3

† + u′
12a2 + u′

13a3)
}
−

− M(u12u
′
21 + u13u

′
31) + O(1).

(3.64)

Note that the constant term at the end of (3.64) will vanish if the operators
are written in normal-ordered form, furthermore, since u11 = u′

11 = 0 and
uu′ = Ui

†UjUj
†Ui = 1, the constant term is actually −M , hence it is inde-

pendent of the actual parametrization. Inserting the rotation matrix given
in (3.51) and setting sin η =

√
2/3, cos η =

√
1/3 and ϕj − ϕi = 2π/3, we

end up with

Pij = M
1

2

{(
a2 a3

) (
1 1
−1 −1

)(
b2

b3

)
+

+
(
a2

† a3
†) (

1 1
−1 −1

)(
b2

†

b3
†

)
+

+
(
a2

† a3
†) (

1 −1
−1 1

)(
a2

a3

)
+

+
(
b2

† b3
†) (

1 1
1 1

)(
b2

b3

)}
+

+ O(1).

(3.65)

Combining (3.65) and (3.57), and carrying out a Fourier transformation, we
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find the bosonic Hamiltonian of order M :

H(2)

3JM
=

∑
k

{(
a2

†(k) a3
†(k)

)
M1(k)

(
a2(k)
a3(k)

)
+

+
(
a2

†(k) a3
†(k)

)
M2(k)

(
a2

†(−k)
a3

†(−k)

)
+

+
(
a2(k) a3(k)

)
M3(k)

(
a2(−k)
a3(−k)

)}
,

(3.66)

where

M1(k) =

(
sin ϑ − (cos ϑ − sin ϑ)γ+γ∗

2
(cos ϑ − sin ϑ)γ∗−γ

2

(cos ϑ − sin ϑ)γ−γ∗

2
sin ϑ + (cos ϑ − sin ϑ)γ+γ∗

2

)
,

M2(k) =

(
cos ϑγ

2
cos ϑγ

2

− cos ϑγ
2

− cos ϑγ
2

)
,

M3(k) = M2(k)∗.

(3.67)

The Hamiltonian H(2) can be diagonalized in the region π/4 < ϑ < π/2 via
a Bogoliubov transformation:

H(2)

3JM
=

∑
k

{ω+(k)α+
†(k)α+(k) + ω−(k)α−

†(k)α−(k)}+

+
1

2

∑
k

(ω+(k) + ω−(k) − 2 sin ϑ) ,

(3.68)

where the dispersions are given by

ω±(k) =

√
(sin ϑ ± (sin ϑ − cos ϑ)|γ(k)|)2 − cos2 ϑ|γ(k)|2. (3.69)

While ω+ is gapped in the entire Brillouin zone, ω− vanishes for k = 0
and at the corners of the Brillouin zone, which reflects the breaking of the
global SU(2) symmetry. In the ϑ → π/4 limit, the two dispersions become
degenerate. The zero-point energy disappears for ϑ → π/2, due to the fact
that the quadrupolar umbrella configuration becomes an exact eigenstate of
the original Hamiltonian. We note that we have found the same spectrum of
excitations as the authors of [38], despite the fact that they use a different
formulation to obtain a bosonic Hamiltonian.

Turning on an easy-plane anisotropy, one has to treat the (Sz
i )

2 term in
the Hamiltonian, furthermore, the wavefunctions on neighbouring sites cease
to be orthogonal to each other, and as a consequence, the expansion of Pij
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becomes more complicated than in the case D/J = 0. Let us deal with the
anisotropy term first: it can be rewritten as

(Sz
i )

2 = ax
†ax + ay

†ay =

=
(
a1i

† a2i
† a3i

†)  sin2 η sin η cos η 0
sin η cos η cos2 η 0

0 0 1

a1i

a2i

a3i

 ,
(3.70)

and therefore its flavour-wave expansion is simply

M (Sz
i )

2 = M2 sin2 η + M
√

M sin η cos η(a2i + a2i
†)+

+ M
(
cos 2ηa2i

†a2i + cos2 ηa3i
†a3i

)
+ O

(√
M

)
.

(3.71)

As far as Pij is concerned, we may reexpress it using (2.91),

Pij =
1

2
(SiSj + QiQj) +

1

3
, (3.72)

and carry out a flavour-wave expansion of the QiQj term in a similar way as
we did with the SiSj term10. We refrain from presenting calculatory details,
and we quote the result that in order M2 one recovers the classical energy,
while in order M

√
M the classical condition (3.12) leads to a cancellation

of all one-boson terms. The quadratic Hamiltonian of order M assumes the
same form as in (3.66), with the matrices

M1(k)

sin ϑ
=

(
1 − (c − 1 − d + 2d2)γ+γ∗

2
(c − 1 + d)

√
1 + 2dγ∗−γ

2

(c − 1 + d)
√

1 + 2dγ−γ∗

2
1 + (c − 1 + d(1 − 2c))γ+γ∗

2

)
,

M2(k)

sin ϑ
=

(
(c + d − 2d2)γ

2
(c − d)

√
1 + 2dγ

2

(d − c)
√

1 + 2dγ
2

(−c + d(2c − 1)) γ
2

)
,

M3(k) = M2(k)∗,

(3.73)

where we have introduced d = D/9J sin ϑ and c = cot ϑ. The Hamiltonian
H(2) can be diagonalized in the region π/4 < ϑ ≤ arctan 4 for 0 < d < 1 and
in the region arctan 4 ≤ ϑ < π/2 for 0 < d < 2c/(1 − 2c), via a Bogoliubov
transformation, and one finds the exact same form as in (3.68), including the
expression for the zero-point energy. However, the dispersions are given this
time as the two positive eigenvalues of the matrix(

M1(k)∗ M2(k)∗ + M2(k)T

−M2(k)∗ − M2(k)T −M1(k)∗

)
, (3.74)

10Note that one has to simultaneously multiply the constant 1/3 by M2.
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and we may choose their labeling in agreement with the D/J = 0 case. We
find that ω+(k) remains gapped in the entire Brillouin zone, while ω−(k)
retains a gapless k = 0 mode, which is the Goldstone mode of the broken
U(1) rotation symmetry around the z axis. In the limits c → 1, d → 0,
d → 1 and d → 2c/(1 − 2c), we find a softening of the dispersion ω−(k) at
the corners of the Brillouin zone. The other branch of excitations, ω+(k),
loses its gap at k = 0 for c → 1 and d → 1. It is interesting to note that
flavour-wave theory fails to detect the first-order transition that occurs in the
region arctan 4 < ϑ < π/2, and instead predicts the same boundary as the
stability analysis of appendix A. This opens up the possibility of studying
a 1/M -renormalization of the boundary between the quadrupolar umbrella
phase and the phases with fan-like spin configurations, via a calculation of
the corresponding zero-point energies [49], however, such an analysis goes
beyond the scope of the present work. Finally, we would like to emphasize
that we have chosen D/J > 0 mainly for a brevity of discussion: in fact, the
calculations presented above are easily extended to the case of an easy-axis
anisotropy field, and the dispersions are given by the same expressions as
before. Again, we find a branch of excitations featuring a Goldstone mode,
and a gapped dispersion that eventually softens at k = 0 when the directors
open up to the xy plane. Similarly to the easy-plane case, the quadrupolar
umbrella phase remains locally stable beyond the first-order phase boundary
that is indicated by the variational calculus.

3.3 Perturbative analysis in the limit of large

anisotropy

In this section we study the limits of large easy-plane and easy-axis anisotropy
with the help of perturbation theory.

For D > 0 and J = 0, the ground state of the system features the |0〉
state on every site, while the first excited states will have it replaced with
|1〉 or |1̄〉 on exactly one site: the energy difference between the first excited
states and the ground state is D. A small bilinear-biquadratic coupling will
alter the ground-state energy and split the degeneracy of the first excited
states: as a result, the gap of excitations is also modified. We will calculate
perturbative corrections to the gap and draw a comparison with the result
of flavour-wave theory. Note that the role of higher-lying excited states will
be neglected in our treatment.

For D < 0 and J = 0, the ground state is macroscopically degenerate, and
a basis in this manifold is generated by setting the state on site i = 1 . . . L
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to be either |1〉 or |1̄〉, hence the dimensionality of the local Hilbert space
is reduced to two. We will show that the effect of the perturbative terms
that appear for J 6= 0 may be described to lowest orders with the help
of a relatively simple effective spin-one-half model, which is well-studied in
literature. The quantum fluctuations that are induced by a finite J will lift
the macroscopic degeneracy of the ground state and lead to the stabilization
of a supersolid phase.

3.3.1 Easy-plane anisotropy: finite-J corrections to the
gap

We begin by dividing our Hamiltonian into an unperturbed part

H0 = D
∑

i

(Sz
i )

2 (3.75)

and a perturbative term

H1 = J
∑
〈i,j〉

{(cos ϑ − sin ϑ)SiSj + sin ϑ (1 + Pij)} . (3.76)

The ground state of H0 is |0〉 = |000 . . .〉, and the ground-state energy is
E0 = 0. Let us denote the excited states of H0 as |n〉, and the corresponding
energies as En, where n 6= 0: the first- and second-order corrections to the
energy are given by

ε1 = 〈0|H1|0〉 (3.77)

and

ε2 = 〈0|H1

(∑
n6=0

|n〉〈n|
E0 − En

)
H1|0〉. (3.78)

Since
Pij|0i0j〉 = |0i0j〉 (3.79)

and
SiSj|0i0j〉 = |1i1̄j〉 + |1̄i1j〉, (3.80)

the first-order correction is easily obtained:

ε1 = 6LJ sin ϑ. (3.81)

The second-order correction can be calculated as

ε2 = J(cos ϑ − sin ϑ)
∑
〈i,j〉

〈0|H1

(∑
n6=0

|n〉〈n|
E0 − En

)
SiSj|0〉 =

=
J2(cos ϑ − sin ϑ)2

0 − 2D

∑
〈i,j〉

〈0| (SiSj)
2 |0〉,

(3.82)
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and since
(SiSj)

2 |0i0j〉 = 2|0i0̄j〉 − |1i1̄j〉 − |1̄i1j〉, (3.83)

we find

ε2 =
J2(cos ϑ − sin ϑ)2

0 − 2D
3L2 = −6L

J2

2D
(cos ϑ − sin ϑ)2. (3.84)

Note that the second-order correction vanishes if cos ϑ = sin ϑ: actually, since
|0〉 is an eigenstate of Pij, all perturbative corrections disappear at the SU(3)
points, except for the first-order shift in the energy ε1. The total energy of
the ground state can be written as

E0 + ε1 + ε2 = 6LJ sin ϑ − 6L
J2

2D
(cos ϑ − sin ϑ)2, (3.85)

up to corrections of order O(J3/D2).
The first excited states of H0 can be labeled by a site index and a sign:

|i+〉 =
1√
2
S+

i |0〉 = |0 . . . 01i0 . . .〉,

|i−〉 =
1√
2
S−

i |0〉 = |0 . . . 01̄i0 . . .〉,
(3.86)

and they all satisfy the equation

H0|i±〉 = D|i±〉. (3.87)

We will find it useful to introduce propagating states in this degenerate man-
ifold:

|k±〉 =
1√
L

∑
i

eik·Ri|i±〉, (3.88)

and naturally,
H0|k±〉 = D|k±〉. (3.89)

Since the perturbative term H1 commutes with the total spin, we don’t expect
a mixing of states with different sign indices. Denoting the projector to the
manifold of first excited states by P , i. e.

P =
∑

i

(
|i+〉〈i+| + |i−〉〈i−|

)
=

∑
k

(
|k+〉〈k+| + |k−〉〈k−|

)
, (3.90)

we may write the first-order effective Hamiltonian as

H(1) = PH1P. (3.91)
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The following equations are easy to verify:∑
〈l,m〉

Plm|i±〉 = (3L − 6)|i±〉 +
∑

~δ

|(i + δ)±〉,

P
∑
〈l,m〉

1

2

(
S+

l S−
m + S−

l S+
m

)
|i±〉 =

∑
~δ

|(i + δ)±〉,

∑
〈l,m〉

Sz
l S

z
m|i±〉 = 0,

(3.92)

and thus we find

H(1)|i±〉 = 6J(L − 1) sin ϑ|i±〉 + J cos ϑ
∑

~δ

|(i + δ)±〉, (3.93)

where the ~δ vectors point towards all first neighbours of a site, and |(i+ δ)±〉
corresponds to the site Ri + ~δ. The operator H(1) is diagonal in the basis of
propagating states:

H(1)|k±〉 = 6J(L − 1) sin ϑ|k±〉+

+ J cos ϑ
1√
L

∑
i

eik·Ri

∑
~δ

|(i + δ)±〉 =

= 6J(L − 1) sin ϑ|k±〉+

+ J cos ϑ
∑

~δ

e−ik·~δ 1√
L

∑
i

eik·(Ri+~δ)|(i + δ)±〉 =

=

6J(L − 1) sin ϑ + J cos ϑ
∑

~δ

e−ik·~δ

 |k±〉,

(3.94)

hence we indeed acquire dispersive modes. All in all, we may write(
H0 + H(1)

)
|k±〉 = (D + ε1 + ε1(k)) |k±〉, (3.95)

and the dispersion is given by

ε1(k) = 6J (cos ϑγ(k)′ − sin ϑ) , (3.96)

where we have used the quantity γ(k)′ =
∑

~δ e−ik·~δ/6 that was already de-
fined in the previous section. Let us now calculate the second-order effective
Hamiltonian: it is given by

H(2) = PH1
Q

a
H1P, (3.97)
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where the operator Q/a stands for

Q

a
=

∑
n,En 6=D

|n〉〈n|
D − En

. (3.98)

It is immediately clear that

Q

a

∑
〈l,m〉

Plm|i±〉 = 0,

Q

a

∑
〈l,m〉

Sz
l S

z
m|i±〉 = 0,

(3.99)

furthermore

Q

a

∑
〈l,m〉

1

2

(
S+

l S−
m + S−

l S+
m

)
|i±〉 =

1

D − 3D

∑
〈l,m〉

l 6=i,m 6=i

1

2

(
S+

l S−
m + S−

l S+
m

)
|i±〉,

(3.100)
therefore we find

Q

a
H1|i±〉 = −J(cos ϑ − sin ϑ)

2D
·

·
∑
〈l,m〉

l 6=i,m 6=i

{|0 . . . 01l1̄m0 . . . 01i0 . . .〉 + |0 . . . 01̄l1m0 . . . 01i0 . . .〉} .

(3.101)

In order to calculate PH1
Q
a
H1|i±〉, we must distinguish between different

types of 〈l,m〉 bonds in the above expression. There are 3L− 30 bonds that
are connected neither to site i nor to any of its first-neighbour sites: these
bonds will only contribute if a spin-flip term acts on them, and thus their
total contribution is

−J2(cos ϑ − sin ϑ)2

2D
(3L − 30)2|i±〉. (3.102)

There are 18 bonds that are connected to exactly one first neighbour of site
i: these bonds will contribute both when a spin-flip term acts on them, and
when a spin-flip term acts on the bond linking them to site i. Assuming that
site i is in the state |1i〉 and site m is its first neighbour, we may write such
processes in the concise form

|1l1̄m1i〉 + |1̄l1m1i〉 → 2|001〉 + |100〉, (3.103)
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and we find that the total contribution of such terms is

−J2(cos ϑ − sin ϑ)2

2D
18∗2|i±〉− J2(cos ϑ − sin ϑ)2

2D

′∑
~δ,~δ′

|(i+ δ + δ′)±〉, (3.104)

where
∑′ denotes a sum in which we only take into account the 18 terms

where ~δ + ~δ′ neither vanishes nor points to a first neighbour. There are 6
bonds that are connected to exactly two first neighbours of site i: these bonds
will contribute both when a spin-flip term acts on them, and when a spin-flip
term acts on any of the two bonds that link them to site i. Assuming that
site i is in the state |1i〉, the corresponding processes can be written in the
form

|1l1i1̄m〉 + |1̄l1i1m〉 → |100〉 + 2|010〉 + |001〉, (3.105)

and therefore the total contribution of such terms is

−J2(cos ϑ − sin ϑ)2

2D
6 ∗ 2|i±〉 − J2(cos ϑ − sin ϑ)2

2D
2
∑

~δ

|(i + δ)±〉. (3.106)

Summing up all the contributions, we find

H(2)|i±〉 = −J2(cos ϑ − sin ϑ)2

2D
(6L − 12)|i±〉−

− J2(cos ϑ − sin ϑ)2

2D

∑
~δ,~δ′

~δ+~δ′ 6=0

|(i + δ + δ′)±〉. (3.107)

Similarly to H(1), the second-order effective Hamiltonian H(2) is diagonal in
the basis of propagating states:

H(2)|k±〉 = −J2(cos ϑ − sin ϑ)2

2D
(6L − 18)|k±〉−

− J2(cos ϑ − sin ϑ)2

2D

∑
~δ,~δ′

e−ik·(~δ+~δ′)|k±〉,
(3.108)

and thus we end up with(
H0 + H(1) + H(2)

)
|k±〉 = (D + ε1 + ε2 + ε1(k) + ε2(k)) |k±〉, (3.109)

where

ε2(k) = −J2(cos ϑ − sin ϑ)2

2D
(36γ(k)′2 − 18). (3.110)



80 Quadrupolar ordering on the triangular lattice

The energy gap as a function of k is given by

D + ε1(k) + ε2(k)

D
= 1 +

6J

D
(cos ϑγ(k)′ − sin ϑ)−

−
(

6J

D

)2

(cos ϑ − sin ϑ)2

(
1

2
γ(k)′2 − 1

4

)
+

+ O

(
J3

D3

)
.

(3.111)

One may compare this result to the expansion in powers of 1/d = 6J/D
of the excitation spectrum that was derived in the previous section using
flavour-wave theory:

ω(k)

d
== 1 +

1

d
(cos ϑγ(k)′ − sin ϑ)−

− 1

d2
(cos ϑ − sin ϑ)2 1

2
γ(k)′2+

+ O

(
1

d3

)
.

(3.112)

We find that the perturbative and the semi-classical results coincide with
each other in order J

D
, however, in the next order, the earlier features a

k-independent term, while the latter does not. This discrepancy can most
likely be attributed to the fact that the state |0〉 is not an exact eigenstate
of the Hamiltonian for a finite J .

3.3.2 Easy-axis anisotropy: emergence of supersolidity

It is convenient to use our earlier definitions of H0 and H1, however, we
have to keep in mind that D < 0 in the present case. The ground-state
manifold of H0 has a degeneracy of 2L, and the ground-state energy is given
by E0 = LD < 0. We may again denote excited states of H0 as |n〉: the lth
excited level will feature exactly l sites with the state |0〉, and the energy shift
is given by −lD > 0. Denoting the projector to the ground-state manifold
by P , we may write the first-order effective Hamiltonian as

H(1) = PH1P = J
∑
〈i,j〉

PhijP, (3.113)

where

hij = (cos ϑ − sin ϑ)SiSj + sin ϑ (1 + Pij) . (3.114)
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It is simple to show that

hij| . . . 1i1j . . .〉 = (cos ϑ + sin ϑ)| . . . 1i1j . . .〉,
hij| . . . 1i1̄j . . .〉 = (cos ϑ − sin ϑ)| . . . 0i0j . . .〉+

+ (2 sin ϑ − cos ϑ)| . . . 1i1̄j . . .〉+
+ sin ϑ| . . . 1̄i1j . . .〉,

hij| . . . 1̄i1j . . .〉 = (cos ϑ − sin ϑ)| . . . 0i0j . . .〉+
+ (2 sin ϑ − cos ϑ)| . . . 1̄i1j . . .〉+
+ sin ϑ| . . . 1i1̄j . . .〉,

hij| . . . 1̄i1̄j . . .〉 = (cos ϑ + sin ϑ)| . . . 1̄i1̄j . . .〉,

(3.115)

and introducing local effective spin-one-half states via the mappings |1〉 ≡
| ↑〉 and |1̄〉 ≡ | ↓〉, along with the corresponding SU(2) algebra11, we may
furthermore write

h
(1)
ij | . . . ↑i↑j . . .〉 = (cos ϑ + sin ϑ)| . . . ↑i↑j . . .〉,

h
(1)
ij | . . . ↑i↓j . . .〉 = (2 sin ϑ − cos ϑ)| . . . ↑i↓j . . .〉+

+ sin ϑ| . . . ↓i↑j . . .〉,
h

(1)
ij | . . . ↓i↑j . . .〉 = (2 sin ϑ − cos ϑ)| . . . ↓i↑j . . .〉+

+ sin ϑ| . . . ↑i↓j . . .〉,
h

(1)
ij | . . . ↓i↓j . . .〉 = (cos ϑ + sin ϑ)| . . . ↓i↓j . . .〉,

(3.116)

where h
(1)
ij = 4(cos ϑ − sin ϑ)σz

i σ
z
j + sin ϑ(1 + pij), and pij = 2~σi~σj + 1/2 is

the transposition operator for the effective spins one-half. A comparison of
(3.115) and (3.116) reveals that

PhijP = h
(1)
ij , (3.117)

since the projection operator P suppresses the state | . . . 0i0j . . .〉 that does
not belong to the ground-state manifold. All in all, we find

H(1) = J
∑
〈i,j〉

{
2 sin ϑ

(
σx

i σx
j + σy

i σ
y
j

)
+ (4 cos ϑ − 2 sin ϑ)σz

i σ
z
j +

3

2
sin ϑ

}
,

(3.118)
in other words, the S = 1/2 XXZ model introduced earlier is not only ap-
propriate for a variational description of the original spin-one system for the

11It is trivial to show that the mapping between operators is the following: σ+
i ≡

S+
i S+

i /2, σ−
i ≡ S−

i S−
i /2 and σz

i ≡ Sz
i /2.
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case of sufficiently high anisotropy, but it is also an effective model in the
perturbative sense, at least to first order in J/D. As discussed in appendix
B, the model (3.118) features a

√
3 ×

√
3 supersolid phase that breaks both

the U(1) symmetry associated with rotations around the z axis, and the
translational symmetry of the lattice. With respect to the original spin-one
system, this corresponds to a simultaneous presence of long-range dipolar and
quadrupolar ordering patterns in the parameter region −0.15π . ϑ < π/4.

Let us push the perturbative expansion to second order: the effective
Hamiltonian is given by

H(2) = PH1
Q

a
H1P = J

∑
〈i,j〉

PH1
Q

a
hijP, (3.119)

where the operator Q/a stands for

Q

a
=

∑
n,En 6=E0

|n〉〈n|
E0 − En

. (3.120)

A glance at (3.115) reveals that

Q

a
hij| . . . 1i1j . . .〉 = 0,

Q

a
hij| . . . 1i1̄j . . .〉 =

1

2D
(cos ϑ − sin ϑ)| . . . 0i0j . . .〉,

Q

a
hij| . . . 1̄i1j . . .〉 =

1

2D
(cos ϑ − sin ϑ)| . . . 0i0j . . .〉,

Q

a
hij| . . . 1̄i1̄j . . .〉 = 0,

(3.121)

and applying PH1 to the above equations, we may notice that only terms
that act on the selected pair of sites (i, j) yield a non-vanishing result, i. e.

PH1
Q

a
hij| . . . 1i1̄j . . .〉 = PH1

Q

a
hij| . . . 1̄i1j . . .〉 =

= P
J

2D
(cos ϑ − sin ϑ)hij| . . . 0i0j . . .〉 =

=
J

2D
(cos ϑ − sin ϑ)2(| . . . 1i1̄j . . .〉 + | . . . 1̄i1j . . .〉).

(3.122)

Defining

h
(2)
ij =

J

2D
(cos ϑ − sin ϑ)2

(
pij − 4σz

i σ
z
j

)
, (3.123)



3.4. Conclusions 83

we may deduce that

h
(2)
ij | . . . ↑i↑j . . .〉 = h

(2)
ij | . . . ↓i↓j . . .〉 = 0,

h
(2)
ij | . . . ↑i↓j . . .〉 = h

(2)
ij | . . . ↓i↑j . . .〉 =

=
J

2D
(cos ϑ − sin ϑ)2(| . . . ↑i↓j . . .〉 + | . . . ↓i↑j . . .〉),

(3.124)

and therefore

PH1
Q

a
hijP = h

(2)
ij . (3.125)

Finally, the second-order contribution to the effective Hamiltonian is given
by

H(2) =
J2

2D
(cos ϑ − sin ϑ)2

∑
〈i,j〉

{
2
(
σx

i σx
j + σy

i σ
y
j − σz

i σ
z
j

)
+

1

2

}
. (3.126)

We note that H(2) vanishes at the SU(3) points, and so should all subsequent
perturbative terms as well, since Pij does not connect the ground-state mani-
fold to excited states. Since further-neighbour interactions do not yet appear
at this order, we may conclude that the only physical effect of H(2) is a renor-
malization of the coefficients of H(1). As a result, the ϑ ≈ −0.15π boundary
of the supersolid phase will be slightly shifted, however, the ordering patterns
remain unharmed.

3.4 Conclusions

We have mapped out the complete phase diagram of the spin-one bilinear-
biquadratic model with a single-ion anisotropy field on the triangular lattice,
and have found that it exhibits a variety of unconventional phases, due to
a competition between magnetic and quadrupolar degrees of freedom. It
was shown in particular that a quadrupolar umbrella phase emerges when a
positive biquadratic exchange overcomes the antiferromagnetic bilinear cou-
pling, and the excitation spectrum of this phase features a Goldstone mode
that is associated with the spontaneous breaking of the U(1) symmetry of
rotations around the anisotropy field. Due to the remaining SU(2) symme-
try of the model with identical bilinear and biquadratic coupling coefficients,
the boundary between the quadrupolar umbrella phase and the neighbour-
ing antiferromagnetic phase does not shift in the presence of anisotropy. In
contrast to the umbrella-like arrangement of directors, ferroquadrupolar or-
der is quite sensitive to the nature of the anisotropy field, as the common
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director will turn perpendicular to an easy axis, and be pinned perpendicular
to an easy plane. In the earlier case, a Goldstone mode is retained, while in
the latter, a gap develops for an arbitrarily small field. We have calculated
this gap both within the framework of a semi-classical approach and in the
perturbative limit of a high anisotropy field, and have drawn a comparison
between the two methods. It was also observed that an easy-plane anisotropy
field will shift the boundary between the ferroquadrupolar phase and the an-
tiferromagnetic phase, however, this effect only becomes appreciable if the
anisotropy field is of the order of the exchange. Finally, we have shown that
a sufficiently large easy-axis anisotropy leads to non-trivial degeneracies in
the ground-state manifold in a considerable region of the phase diagram, and
have argued on the grounds of perturbation theory that this degeneracy is
lifted by the emergence of a supersolid phase.

Coming back to the discussion on NiGa2S4, we may conclude that quad-
rupolar order remains quite robust in the presence of single-ion anisotropy.
Provided that a sufficiently large biquadratic exchange is present in the mate-
rial, our results should help in identifying the nature of the low-temperature
phase. In this respect, one should keep in mind that a coupling between
quadrupolar degrees of freedom is inherently present for spin-one antifer-
romagnets, and even when it is weak, it will give rise to unconventional
correlations in magnetically ordered phases, particularly in the presence of
frustration. In future work, it will be highly desirable to explore the effect of
impurities on quadrupolar phases, and to investigate microscopic electronic
processes that may enhance an effective biquadratic exchange.



Chapter 4

Three-sublattice ordering on
the square lattice for a spin-one
antiferromagnet with
biquadratic interactions

We have seen in the preceding chapter that antiferroquadrupolar order in-
duced by a positive biquadratic exchange is unfrustrated on the triangular
lattice in essentially the same manner as conventional antiferromagnetic or-
der is on the square lattice. The mean-field analysis of the spin-one bilinear-
biquadratic Hamiltonian

H = J
∑
〈i,j〉

[
cos ϑ SiSj + sin ϑ (SiSj)

2] (4.1)

has revealed a long-range ordered antiferroquadrupolar phase on the trian-
gular lattice in the parameter region π/4 < ϑ < π/2, and this phase has
proved to remain robust in the presence of quantum fluctuations [38, 5]. The
importance of geometrical frustration can be highlighted in this context by
investigating the mean-field phase diagram of the model (4.1) on the square
lattice. In fact, as explained in section 2.2.3, the variational energy of a bond
is minimized for π/4 < ϑ < π/2 by any configuration in which one of the
sites features a pure quadrupole, and the local wavefunctions of the two sites
are orthogonal to each other. In the case of the triangular lattice, the three-
sublattice structure of the lattice is ideal for three quadrupoles with mutually
perpendicular directors to form a long-range ordered state: every bond is sat-
isfied, and the state is uniquely determined up to global rotations. However,
the connectivity of the square lattice is lower than that of the triangular
lattice, so even if we restrict ourselves to pure quadrupolar wavefunctions,
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Figure 4.1: Phase diagram of the spin-one bilinear-biquadratic model on the
square lattice. The inner circle shows the variational results: the ferromag-
netic, ferroquadrupolar and antiferromagnetic phases are denoted by FM, FQ
and AFM, respectively, while SO stands for “semi-ordered”. The outer cir-
cle shows the numerical results of [51], in the region where Quantum Monte
Carlo simulations do not face a sign problem.

there are many configurations that satisfy all the bonds, similarly to the case
of the three-state antiferromagnetic Potts-model on the square lattice [50].
Furthermore, nearest-neighbour sites of a quadrupolar site with director d
may also be magnetic, featuring a spin vector of arbitrary length parallel to
d (see figure 2.6). We may conclude therefore that on the square lattice, the
variational approach leads to a highly degenerate ground-state manifold in
the parameter region π/4 < ϑ < π/2. Following Papanicolaou [19], we will
call this phase “semi-ordered”.

The situation in the “semi-ordered” phase is reminiscent of frustrated an-
tiferromagnetism, where the competition between exchange paths may give
rise to an infinite number of classical ground states1. In that case, quantum or
thermal fluctuations often restore long-range order by a selection mechanism
that favours collinear or planar configurations and is known as the “order-by-
disorder” mechanism [27], and one might wonder if a similar scenario might
be realized for the present model. Figure 4.1 summarizes what is currently
known about the phase diagram of the spin-one bilinear-biquadratic model
on the square lattice. The variational approach reveals four phases that are

1We should emphasize however that no bond is frustrated in the “semi-ordered” phase.
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separated from each other by the highly symmetric SU(3) points. Adjacent to
the “semi-ordered” phase, we find two magnetic phases with fully developed
spins: for −π/2 < ϑ < π/4, a two-sublattice ordered Néel antiferromagnet is
realized, while ferromagnetic order is stabilized in the region π/2 < ϑ < 5π/4.
Finally, a ferroquadrupolar phase emerges for 5π/4 < ϑ < 3π/2. Quantum
Monte Carlo simulations by Harada and Kawashima have confirmed the vari-
ational phase diagram for the −π ≤ ϑ ≤ 0 case [51], however, much less is
known about the 0 < ϑ < π region. While there can be little doubt that the
ferromagnetic phase should persist in the interval π/2 < ϑ < π (see the exact
spectrum of a bond in figure 2.4), quantum effects remain truly unexplored
in the case when the bilinear and the biquadratic exchange are both positive.

In the present chapter, we aim to eliminate the question mark in figure 4.1,
via a combination of variational analysis, exact diagonalization calculations
and flavour-wave theory. We will place particular emphasis on investigat-
ing the properties of the SU(3)-symmetric point ϑ = π/4, which appears
naturally as the low-energy effective model of the ρ = 1/3 and 2/3 Mott in-
sulators of repulsively interacting three-flavour fermions in an optical lattice.
The exact diagonalization results that appear in the current chapter are all
credited to Andreas M. Läuchli2.

4.1 Emergence of three-sublattice order in the

“semi-ordered” phase

We will uncover the quantum phase diagram in the region π/4 < ϑ < π/2 in
several steps. Firstly, we will show that the introduction of a magnetic field
lifts the ground-state degeneracy in the “semi-ordered” phase and leads to
the stabilization of an exotic 1/2-magnetization plateau. We will complement
this result by mapping out the full magnetic phase diagram of the model
(4.1). Secondly, we will discuss the exact diagonalization calculations of
A. M. Läuchli that confirm the presence of the plateau phase, but indicate
the emergence of a three-sublattice ordered state in the low-field limit. We
should emphasize that the latter finding is truly surprising, given the bipartite
nature of the square lattice. Thirdly, we will demonstrate that quantum
fluctuations give rise to a selection mechanism at the harmonic level which
is in qualitative agreement with the implications of the numerical analysis.
Finally, we will expand on the local stability of three-sublattice order on the
square lattice.

2Max Planck Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
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4.1.1 Lift of degeneracy via a magnetic field

Owing to the fact that the variational bond configuration for π/4 < ϑ <
π/2 admits a dipole moment on one of the sites, an infinitesimal magnetic
field suffices to induce a first-order selection within the degenerate ground-
state manifold of the “semi-ordered” phase. As a result, a two-sublattice
ordered structure emerges, with an average magnetization of 1/2 per site: one
of the sublattices retains ferroquadrupolar order with the common director
parallel to the field, while the other sublattice is ferromagnetic, featuring
fully developed spins aligned with the field. Assuming that the field points
in the z direction, the configuration of every bond is given by |0〉⊗ |1〉. Since
a magnetization process on the quadrupolar sublattice would require a tilting
of the directors from the z axis, we expect a 1/2-magnetization plateau to
develop, analogously to the case of the 2/3-magnetization plateau above the
antiferroquadrupolar phase on the triangular lattice [5].

In figure 4.2, we mapped out the complete variational phase diagram of
the model (4.1) in the presence of a magnetic field:

H = J
∑
〈i,j〉

[
cos ϑ SiSj + sin ϑ (SiSj)

2] − h
∑

i

Sz
i . (4.2)

As suggested earlier, the 1/2-magnetization plateau appears above the “semi-
ordered” phase for an infinitesimal field, and it extends up to

h

J
= 4

(√
sin ϑ(sin ϑ − cos ϑ) − (sin ϑ − cos ϑ)

)
, (4.3)

where a second-order transition occurs: the director of the quadrupolar sub-
lattice starts tilting away from the magnetic field so that a dipole moment
with a non-vanishing z component may develop, however, due to the coupling
between the two sublattices, the spin vector of the ferromagnetic sublattice
will not be aligned with the field anymore. We enter a supersolid phase3

characterized by two sublattices that feature partially polarized spins of dif-
ferent length, the xy components of which cancel each other out. Upon a
further increase of the field, the supersolid phase evolves continuously into a
canted Néel-like phase, where the two spin vectors become reflections of each
other with respect to the z axis. Finally, the phase diagram is completed
by two phases with k = 0 order: apart from the conventional ferromagnetic
phase in which every site has a coherent spin state, we also obtain a pecu-
liar ferromagnetic arrangement where the spins are only partially polarized.

3We use the word supersolid in the sense that one may simultaneously observe trans-
verse order and a real-space modulation in the z component of the spin vectors.
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Figure 4.2: Variational phase diagram of the spin-one bilinear-biquadratic
model in a magnetic field on the square lattice. Solid (dotted) lines denote
second-order (first-order) phase boundaries. Filled (empty) arrows represent
fully (partially) polarized magnetic moments, and the solid black line is a
quadrupolar director. Note the presence of a phase with a magnetization
plateau at 1/2 (shaded in gray), which is separated from the canted Néel
phase by a tiny supersolid phase. In the Néel phase, coherent spin states are
found only along the ϑ = 0 line.

In this latter phase, the single-site wavefunction is the same on every site:
choosing the common director parallel to the y axis, we may write

|ψi〉 = cos(π/4 − η)|y〉 − i sin(π/4 − η)|x〉, (4.4)

and a minimization with respect to η gives

sin2 η =
2(cos ϑ − sin ϑ) − h

2J

4(cos ϑ − sin ϑ)
. (4.5)

At h/J = 4(cos ϑ − sin ϑ), the spins become fully polarized, whereas in the
h → 0 limit, we recover a ferroquadrupolar state. The transition between
this phase and the Néel phase is generally continuous, with a boundary given
by h/J = 2

√
−16 sin ϑ cos ϑ, however, if the magnetic field is of the order of

5J , the two phases are separated from each other by a first-order boundary
that runs above this line.

It is instructive to briefly investigate the stability of the ferromagnetic
state against a single spin flip. Let us first rewrite our Hamiltonian as

H =
∑
〈i,j〉

[(J1 − J2)SiSj + J2 (1 + Pij)] − h
∑

i

Sz
i , (4.6)
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where we have introduced J1 = J cos ϑ and J2 = J sin ϑ. Noticing that

SiSj|1i1j〉 = Pij|1i1j〉 = |1i1j〉 (4.7)

and
SiSj|1i0j〉 = Pij|1i0j〉 = |0i1j〉, (4.8)

we may deduce that the bilinear coupling and the transposition operator have
an identical effect both on the ferromagnetic state and in the Sz = L − 1
subspace of single spin flips (L is the number of lattice sites). Therefore,
the form (4.6) makes it apparent that the J2 coefficient of the biquadratic
exchange does not enter the expression of the gap that separates the ferro-
magnetic state from the single-magnon branch. Let us verify this by explicit
calculation. The ferromagnetic state |111 . . .〉 is an eigenstate of the Hamil-
tonian with energy E0 = 2L(J1 +J2)−Lh, and in the subspace of single spin
flips, propagating states of the form

|k〉 =
1√
L

∑
i

eik·Ri
1√
2
S−

i |111 . . .〉 (4.9)

will diagonalize the Hamiltonian:

(H − E0)|k〉 = ε(k)|k〉. (4.10)

The single-magnon dispersion relation is given by

ε(k) = h + 4J1(γ(k) − 1), (4.11)

where γ(k) =
∑

~δ e−ik·~δ/4, and the sum extends over all first neighbours of
a site. We may conclude that the gap is indeed independent of J2, and if
J1 > 0, it will eventually close at the corners of the Brillouin zone, when the
magnetic field is lowered to the value h = 8J1. This boundary is in perfect
agreement with the variational result in the J2 ≥ 0 region, where we find a
second-order transition to the canted Néel phase, however, if the coefficient
of the biquadratic exchange is a sufficiently large negative number, figure 4.2
indicates either a first-order transition to the Néel phase, or a continuous
instability towards a shortening of the spin vectors, and both of these events
occur at a field h > 8J1. Furthermore, the latter instability may also emerge
for J1 ≤ 0, in which case the single-magnon gap would not close at a finite
field. These features point towards the formation of bound-magnon states in
the presence of a sufficiently large negative biquadratic exchange [18].

Let us also comment on the peculiar interplay between the magnetic
field and the quadrupolar degrees of freedom in the Néel phase. We may
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recall that in the zero-field phase, a coherent spin state was found on every
site, even in the presence of a considerable biquadratic exchange, due to
the unfrustrated nature of two-sublattice magnetic order4. However, once
we turn on the field, the single-site wavefunctions acquire a quadrupolar
character everywhere in the phase, aside from the ϑ = 0 line, and the sign
of the biquadratic exchange becomes important. For ϑ < 0, not surprisingly,
the directors on the two sublattices coincide with each other, and they are
pinned to the plane perpendicular to the magnetic field. On the other hand,
if the coupling coefficient of the biquadratic term is positive, the directors
are in a common plane with the spin vectors, and they too become reflections
of each other with respect to the z axis. We may conclude that knowledge
of the length and the z component of the spin vectors allows for a complete
determination of the single-site wavefunctions everywhere in the Néel phase,
and these two parameters may be obtained via a numerical minimization5.
For the special case ϑ = 0, the spins remain fully polarized for an arbitrary
magnetic field, and their angle with respect to the z axis is given by cos η =
h/8J , thus the magnetization grows linearly with the field. In contrast to the
Néel phase, the supersolid phase is a three-parameter phase. The reflection
symmetry of the configuration with respect to the z axis is lost, however,
the directors remain in a common plane with the spins, therefore the phase
is characterized up to global rotations by the length of the spin vectors on
the two sublattices, and the z component of the spin vectors on one of the
sublattices6. The arrangement of dipole moments and quadrupolar directors
is shown for the Néel phase and the supersolid phase in figure 4.3.

As a closing remark, we would like to emphasize that the excitation spec-
trum of the plateau phase may be obtained explicitly with the help of flavour-
wave theory. A straightforward calculation yields four gapped dispersions in
the reduced Brillouin zone of two-sublattice order, and one of the dispersions
eventually softens at the Γ-point, as we approach the classical boundary of
the plateau phase. This finding indicates a second-order transition into a
two-sublattice ordered phase, in perfect agreement with the variational anal-
ysis that predicts the emergence of a supersolid phase. We may recall that
while rotational symmetry around the z axis was preserved in the plateau
phase, it is broken in the supersolid phase via the selection of a plane for the
spin vectors.

4This behaviour is in sharp contrast with the one observed on the triangular lattice,
where the single-site wavefunctions feature a director in the presence of an arbitrarily
small biquadratic exchange.

5Note that the state breaks rotational symmetry around the z axis, so there is an extra
degree of freedom associated with the selection of a common plane for the spin vectors.

6We may recall that there is no spontaneous magnetization in the xy plane.
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Figure 4.3: Spin vectors and quadrupolar directors on the two sublattices in
the Néel phase for ϑ < 0 (left) and ϑ > 0 (middle), and in the supersolid
phase (right). Dipole moments and directors are represented by red arrows
and blue lines, respectively. Note that in the first picture, the directors are
perpendicular to the plane of the spin vectors, whereas in the other pictures,
they are in a common plane with them.

4.1.2 A numerical analysis of quantum effects

In order to check the scenario suggested by the mean-field calculations,
A. M. Läuchli performed exact diagonalization studies of small clusters. In
figure 4.4, we show magnetization curves for ϑ = 3π/8. It appears that the
plateau is indeed there, but starts only at a finite value of the field: below the
plateau, there is another phase where the magnetization grows slowly from
m = 0. We should emphasize that the magnetization process at ϑ = 3π/8 is
representative of the entire “semi-ordered” region.

One may gain an insight into the nature of the zero-field phase by calcu-
lating the spin and quadrupole structure factors7 via exact diagonalization
for different momenta as a function of ϑ: the results are shown in figure 4.5.
For ϑ = 0, the structure factor is the largest (and grows with the system size)
at (π, π), as we expect for a two-sublattice ordered Néel antiferromagnet. As
we turn on a positive biquadratic exchange, the structure factor gradually
decreases, and for ϑ ≈ 0.19π, a three-sublattice stripe order takes over with
a structure factor that peaks at (2π/3, 2π/3): spin-spin correlations prevail
for ϑ < π/4, while quadrupolar correlations become dominant in the region
between the two SU(3) points. A three-sublattice ordering is also suggested
by the peculiar dependence of the ground-state energy on the number of sites:
we consistently get lower energies for clusters that are multiples of three. The
low-energy spectrum of the 18-site cluster, shown for three different values of
ϑ in figure 4.6, provides further support for the above predictions: while the
Anderson tower that is characteristic of two-sublattice Néel order is clearly
recovered for sufficiently low values of ϑ, it vanishes upon approaching the
SU(3) point, and one eventually finds that for ϑ > π/4, an Anderson tower
emerges that corresponds to two copies of the Anderson tower of the three-

7The structure factor for a momentum k is defined as
∑

j exp(ik · Rj)〈C0Cj〉, where
Cj stands for the spin or the quadrupolar operator at site j.
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Figure 4.4: Magnetization curves of finite clusters for ϑ = 3π/8. Varia-
tional magnetization curves are also shown for comparison: the dashed line
is calculated with the help of the usual variational ansatz, while the dashed-
dotted curve is the result of a restricted variational ansatz that assumes
three-sublattice order. There is a clear indication of the presence of a 1/2-
magnetization plateau.
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Figure 4.5: Structure factors for two different momenta, calculated by exact
diagonalizations of small clusters. Empty (filled) symbols represent spin-spin
(quadrupolar) correlations, while system sizes are labeled by the symbol type.

sublattice ordered antiferroquadrupolar state on the triangular lattice [18].
The two copies refer to the Z2 degeneracy of the state, i. e. to the orientation
of the stripes. We should mention as a closing remark that while the stabi-
lization of a three-sublattice ordered state on the square lattice is certainly
an unexpected finding, it is not as difficult to accept as one may initially
think. In fact, as we may recall from the discussion in subsection 2.2.2, the
one-dimensional bilinear-biquadratic chain is in a critical phase between the
SU(3) points ϑ = π/4 and ϑ = π/2, and this phase features strong antifer-
roquadrupolar correlations with a period of three lattice spacings, therefore
it does not seem unreasonable to assume that a long-range ordered state of
similar character may emerge when quantum fluctuations become less pro-
nounced due to an increase in dimensionality.

The strong tendency of quantum effects to drive the system towards three-
sublattice ordering makes it tempting to see what the variational calculus
yields, if we restrict it to three-sublattice ordered states. In figure 4.7, we
sketch the spatial structure of single-site wavefunctions for a variational state
that assumes either two- or three-sublattice order on the square lattice. In
both cases, we may observe diagonal stripes, and there is an alternation
between either two or three different stripes. However, a three-sublattice
ordered state admits two inequivalent stripe orientations, which may be con-
veniently associated with the ordering wavevectors (2π/3,±2π/3). Upon
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Figure 4.6: Energy spectrum of an 18-site cluster of the square lattice, cal-
culated for three different values of ϑ. In the vicinity of the Heisenberg point
ϑ = 0, the tower of states indicates two-sublattice Néel order (a), however,
the structure obtained for ϑ . π/4 is difficult to interpret (b). The tower of
states that is characteristic of the ϑ > π/4 region suggests the presence of a
three-sublattice ordered antiferroquadrupolar phase (c).
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(b)(a)

Figure 4.7: Pictorial representation of three-sublattice (a) and two-sublattice
(b) order on the square lattice. For an ordered state of a given type, different
colours correspond to different single-site wavefunctions in the variational
ansatz.

taking a closer look at figure 4.7, it is easy to convince ourselves that mini-
mizing the energy of a three-sublattice ordered variational wavefunction on
the square lattice leads us back to solving the variational problem of a single
triangle: indeed, the number of bonds connecting two given sublattices is
2L/3, irrespective of which two sublattices we choose, and this gives rise to a
frustration effect8. In zero magnetic field, we recover three quadrupolar states
with mutually perpendicular directors for π/4 < ϑ < π/2, which happens to
be one of the many true variational ground-state configurations in the “semi-
ordered” region, and as a result, a frustration relief occurs. However, once
the magnetic field is finite, we may not expect to find the absolute variational
energy-minimum using the restricted class of three-sublattice ordered states,
since these may not account for the plateau phase, the supersolid phase or
the canted Néel phase. According to [5], for sufficiently low fields, one of the
sublattices retains a pure quadrupolar state with a director pinned parallel to
the field, whereas the states on the other two sublattices develop a magnetic
moment parallel to the field, however, the three directors remain mutually
perpendicular in the process. We may characterize this phase with the help
of the single-site wavefunctions

|ψ1〉 = cos(π/4 − η)|x〉 + i sin(π/4 − η)|y〉,
|ψ2〉 = cos(π/4 − η)|y〉 − i sin(π/4 − η)|x〉,
|ψ3〉 = |z〉,

(4.12)

8One should keep in mind that if the effective coupling constant on the triangle is taken
to be J , the on-site magnetic field will have to be renormalized by a factor of 1/2.
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and a minimization with respect to η ∈ [0, π/4] gives

sin2 η =
2 cos ϑ − h

J

4 cos ϑ
. (4.13)

When the magnetic field reaches the value h/J = 2 cos ϑ, which is above
the boundary of the plateau phase, the magnetic sublattices become fully
polarized, and the assumption of three-sublattice order will give rise to a dis-
tinct 2/3-magnetization plateau. The magnetization curve, shown in figure
4.4 for ϑ = 3π/8, is linear below this plateau. Let us emphasize once more
that if a finite magnetic field is turned on in the region π/4 < ϑ < π/2,
the assumption of three-sublattice order leads to a variational energy that is
higher than the one obtained with the help of the general variational ansatz.
In fact, one may show by explicit calculation that the resulting mean-field
state is unstable within the framework of linear wave theory.

4.1.3 “Order-by-disorder”

The fact that the variational picture is insufficient to account for the low-field
numerical results is indicative of the presence of strong quantum fluctuations
in the “semi-ordered” region. The large degeneracy of the variational solution
for h = 0 hints at an “order-by-disorder” effect: the spectrum of excitations
and hence the zero-point energy will depend on the particular configuration,
and this allows for a selection mechanism. In this subsection, we will use
flavour-wave theory to calculate the zero-point energy associated with two-
sublattice order and three-sublattice order in the region π/4 < ϑ < π/2. The
starting point of the upcoming analysis is essentially identical to that of the
flavour-wave study of quadrupolar phases: see section 3.2 for details.

The three-sublattice ordered variational ground state corresponds to three
quadrupolar states with perpendicular directors, we may therefore choose the
single-site wavefunctions for sublattice A, B and C as |z〉, |x〉 and |y〉, re-
spectively, and induce quantum fluctuations via the familiar 1/M -expansion.
Carrying out the replacements

azi, azi
† −→

√
M − axi

†axi − ayi
†ayi,

axj, axj
† −→

√
M − ayj

†ayj − azj
†azj,

ayk, ayk
† −→

√
M − azk

†azk − axk
†axk,

(4.14)

for i ∈ A, j ∈ B and k ∈ C, respectively, we end up with two independent
bosonic operators per site, however, the lowest-order expansion of the inter-
action terms between site i of sublattice A and site j of sublattice B will
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contain only two bosons of the possible four:

SiSj = −M
(
axi

†azj + axiazj
† − axi

†azj
† − axiazj

)
+ O(

√
M) (4.15)

and

Pij = M
(
axi

†axi + azj
†azj + axi

†azj
† + axiazj

)
+ O(

√
M). (4.16)

We may introduce propagating states on each sublattice via a Fourier trans-
formation of the form

aµi =

√
3

L

∑
k∈RBZ

eik·Riaµ(k),

aµi
† =

√
3

L

∑
k∈RBZ

e−ik·Riaµ
†(k),

(4.17)

where L denotes the total number of sites of the square lattice, and the sum
extends over all k vectors in the reduced Brillouin zone of three-sublattice
order. Summing up all interaction terms between sublattices A and B leads
to ∑

i∈A

(SRi
SRi+a1 + SRi

SRi−a2) =

= −2M
∑
k

{
γ(k)ax

†(k)az(k) + γ(k)∗ax(k)az
†(k)−

−γ(k)ax
†(k)az

†(−k) − γ(k)∗ax(k)az(−k)
} (4.18)

and ∑
i∈A

(PRiRi+a1 + PRiRi−a2) =

= 2M
∑
k

{
ax

†(k)ax(k) + az
†(k)az(k)+

+γ(k)ax
†(k)az

†(−k) + γ(k)∗ax(k)az(−k)
}

,

(4.19)

where a1 = aex and a2 = aey are elementary lattice vectors of the square
lattice, and γ(k) = (eik·a1 + e−ik·a2)/2. Note that we have omitted the sub-
lattice indices, since ax (az) bosons come from the A (B) sublattice, and
the sublattices are chosen in such a way that they are spanned by the lat-
tice vectors 3a1 and a1 + a2, furthermore the vectors a1 and −a2 connect
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each site of sublattice A to its nearest neighbours from sublattice B. One
may easily associate this configuration with a pictorial representation upon
a straightforward introduction of the directions ex and ey in figure 4.7(a).
Taking all the remaining interaction terms into account, we find that up to
order M , the complete Hamiltonian may be written in the form

H

J
= 2M2L sin ϑ + 2M [h(axA, azB) + h(ayB, axC) + h(azC , ayA)] , (4.20)

where

h(a, b) =

= (sin ϑ − cos ϑ)
∑
k

{
γ(k)a†(k)b(k) + γ(k)∗a(k)b†(k)−

−γ(k)a†(k)b†(−k) − γ(k)∗a(k)b(−k)
}

+

+ sin ϑ
∑
k

{
a†(k)a(k) + b†(k)b(k)+

+γ(k)a†(k)b†(−k) + γ(k)∗a(k)b(−k)
}

.

(4.21)

Every boson enters the Hamiltonian (4.20), and the three terms h(axA, azB),
h(ayB, axC) and h(azC , ayA) may be diagonalized independently from each
other9. We should emphasize that in the ϑ → π/4 limit, one may associate
the indices x, y and z with an arbitrary basis in the Hilbert space of a spin
one, i. e. the bosonic spectrum and the zero-point energy will be the same for
any three-sublattice ordered state. The case of the other SU(3)-symmetric
point is also special: the bond equation

(P12 − S1S2) |x〉|y〉 = 0 (4.22)

implies that the variational state becomes an exact eigenstate of the initial
Hamiltonian in the ϑ → π/2 limit, and this results in an absence of quantum
fluctuations. We will define the zero-point energy εZP of a three-sublattice
ordered state as the ground-state energy of the Hamiltonian (4.20) in the
case M = 1, divided by the number of sites10: we obtain

εZP

J
=

3

L

∑
k

{ω+(k) + ω−(k)}, (4.23)

9It is straightforward to extend our results to the triangular lattice, where the vari-
ational ground state in the π/4 < ϑ < π/2 region is also a three-sublattice ordered
antiferroquadrupolar state.

10Note that in section 3.2, we used a slightly different definition and referred to the
ground-state energy of the bosonic part of the flavour-wave Hamiltonian as “zero-point
energy”.
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where each of the dispersions

ω±(k) =

√
(sin ϑ ± (sin ϑ − cos ϑ)|γ(k)|)2 − (cos ϑ|γ(k)|)2 (4.24)

is three-fold degenerate. While ω+(k) is gapped all throughout the reduced
Brillouin zone, the other branch features a line of zero modes: it can be
shown that

ω−(k) = 0 ⇔ |γ(k)| = 1 ⇔ ky = −kx (4.25)

for an arbitrary value of ϑ. This particular softening of the excitation spec-
trum may be seen as a sign of classical degeneracy: we may easily convince
ourselves that a simultaneous rotation of the directors of two neighbour-
ing diagonals in their common plane does not cost energy, as long as they
remain perpendicular to each other, and such a wave-like excitation is es-
sentially one-dimensional. This interpretation of the gapless modes is given
further support, if we extend our calculus to the triangular lattice: indeed,
we recover the same dispersions as the authors of [38], and the line of zero
modes is absent, demonstrating a lift of this peculiar classical degeneracy11.
Let us add as a closing remark that in the ϑ → π/4 limit, the ω+ branch
also softens along the ky = −kx line, as it becomes degenerate with the ω−
branch.

The two-sublattice ordered variational ground state corresponds to a pure
quadrupolar state with a director d and either another quadrupole with its
director orthogonal to d, or a spin vector of arbitrary length pointing along
d. We will choose the single-site wavefunctions for sublattice A and B as |z〉
and cos η|x〉 + i sin η|y〉, respectively, where η ∈ [0, π/4] is a freely varying
parameter that is associated with the magnetization of the state12. Let us
carry out a global rotation of the ax and ay operators:

a↑
† = cos ηax

† + i sin ηay
†,

a↑ = cos ηax − i sin ηay,

a↓
† = sin ηax

† − i cos ηay
†,

a↓ = sin ηax + i cos ηay,

(4.26)

11A triangular lattice can be constructed by introducing cross-couplings perpendicular
to the diagonals in figure 4.7(a). If we now rotate a neighbouring blue and red diagonal,
there will be an increase in energy, unless we simultaneously rotate every other blue and
red diagonal of the lattice.

12Note that the director of the magnetic sublattice may be rotated around the director
of the ferroquadrupolar sublattice without an energy cost.
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and use the inverse relations

ax
† = cos ηa↑

† + sin ηa↓
†,

ax = cos ηa↑ + sin ηa↓,

ay
† = −i sin ηa↑

† + i cos ηa↓
†,

ay = i sin ηa↑ − i cos ηa↓

(4.27)

to express all terms in the Hamiltonian. Condensing the az boson on sublat-
tice A and the a↑ boson on sublattice B, one finds the following interaction
terms in the leading order of the 1/M -expansion:

SiSj =

= −M
{
cos ξ

(
a↑i

†azj + a↑iazj
†) + sin ξ

(
a↓i

†azj + a↓iazj
†)−

−
(
a↑i

†azj
† + a↑iazj

)
− sin2 ξ

(
a↑i

†a↑i − a↓i
†a↓i

)
+

+ sin ξ cos ξ
(
a↑i

†a↓i + a↓i
†a↑i

)} (4.28)

and

Pij = M
(
a↑i

†a↑i + azj
†azj + a↑i

†azj
† + a↑iazj

)
, (4.29)

where site i (j) belongs to sublattice A (B), furthermore ξ = 2η ∈ [0, π/2].
One may notice that the bilinear interaction does not involve the a↓ boson of
the B sublattice, while the transposition operator leaves out the a↓ boson of
the A sublattice as well. We introduce propagating states on each sublattice
via a Fourier transformation of the form

aµi =

√
2

L

∑
k∈RBZ

eik·Riaµ(k),

aµi
† =

√
2

L

∑
k∈RBZ

e−ik·Riaµ
†(k),

(4.30)

where L denotes the total number of sites of the square lattice and the sum
extends over all k vectors in the reduced Brillouin zone of two-sublattice
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order. Summing up all interaction terms leads to

∑
i∈A

∑
δ

SRi
SRi+δ =

= −4M
∑
k

{
cos ξγ(k)

(
a↑

†(k)az(k) + a↑(k)az
†(k)

)
+

+ sin ξγ(k)
(
a↓

†(k)az(k) + a↓(k)az
†(k)

)
−

− γ(k)
(
a↑

†(k)az
†(−k) + a↑(k)az(−k)

)
−

− sin2 ξ
(
a↑

†(k)a↑(k) − a↓
†(k)a↓(k)

)
+

+ sin ξ cos ξ
(
a↑

†(k)a↓(k) + a↓
†(k)a↑(k)

)}

(4.31)

and

∑
i∈A

∑
δ

PRiRi+δ =

= 4M
∑
k

{
a↑

†(k)a↑(k) + az
†(k)az(k)+

+γ(k)
(
a↑

†(k)az
†(−k) + a↑(k)az(−k)

)}
,

(4.32)

where we have omitted the sublattice indices: every “up” and “down” boson
comes from sublattice A, while the az bosons belong to sublattice B. The
δ vectors point towards the four nearest neighbours of a site, and γ(k) =
(cos(k · a1) + cos(k · a2))/2, where a1 = aex and a2 = aey are elementary
lattice vectors of the square lattice. Up to order M , the Hamiltonian assumes
the form

H

J
= 2M2L sin ϑ + 4Mh(a↑A, azB, a↓A), (4.33)
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where

h(a, b, c) =

= (sin ϑ − cos ϑ)
∑
k

{
cos ξγ(k)

(
a†(k)b(k) + a(k)b†(k)

)
+

+ sin ξγ(k)
(
c†(k)b(k) + c(k)b†(k)

)
−

− γ(k)
(
a†(k)b†(−k) + a(k)b(−k)

)
−

− sin2 ξ
(
a†(k)a(k) − c†(k)c(k)

)
+

+ sin ξ cos ξ
(
a†(k)c(k) + a(k)c†(k)

)}
+

+ sin ϑ
∑
k

{
a†(k)a(k) + b†(k)b(k)+

+γ(k)
(
a†(k)b†(−k) + a(k)b(−k)

)}
.

(4.34)

The “down” bosons from sublattice B do not enter the Hamiltonian (4.33),
and therefore they form a completely flat band in the reduced Brillouin zone.
This is indicative of the fact that the variational solution allows for a local
rotation on any set of sites of sublattice B, provided that ferroquadrupolar
order is preserved on sublattice A. In the ϑ → π/4 limit, local rotations are
allowed on both sublattices, which results in another flat band that is asso-
ciated with the “down” bosons of sublattice A, furthermore, the remaining
two bosons may actually correspond to any two orthogonal spin-one states.
At the other SU(3)-symmetric point, the variational state becomes an ex-
act eigenstate of the initial Hamiltonian, therefore the zero-point energy will
coincide with the variational energy when ϑ → π/2. Rewriting the bosonic
part of the Hamiltonian (4.33) as

h(a, b, c) =
∑
k

(
a†(k) b†(k) c†(k)

)
M1(k)

a(k)
b(k)
c(k)

 +

+
(
a†(k) b†(k) c†(k)

)
M2(k)

a†(−k)
b†(−k)
c†(−k)

 +

+
(
a(k) b(k) c(k)

)
M2(k)

a(−k)
b(−k)
c(−k)

 ,

(4.35)
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where

M1(k)

sin ϑ
=

=

(cot ϑ − 1) sin2 ξ + 1 (1 − cot ϑ) cos ξγ(k) (1 − cot ϑ) sin ξ cos ξ
(1 − cot ϑ) cos ξγ(k) 1 (1 − cot ϑ) sin ξγ(k)
(1 − cot ϑ) sin ξ cos ξ (1 − cot ϑ) sin ξγ(k) (1 − cot ϑ) sin2 ξ

 ,

M2(k)

sin ϑ
=

0 cot ϑγ(k) 0
0 0 0
0 0 0

 ,

(4.36)

we may obtain a convenient form for a Bogoliubov transformation. The
zero-point energy, defined in analogy with the case of three-sublattice order,
becomes

εZP

J
=

2

L

∑
k

{ω1(k) + ω2(k) + ω3(k)}, (4.37)

where the three dispersions are given as the positive eigenvalues of the matrix(
M1(k) M2(k) + M2(k)T

−M2(k) − M2(k)T −M1(k)

)
. (4.38)

If the magnetization is non-vanishing, i. e. 0 < ξ ≤ π/2, two of the branches
are gapped, while the third one features a soft mode at k = 0. However, if
both sublattices are ferroquadrupolar (ξ = 0), the “down” bosons of sublat-
tice A do not enter the Hamiltonian, which leads to a completely flat band
in the spectrum13. Among the remaining two branches, one is gapped, while
the other one softens at the Γ-point.

In figure 4.8(a), we compare the zero-point energies of the two-sublattice
ordered antiferroquadrupolar state, the 1/2-magnetization plateau, and the
three-sublattice ordered antiferroquadrupolar state in the region π/4 ≤ ϑ ≤
π/2. We find that three-sublattice order prevails in a convincing manner
all throughout the region, and this conclusion remains valid even if one
takes into account two-sublattice ordered configurations with an arbitrary
magnetization value 0 < m < 1/2, since their zero-point energy can be
shown to increase with a decreasing m. In other words, even though quan-
tum fluctuations favour the 1/2-magnetization plateau among all states with
two-sublattice order, it is still not plausible for small magnetic fields. An
estimate can be given of the extent of the three-sublattice ordered phase in
the magnetic phase diagram between the two SU(3) points by comparing the

13In this case, local rotations are allowed on both sublattices.
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Figure 4.8: (a) Zero-point energy of the two-sublattice ordered antiferro-
quadrupolar state “AFQ2”, the 1/2-magnetization plateau “PL”, and the
three-sublattice ordered antiferroquadrupolar state “AFQ3”, as a function
of ϑ. The variational energy “MF” is also shown for comparison. (b) Zero-
point energy of the helical states as a function of ϕ, for different values of
ϑ. All π/4 ≤ ϑ < π/2 curves feature a minimum at ϕ = 2π/3, while the
ϑ = π/2 curve is completely flat.
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Figure 4.9: (a) Variational phase diagram of the “semi-ordered” region in the
presence of a magnetic field. AFM2 and SS2 denote two-sublattice ordered
Néel and supersolid phases, respectively, while FM stands for ferromagnet.
Flavour-wave theory suggests that a three-sublattice ordered phase (AFQ3)
is stabilized by quantum fluctuations: the dashed line represents an estimate
of the corresponding phase boundary. (b) The ground states of the 18-site
cluster, calculated via exact diagonalizations.

zero-point energy at h = 0 to the Zeeman-energy of different states. Based
on the discussion at the end of the previous subsection, one may deduce
that the variational energy per site of the three-sublattice ordered state is
ε3 = εSO − h2/6J1, where J1 = J cos ϑ, and it decreases slower in the field
than the energy of the 1/2-magnetization plateau given by ε2 = εSO − h/2.
Therefore, assuming that the change in the zero-point energy difference may
be principally attributed to the classical magnetic energy terms, the extent
of the three-sublattice ordered phase will eventually be limited by the linear
Zeeman-energy of the plateau state: we show a sketch of the phase boundary
in figure 4.9. In agreement with the numerical results, flavour-wave theory
predicts that a considerable fraction of the variationally conjectured plateau
phase is replaced by a three-sublattice ordered phase in the presence of quan-
tum fluctuations.
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4.1.4 The role of helical states

In the previous subsection, we have demonstrated that quantum fluctuations
on top of the three-sublattice ordered classical ground state induce a line of
zero-energy excitations in the Brillouin zone14 for π/4 < ϑ < π/2. On the
one hand this line of soft modes defined by kx + ky = 0 reduces consider-
ably the zero-point energy of the state, but on the other it can be shown
to yield a divergent correction to the classical order parameter and thereby
render linear wave theory inconsistent. On the classical level, one may in-
terpret the presence of this line as an indicator of degeneracy, similarly to
the (0, 0) and (π, π) Goldstone modes of the Néel state of a conventional
spin-one-half antiferromagnet on the square lattice15. In the present case,
we may select a k vector of arbitrary length along the line, which implies
that one may construct helical states of one continuous parameter in the
classical ground-state manifold. Quantum fluctuations will lift the degener-
acy of these helices, however, three-sublattice order may only prevail if its
zero-point energy remains the lowest. In this subsection, we shall investigate
the stability of three-sublattice order with respect to helical states.

Let us write the single-site wavefunction of a general helical state in the
form

|ψR〉 = URx−Ry |ψ0〉 , (4.39)

where U is an SU(3) matrix, the vectors R = Rxaex + Ryaey are lattice
vectors of the square lattice, and a is the lattice constant. Our choice cor-
responds to a helix with kx + ky = 0, as the single-site wavefunction does
not change along the diagonals where Rx − Ry is kept fixed. If we allow for
a magnetic diagonal, it follows that the neighbouring diagonals will have to
feature identical quadrupolar states, and we eventually end up with a two-
sublattice ordered state of alternating quadrupolar and magnetic diagonals
over the whole lattice. Such states may be discarded immediately, since their
energy is higher than that of the three-sublattice ordered antiferroquadrupo-
lar state in the presence of quantum fluctuations. However, if we restrict
ourselves to pure quadrupolar states, U may be associated with a fixed-angle
rotation of the directors around a given axis, and as a result, we obtain a

14Even though the dispersion with a line of soft modes is defined in the reduced Brillouin
zone of three-sublattice order, it is three-fold degenerate, thus in total we may define one
dispersion with a line of soft modes over the complete Brillouin zone of the square lattice.

15Both of these modes arise due to the breaking of spin-rotational symmetry. One
may create the corresponding classical helices

∣∣ψ(0,0)

〉
=

∏
R U |↑R〉 and

∣∣ψ(π,π)

〉
=∏

R U ′Rx+Ry |↑R〉, where U and U ′ are SU(2) matrices, U ′2 = 1, and |↑R〉 is either |↑〉 or
|↓〉, depending on whether R = Rxaex + Ryaey belongs to sublattice A or B. One may
parametrize the matrices U and U ′ and minimize the classical energy with respect to the
resulting parameters. In both cases, we end up with the conventional Néel state.
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quadrupolar umbrella configuration. Let the z axis be the axis of the rota-
tion, let us choose the state of the site Rx = Ry = 0 as cos η|z〉 − sin η|y〉,
where η ∈ [0, π/2], and let ϕ ∈ [0, π] denote the angle of the rotation with a
corresponding direction defined according to the right-hand rule, as Rx −Ry

is increased16: the resulting configuration may be described by the single-site
wavefunctions

|ψR〉 = cos η|z〉 + sin η [sin((Rx − Ry)ϕ)|x〉 − cos((Rx − Ry)ϕ)|y〉] . (4.40)

In the “semi-ordered” phase, neighbouring sites have to feature orthogonal
wavefunctions, which leads to the condition

cos2 η + sin2 η cos ϕ = 0. (4.41)

The condition (4.41) may only be satisfied for ϕ ∈ [π/2, π], and the parameter
η is given by

sin2 η =
1

1 − cos ϕ
. (4.42)

We may conclude that the three-sublattice ordered (ϕ = 2π/3) and the two-
sublattice ordered (ϕ = π/2 or ϕ = π) antiferroquadrupolar states are in
fact adiabatically connected to each other via a class of helical states. We
should emphasize that while the stabilization of two-sublattice order may
be excluded on the basis of our earlier results, there is no a priori reason
to rule out the emergence of a helical phase with ϕ 6= 2π/3 in the “semi-
ordered” region, and it is important to keep in mind in this respect that a
helical state with an incommensurate wavevector close to (2π/3,±2π/3) can
not be detected by exact diagonalization methods. Nonetheless, the effect
of quantum fluctuations can be studied at the harmonic level via the use of
flavour-wave theory. Since the calculation of the excitation spectrum of the
helical states is similar to the one shown in subsection 3.2.2, we prefer to omit
technical details and we discuss the results straightaway instead. We obtain
two dispersive branches for an arbitrary value of the helical parameter in the
region π/2 < ϕ < π: one of the dispersions is gapped all throughout the
Brillouin zone, while the other one retains the kx +ky = 0 line of zero modes,
i. e. the qualitative behaviour of the excitation spectrum is independent of
the helical parameter. A plot of the zero-point energy is shown as a function
of ϕ, for different values of π/4 ≤ ϑ ≤ π/2, in figure 4.8(b). We find that
apart from the ϑ = π/2 point, where all helical states are eigenstates of
the Hamiltonian, quantum fluctuations favour three-sublattice order for an
arbitrary value of ϑ.

16In this case, a choice of π ≤ ϕ ≤ 2π could be interpreted as a rotation of angle 2π−ϕ
in the inverse direction.
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4.2 Three-sublattice ordering of the SU(3)

Heisenberg model

This section will be devoted to the investigation of the properties of the SU(3)
Heisenberg model on the square lattice, which can be seen both as a special
high-symmetry point of the SU(2) spin-one bilinear-biquadratic model, when
the two couplings are equal, and as an effective model of strongly interacting
three-flavour fermions in an optical lattice. For the sake of simplicity, we will
define the model as

H = J
∑
〈i,j〉

Pij, (4.43)

where J > 0 sets an energy scale and Pij is the familiar transposition opera-
tor that exchanges the states of sites i and j. We aim to present an overview
of the results of the previous section that are relevant to the model (4.43) and
provide further arguments in favour of the stabilization of three-sublattice or-
der by extending both the semi-classical and the numerical analysis. We will
also study the “order-by-disorder” phenomenon in the presence of thermal
fluctuations and discuss the role of dimensionality.

4.2.1 Semi-classical approach

In subsection 4.1.4, we have demonstrated the existence of one-parameter
helical states that connect the two-sublattice ordered state to the three-
sublattice ordered one. In the “semi-ordered” region, these states corre-
sponded to a quadrupolar umbrella configuration, however, as we have al-
ready suggested in subsection 4.1.3, this need not be the case for the SU(3)-
symmetric model. In fact, based on (4.40), we may now characterize a general
helical state with the help of the single-site wavefunctions

|ψR〉 = cos η|z′〉 + sin η [sin((Rx + Ry)ϕ)|x′〉 − cos((Rx + Ry)ϕ)|y′〉] , (4.44)

where ϕ ∈ [π/2, π], η ∈ [0, π/2] is given by (4.42), and the set of states |x′〉,
|y′〉 and |z′〉 forms an arbitrary basis in the local Hilbert space of a site17.
Thinking of a spin-one system, we are not restricted to time-reversal-invariant
single-site wavefunctions in the presence of SU(3) symmetry: for instance, if
we choose |x′〉 = i|x〉, |y′〉 = i|y〉 and |z′〉 = |z〉, where |x〉, |y〉 and |z〉 are the
familiar quadrupolar states, we obtain a magnetic helix for any value ϕ 6=
π/2. In these helices, neighbouring spin vectors subtend an angle ϕ with each

17Note that in contrast to (4.40), we have now chosen a helix with ky = kx, as this
choice will facilitate the extension of our results to higher dimensions.
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other, and the spin length is given by sin(2η). The case ϕ = π corresponds
to the conventional Néel state with fully polarized spin vectors, while the
helix ϕ = π/2 describes two-sublattice antiferroquadrupolar order: the two
configurations have the same classical energy for the SU(3)-symmetric model
(4.43).

In order to derive the excitation spectrum of the helical states, we may
rely on the formalism of subsection 3.2.2. Using the rotation matrix

Ui
† =

 sin η sin ϕi − sin η cos ϕi cos η
− cos η sin ϕi cos η cos ϕi sin η

cos ϕi sin ϕi 0

 , (4.45)

where ϕi = (Ri
x + Ri

y)ϕ, we may introduce a local rotation of the forma1i

a2i

a3i

 = Ui
†

ax′i

ay′i

az′i

 (4.46)

and express the transposition operator with the help of the new bosons in
accordance with (3.64). For a pair of nearest-neighbour sites that satisfy
ϕj − ϕi = ϕ, we obtain

Pij =

= M

{(
a2

† a3
†) (

− cos ϕ
√
− cos ϕ

√
1 + cos ϕ√

− cos ϕ
√

1 + cos ϕ 1 + cos ϕ

)(
a2

a3

)
+

+
(
b2

† b3
†) (

− cos ϕ −
√
− cos ϕ

√
1 + cos ϕ

−
√
− cos ϕ

√
1 + cos ϕ 1 + cos ϕ

)(
b2

b3

)
+

+
(
a2

† a3
†) (

− cos ϕ −
√
− cos ϕ

√
1 + cos ϕ√

− cos ϕ
√

1 + cos ϕ −(1 + cos ϕ)

)(
b2

†

b3
†

)
+

+
(
a2 a3

) (
− cos ϕ −

√
− cos ϕ

√
1 + cos ϕ√

− cos ϕ
√

1 + cos ϕ −(1 + cos ϕ)

)(
b2

b3

)}
+

+ O(1),

(4.47)

where we have denoted the bosons on site i and j by a and b, respectively.
We would like to emphasize that the matrices in the expression (4.47) are
independent of our original choice of the basis states |x′〉, |y′〉 and |z′〉, which
demonstrates explicitly that harmonic quantum fluctuations will only distin-
guish between helices with a different helical parameter18. A Fourier trans-
formation over the whole lattice, followed by a Bogoliubov transformation,

18The conclusion remains valid in the presence of anharmonic terms as well, due to the
SU(3) symmetry of the model (4.43).
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Figure 4.10: Flavour-wave dispersions of (a) the three-sublattice ordered
state, (b) a helical state with ϕ = 0.75π, and (c) the two-sublattice ordered
state. (d) Zero-point energy per site, as a function of the helical parameter.
The minimum is located at ϕ = 2π/3 in both two and three dimensions.

yields the ground-state energy of the flavour-wave Hamiltonian at the level
of harmonic fluctuations:

εZP

J
=

1

2L

∑
k

{ω1(k) + ω2(k)}, (4.48)

where we have omitted a constant term −2 on the right-hand side19. The
dispersions are given by the equation

ω4 − 4
[
2(1 − γγ∗) + (2 − γ2 − (γ∗)2)(1 + 2 cos ϕ)2

]
ω2+

+ 256(cos ϕ + cos2 ϕ)2(1 − γγ∗)2 = 0,
(4.49)

where γ = γ(k) = (eikx + eiky)/2 (the lattice constant is chosen as unity).
For the three-sublattice ordered state, the branches are degenerate,

ω1(k) = ω2(k) = 2
√

1 − |γ(k)|2, (4.50)

while in the case of two-sublattice order, i. e. ϕ = π/2 and ϕ = π, one finds
the dispersions

ω1(k) = 0,

ω2(k) = 2
√

4 − (γ(k) + γ∗(k))2.
(4.51)

The corresponding spectra are shown in figures 4.10(a) and 4.10(c). All
helical states give rise to a line of zero modes, as we demonstrate by an
example in figure 4.10(b). A comparison of the zero-point energies is shown
in figure 4.10(d): in accordance with the results of subsection 4.1.4 (see figure

19In fact, the energy of the state is lowered in the presence of quantum fluctuations. We
may recall that the classical energy value is zero.
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4.8(b)), we find that among all helical states, the three-sublattice ordered one
is favoured by quantum fluctuations. We have also compared the zero-point
energy of the three-sublattice ordered state with that of random ground
states on finite clusters, as well as with that of stripe states featuring three
different stripes with a higher period, with the conclusion that it is always
lower. In summary, the three-sublattice ordered state appears to be quite
robust within the framework of flavour-wave theory.

4.2.2 Numerical approach

The numerical study of the spin-one bilinear-biquadratic model that we pre-
sented in subsection 4.1.2 mainly focused on the magnetization process, the
behaviour of the correlation functions as a function of ϑ, and the structure of
the low-energy spectrum in the “semi-ordered” region, however, it nonethe-
less provided a strong indication that three-sublattice order may be stabi-
lized at the SU(3)-symmetric point ϑ = π/4. Let us now address directly the
properties of the Hamiltonian (4.43) via exact diagonalization calculations
for finite clusters. The results presented in this subsection are credited to
A. M. Läuchli.

The energy per site for square samples of up to 20 sites is shown in figure
4.11(a): as it was suggested in subsection 4.1.2, the energy is significantly
lower for the samples whose number of sites is a multiple of 3 (9 and 18), pro-
viding evidence in favour of a three-sublattice symmetry breaking. In order
to check if the continuous SU(3) symmetry is also broken, we have plotted
in figure 4.11(b) the energy levels as a function of the quadratic Casimir op-
erator C2 of SU(3), keeping track of the irreducible representations (IRs) of
the space group symmetry. Should a symmetry breaking occur, one expects
the low-energy part of the spectrum to align linearly as a function of C2,
giving rise to a tower of states [52]. This is clearly the case in figure 4.11(b),
as highlighted by the dashed line. This tower of states can be thought of as
a combination of two towers corresponding to the two possible propagation
directions, which results in the finite-size splitting of some levels (e.g. ΓA1
and ΓB2), as well as the increased degeneracy of some IRs (e.g. W ). Note
also that the tower is not as well-separated from the rest of the spectrum
as in other systems [52], which is a consequence of the “order-by-disorder”
selection mechanism that leads to low-lying excitations associated with other
mean-field solutions. The structure of the energy spectrum further indicates
that the state with an equal population of the SU(3) basis states is stable
with respect to the occurrence of spontaneous population imbalance or phase
separation. Finally, based on an inspection of the real-space correlation func-
tions of the 18-site sample, one may roughly estimate the ordered moment to
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Figure 4.11: (a) Energy per site from exact diagonalizations of various finite-
size square clusters, compared to the flavour-wave (FW) result. (b) Tower
of states for 18 sites. Γ denotes points in the centre of the Brillouin zone,
with A1 and B2 one-dimensional and E1 two-dimensional IRs, while W is a
four-dimensional IR with wavevectors (±2π/3,±2π/3).

be about 60-70% of the saturation value. Long-wavelength fluctuations on
larger systems might further reduce this moment, but with such a large value
on 18 sites, we expect the order to survive in the thermodynamic limit20. Al-
together, we may conclude that exact diagonalization calculations provide
very clear evidence in favour of the three-sublattice ordered flavour-wave
state.

4.2.3 Thermal fluctuations and dimensionality

We should emphasize that the selection of the three-sublattice ordered state
is quite surprising from the point of view of “order-by-disorder”. Indeed, the
two-sublattice ordered state has by far the largest number of zero modes21,
and according to common wisdom, it should be selected. However, this
need not be the case for quantum fluctuations: if the non-zero modes have
sufficiently large energy, they may compensate for the vanishing contribution

20We note that the ordered moment may not be estimated within linear flavour-wave
theory, due to the line of zero modes.

21We may recall that a completely flat band is found in the excitation spectrum, due to
the fact that a local rotation is allowed on any site.
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of the zero modes. This is what happens here for the two-sublattice ordered
structure, the upper branch of which is larger than twice the degenerate
branch of the three-sublattice ordered structure, for all wavevectors. By
contrast, for thermal fluctuations, the stabilization of the configuration with
the largest number of zero modes is systematic, since the low-temperature
free energy reads [53]

F = E0 −
NZM

4
T ln T − NM − NZM

2
T ln T, (4.52)

where NM is the total number of modes and NZM is the number of zero
modes. The classical spectrum is found for the helical states by replacing the
creation and the annihilation operators in (4.47) by complex numbers22: its
four branches are given by the equation

λ2 − 2 [2 ± (1 + 2 cos ϕ)(γ + γ∗)] λ + 16(− cos ϕ − cos2 ϕ) (1 − γγ∗) = 0.
(4.53)

Similarly to the SU(2) case, the classical and the quantum spectrum are dif-
ferent, but they are related to each other: in particular, one may show that if
the classical spectrum softens for a wavevector k, the quantum spectrum will
also soften at the same wavevector k, and vice versa. Therefore, this analysis
predicts that thermal fluctuations stabilize the two-sublattice ordered state,
in agreement with classical Monte Carlo simulations [54].

Let us now briefly discuss the model (4.43) on the cubic lattice. The
quantum spectrum of the helical states is easily generalized for the case of a
lattice of dimension D: one only needs to replace equation (4.49) by

ω4 − D2
[
2(1 − γγ∗) + (2 − γ2 − (γ∗)2)(1 + 2 cos ϕ)2

]
ω2+

+ 16D4(cos ϕ + cos2 ϕ)2(1 − γγ∗)2 = 0,
(4.54)

and redefine γ as γ = γ(k) = (eikx + eiky + . . .)/D. The zero-point energy of
the helical states is shown in figure 4.10(d) for the cubic lattice: we find that
the three-sublattice ordered helical structure is again favoured by quantum
fluctuations. Equation (4.53) is generalized as

λ2 − D [2 ± (1 + 2 cos ϕ)(γ + γ∗)] λ + 4D2(− cos ϕ − cos2 ϕ) (1 − γγ∗) = 0,
(4.55)

and we may convince ourselves that the two-sublattice ordered state possesses
the largest number of zero modes for D = 3, as well as for D = 2, therefore,
as far as entropic selection is concerned, we reach the same conclusion in
both cases.

22We note that in the literature, the term “classical spectrum” may often refer to the
quantum spectrum obtained in linear wave theory.
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The above results enable us to make predictions both for the square and
the cubic lattice, and we may expect that the competition between quantum
and thermal “order-by-disorder” leads to a rather rich physics. In both 2D
and 3D, the system should first develop two-sublattice ordering tendencies,
as it is cooled below the exchange scale. In two dimensions, we expect the
system to undergo a finite-temperature transition at lower temperatures into
a directionally ordered state (selection between the two independent spiral
propagation directions), and to reach a three-sublattice ordered state at zero
temperature. In three dimensions however, a finite-temperature transition
into a two-sublattice ordered state is possible in principle, therefore we may
think of two different scenarios. Upon lowering the temperature, the system
might first undergo a transition into a two-sublattice ordered state, which is
followed by a second transition into the three-sublattice ordered state selected
by quantum fluctuations. Alternatively, it could undergo a direct first-order
transition from the paramagnetic into the three-sublattice ordered state. A
high-temperature series expansion of the SU(N) case on the 3D cubic lattice
seems to favour the second possibility [55].

4.3 Instability of the Néel state below the an-

tiferro SU(3) point

In the region 0 ≤ ϑ < π/4, the variational ground state is unambiguous: it is
a two-sublattice ordered Néel state with fully polarized spins. However, the
considerable zero-point energy difference between the two-sublattice ordered
and the three-sublattice ordered helical states at the SU(3) point makes it
clear that quantum fluctuations will suppress this state in a finite window
of ϑ below the antiferro SU(3) point. This prediction of flavour-wave theory
is in qualitative agreement with the numerical results of subsection 4.1.2:
the structure factors in figure 4.5 indicate that three-sublattice stripe order
emerges with dominant spin-spin correlations for ϑ ≈ 0.19π, and an instabil-
ity of the two-sublattice ordered Néel state above this value of ϑ is further
suggested by the absence of the corresponding tower of states in the low-
energy spectrum of finite-size clusters (see figure 4.6). We should emphasize
however that the true nature of the ordering in the intermediate phase re-
mains an elusive issue: first of all, the structure of the low-lying states is
quite difficult to interpret in the region ϑ . π/4, and secondly, we must bear
in mind the deficiency of finite-size cluster methods in probing small shifts in
the ordering wavevector. In this section, we will discuss the implications of
flavour-wave theory concerning the region below the antiferro SU(3) point.
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We will begin our analysis by investigating the excitation spectrum and
the zero-point energy of the two-sublattice ordered Néel state in the region
0 ≤ ϑ < π/4. We choose the single-site wavefunctions for sublattice A and
B as (|x〉 + i|y〉)/

√
2 and (|x〉 − i|y〉)/

√
2, respectively. Let us carry out a

global rotation of the ax and ay operators:

a↑
† =

1√
2
(ax

† + iay
†),

a↑ =
1√
2
(ax − iay),

a↓
† =

1√
2
(ax

† − iay
†),

a↓ =
1√
2
(ax + iay),

(4.56)

and use the inverse relations

ax
† =

1√
2
(a↑

† + a↓
†),

ax =
1√
2
(a↑ + a↓),

ay
† =

−i√
2
(a↑

† − a↓
†),

ay =
i√
2
(a↑ − a↓)

(4.57)

to express all terms in the Hamiltonian. Condensing the a↑ boson on sublat-
tice A and the a↓ boson on sublattice B, one finds the following interaction
terms in the leading orders of the 1/M -expansion:

SiSj = −M2+

+ M
{
2a↓i

†a↓i + 2a↑j
†a↑j + azi

†azi + azj
†azj−

−
(
azi

†azj
† + aziazj

)} (4.58)

and

Pij = M
(
a↓i

†a↓i + a↑j
†a↑j + a↓i

†a↑j
† + a↓ia↑j

)
, (4.59)

where site i (j) belongs to sublattice A (B). One may notice that the spin-
spin interaction involves all of the bosons, while the transposition operator
leaves out the az bosons of both sublattices. We introduce propagating states
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on each sublattice via a Fourier transformation of the form

aµi =

√
2

L

∑
k∈RBZ

eik·Riaµ(k),

aµi
† =

√
2

L

∑
k∈RBZ

e−ik·Riaµ
†(k),

(4.60)

where L denotes the total number of sites of the square lattice and the sum
extends over all k vectors in the reduced Brillouin zone of two-sublattice
order. Summing up all interaction terms leads to

∑
i∈A

∑
δ

SRi
SRi+δ = −2LM2+

+ 4M
∑
k

{
2
(
a↓

†(k)a↓(k) + a↑
†(k)a↑(k)

)
+

+ azA
†(k)azA(k) + azB

†(k)azB(k)−

−γ(k)
(
azA

†(k)azB
†(−k) + azA(k)azB(−k)

)}
(4.61)

and∑
i∈A

∑
δ

PRiRi+δ = 4M
∑
k

{
a↓

†(k)a↓(k) + a↑
†(k)a↑(k)+

+γ(k)
(
a↓

†(k)a↑
†(−k) + a↓(k)a↑(−k)

)}
,

(4.62)

where we have omitted the sublattice indices for the “down” and the “up”
bosons, as they all come from sublattices A and B, respectively. The δ
vectors point towards the four nearest neighbours of a site, and γ(k) =
(cos(k · a1) + cos(k · a2))/2, where a1 = aex and a2 = aey are elementary
lattice vectors of the square lattice. Up to order M , the Hamiltonian assumes
the form

H

J
= 2M2L sin ϑ − 2M2L(cos ϑ − sin ϑ) + 4M(h1(a↓A, a↑B) + h2(azA, azB)),

(4.63)
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where

h1(a, b) = (2 cos ϑ − sin ϑ)
∑
k

{
a†(k)a(k) + b†(k)b(k)+

+
tan ϑ

2 − tan ϑ
γ(k)

(
a†(k)b†(−k) + a(k)b(−k)

)}
(4.64)

and

h2(c, d) = (cos ϑ − sin ϑ)
∑
k

{
c†(k)c(k) + d†(k)d(k)−

−γ(k)
(
c†(k)d†(−k) + c(k)d(−k)

)} (4.65)

are independent terms that can be diagonalized separately. A Bogoliubov
transformation yields

h1 =
∑
k

ω1(k)
(
α1

†(k)α1(k) + β1
†(k)β1(k)

)
+

+
∑
k

(ω1(k) − (2 cos ϑ − sin ϑ))
(4.66)

and

h2 =
∑
k

ω2(k)
(
α2

†(k)α2(k) + β2
†(k)β2(k)

)
+

+
∑
k

(ω2(k) − (cos ϑ − sin ϑ)) ,
(4.67)

where the dispersion relations are given as

ω1(k) = (2 cos ϑ − sin ϑ)

√
1 −

(
tan ϑ

2 − tan ϑ
γ(k)

)2

(4.68)

and
ω2(k) = (cos ϑ − sin ϑ)

√
1 − γ2(k), (4.69)

furthermore both branches are two-fold degenerate in the reduced Brillouin
zone of two-sublattice order. Setting ϑ = π/4, we recover the dispersion rela-
tions that are characteristic of the SU(3) point: it is interesting to note that
apart from the presence of a completely flat band, which can be attributed
to the extra degree of freedom in local rotations, the flavour-wave expansion
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of an SU(3) antiferromagnet gives the same spectrum of excitations as the
spin-wave expansion of an SU(2) antiferromagnet, under the assumption of
two-sublattice order. A closer look at the case ϑ = 0 reveals that while
flavour-wave theory reproduces the conventional spin-wave branches for an
SU(2) antiferromagnet, it also gives rise to a non-dispersive mode which is
separated from the ground state by an energy gap of 8J : while these high-
lying excitations may be safely neglected in the treatment of conventional
SU(2) antiferromagnets, they start to play a role once the biquadratic cou-
pling is sufficiently strong. We will define the zero-point energy of the Néel
state as the energy of the complete Hamiltonian (4.63) for M = 1, in accor-
dance with the definition used in subsection 4.1.3.

Based on the discussion at the end of subsection 4.1.2, and on the results
of subsection 3.1.1, we may deduce that within the framework of the varia-
tional picture, three-sublattice order in the region 0 < ϑ < π/4 corresponds
to a 120-degree ordering of partially developed spin vectors in a common
plane. The single-site wavefunctions are given by the expressions (3.8) and
(3.9), however, the energy per site needs to be rescaled by a factor of 2/3,
due to the reduced connectivity of the square lattice:

ε

J
=

2

3

(
6 sin ϑ − (3 sin ϑ + 6 cos ϑ)2

3 sin ϑ + 24 cos ϑ

)
. (4.70)

In contrast to the two-sublattice ordered Néel state, the three-sublattice or-
dered spiral state does not minimize the energy of every bond23, and one
may explicitly show that linear flavour-wave theory breaks down for this
state. However, we may nonetheless estimate its energy in the presence of
quantum fluctuations by using an argument similar to the one presented at
the end of subsection 4.1.3: we will assume that the change in the zero-point
energy of the state may be approximated by the change in its classical energy,
at least in the neighbourhood of the SU(3) point. In figure 4.12, we show a
comparison of the zero-point energies of the two-sublattice ordered Néel state
and the three-sublattice ordered spiral state: a naive assumption of a first-
order transition yields an estimated phase boundary of ϑ ≈ (0.17 − 0.18)π,
which is a slightly lower value than the one predicted by exact diagonalization
calculations.

We should emphasize that the situation becomes more subtle once we con-
sider the helical states that are adiabatically connected to the three-sublattice
ordered state. The discussion presented at the beginning of subsection 4.2.1
suggests that upon an SU(3) rotation of the quadrupolar helices, we may ob-

23We may recall that the situation was drastically different in the “semi-ordered” region.



120 Three-sublattice ordering on the square lattice

0.05 0.10 0.15 0.20 0.25
J�Π

-2.0

-1.5

-1.0

-0.5

0.5

1.0

¶zp

J

2sub

3sub

Figure 4.12: Zero-point energy per site of the two-sublattice ordered Néel
state and the three-sublattice ordered spiral state, below the SU(3) point.
While the earlier curve was calculated exactly in the framework of linear
wave theory, the latter one relies on an approximation (see text for details).
The boundary between the two phases is slightly below the one suggested by
the numerical analysis of finite-size clusters.

tain magnetic helices that are characterized by the single-site wavefunctions

|ψR〉 = cos η|z〉 + i sin η [sin((Rx + Ry)ϕ)|x〉 − cos((Rx + Ry)ϕ)|y〉] , (4.71)

where ϕ ∈ [π/2, π] and η ∈ [0, π/2]. These helical states interpolate between
the three-sublattice ordered spiral state (ϕ = 2π/3) and the two-sublattice
ordered Néel state (ϕ = π). Upon minimizing the variational energy of these
states in the region 0 < ϑ < π/4, we find

sin2 η =
sin ϑ(1 + cos ϕ) − 2 cos ϑ cos ϕ

sin ϑ(1 + cos ϕ)2 − 4 cos ϑ cos ϕ
(4.72)

and

ε

J
= 2 sin ϑ + 2

(
sin ϑ − (sin ϑ(1 + cos ϕ) − 2 cos ϑ cos ϕ)2

sin ϑ(1 + cos ϕ)2 − 4 cos ϑ cos ϕ

)
. (4.73)

Setting ϑ = π/4 recovers the condition (4.41), while setting ϕ = 2π/3 repro-
duces (4.70). For an arbitrary value of ϑ, the energy curve (4.73) features a
minimum at ϕ = π, furthermore, one may show that dE

dϕ
< 0 in general and
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dE
dϕ

= 0 if and only if ϕ = π/2. Introducing the deviation δ = 1/2 + cos ϕ
from the three-sublattice ordered state, we find that the variational energy
of the helical states is a linear function of δ around ϕ = 2π/3, and since the
ϑ = π/4 curve in figure 4.8(b) seems to show quadratic behaviour around
the minimum, one may argue on the basis of the approximation used in the
previous paragraph that the helical parameter will immediately shift from
the value ϕ = 2π/3 once we move away from the SU(3) point. Actually,
a more thorough investigation of the zero-point energy curve for ϑ = π/4
reveals a non-analytic behaviour around the minimum:

εZP

J
=

2
√

2

π
+

2
√

2

π
δ2

(
ln

4

|δ|
− 1

)
+ . . . , (4.74)

where we neglected terms that are of higher order in δ, however, the non-
analyticity is not strong enough to pin the three-sublattice ordering for ϑ <
π/4.

In conclusion, linear wave theory presents us with two possible alterna-
tives with respect to the nature of the ordering in the intermediate phase
between the two-sublattice ordered Néel phase and the SU(3) point. Both
of these proposals rely on an approximation of the zero-point energy for
ϑ < π/4, since linear wave theory breaks down for the helical states with
ϕ 6= π in this region. We should emphasize that while neither the semi-
classical approach nor the numerical study seems to be able to settle the
question whether a three-sublattice ordered stripe state or a continuously
evolving helical state, if any of the two, is a more likely candidate to be
realized, they nonetheless provide strong arguments in favour of the desta-
bilization of the Néel phase in a finite window below the antiferro SU(3)
point.

4.4 Conclusions

In this chapter, we have explored the quantum phase diagram of the spin-
one bilinear-biquadratic model on the square lattice: a summary of our
results is shown in figure 4.13. We have demonstrated that the introduc-
tion of a magnetic field lifts the degeneracy in the “semi-ordered” phase and
leads to the stabilization of a remarkable 1/2-magnetization plateau of mixed
magnetic and quadrupolar character. Exact diagonalization calculations by
A. M. Läuchli confirmed the presence of the plateau phase, however, they
suggested that it emerges via a first-order transition from a state with fi-
nite spin susceptibility that governs the low-field limit. We have studied
the zero-field case with the help of flavour-wave theory and have shown that
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Figure 4.13: Schematic phase diagram of the spin-one bilinear-biquadratic
model on the square lattice. The inner circle shows the variational results:
the ferromagnetic, ferroquadrupolar and antiferromagnetic phases are de-
noted by FM, FQ and AFM, respectively, while SO stands for “semi-ordered”.
The outer circle represents the numerical results. Quantum fluctuations give
rise to a three-sublattice ordered antiferroquadrupolar phase in the region
π/4 < ϑ < π/2, and they destabilize the classical Néel state between ϑ ≈ 0.2π
and ϑ = π/4.
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“order-by-disorder” mechanism gives rise to a three-sublattice ordered anti-
ferroquadrupolar state in the entire “semi-ordered” region, which is a rather
exotic finding for a bipartite lattice. We have thoroughly investigated the
nature of the ordering at the antiferro SU(3) point as well, where we have un-
covered a subtle competition between quantum and thermal fluctuations. We
presented strong numerical and analytical arguments in support of the sup-
pression of two-sublattice Néel order below the antiferro SU(3) point, and put
forward alternative proposals for the intermediate phase. Finally, we have
discussed the shortcomings of linear wave theory and finite-size studies in
clarifying the role of helical states, and suggested that a more sophisticated
analysis will be required to explore the properties of the intermediate phase.

Let us briefly discuss the experimental implications of our results. While
we do not know of a spin-one antiferromagnet with sufficiently large bi-
quadratic interactions to destabilize the Néel phase, ultracold atomic sys-
tems might provide a means of observing a three-sublattice ordered stripe
state on the square lattice. Recent experimental advances using multi-
flavour atomic gases [56, 57, 58, 59] have paved the way to the investiga-
tion of Mott-insulating states with more than two flavours in optical lattices
[60, 61, 62, 63, 64], and since the exchange integral of the SU(N) case is
equal to 2t2/U , independently of N , it is realistic to expect that the ex-
change scale can be reached for SU(N) fermions as soon as it is reached for
SU(2) ones. In this respect, it will be important in experiments to carefully
choose the optimal coupling strength U/t, which should be large enough to
put the system into the Mott-insulating phase described by the SU(3) Hei-
senberg model, but not too large to lead to accessible values of the energy
scale set by the exchange integral. The detection of three-sublattice order
might be attempted using noise correlations [65], since the structure factor
is expected to have a peak at the ordering wavevector, and a recent report
of single atom resolution experiments [66, 67] suggests that direct imaging
might also be possible, provided that some contrast can be achieved between
different atomic species.





Appendix A

Stability analysis in the
variational approach

In this appendix, we will discuss an analytic way to treat second-order insta-
bilities in the framework of the variational approach. Let us assume that a
numerical or analytical minimization of (3.5) in a parameter range R of the
Hamiltonian (3.1) indicates the presence of a phase that is characterized by

|ψ0〉 = |ψ1〉|ψ2〉|ψ3〉, (A.1)

where |ψ1〉, |ψ2〉 and |ψ3〉 may depend continuously and in a well-defined
manner on the parameters of the Hamiltonian (3.1). Our goal is to investigate
the question whether the phase reveals an instability of second order beyond
the parameter region R, and if it does, to discuss the nature and the exact
location of the corresponding second-order phase transition. We would like
to emphasize that the method we present here might fail to capture a first-
order transition that occurs before we reach the proposed point of instability,
therefore its predictions will have to be verified numerically in general.

Let us allow for a continuous deviation of the wavefunction from (A.1) in
the following form:

|ψ〉 =
3∏

i=1

(√
1 − δ2 (di1

∗di1 + di2
∗di2)|ψi〉 + δdi1|ψi1〉 + δdi2|ψi2〉

)
, (A.2)

where d = (d11, d12, d21, d22, d31, d32) is a complex vector of norm one, i. e. d∗ ·
d = 1, δ is a small non-negative parameter, i. e. 0 ≤ δ ¿ 1, furthermore,
the normalized spin-one wavefunctions |ψi1〉 and |ψi2〉 are chosen such that
together with |ψi〉, they form a basis in the Hilbert space of the local spin i.
We assume that the quantity

∆ε = 〈ψ|H4|ψ〉 − 〈ψ0|H4|ψ0〉 (A.3)
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has a series expansion with respect to δ in the parameter region R of the
Hamiltonian (3.1), and expanding it to second order leads to a non-vanishing
result. A straightforward calculation shows that

∆ε = δ (d∗ · v + d · v∗) +

+ δ2

(
1

2
d · H1d +

1

2
d∗ · H+

1 d∗ + d∗ · (H2 − ε0I)d

)
+

+ O
(
δ3

)
,

(A.4)

where ε0 = 〈ψ0|H4|ψ0〉,

v =


〈ψ11|〈ψ2|〈ψ3|H4|ψ0〉
〈ψ12|〈ψ2|〈ψ3|H4|ψ0〉
〈ψ1|〈ψ21|〈ψ3|H4|ψ0〉

...
〈ψ1|〈ψ2|〈ψ32|H4|ψ0〉

 , (A.5)

and finally H1 (H2) is a symmetric (hermitian) 6 × 6 matrix, whose explicit
form is easy to derive but shall nonetheless be omitted here for brevity.
Introducing the decomposition d = d1+id2, where d1 and d2 are real vectors,
the normalized vector D =

(
d1
d2

)
, the vector V =

(
v+v∗

iv∗−iv

)
, as well as the

matrix

Ω =

(
H2 − ε0I + 1

2
(H1 + H+

1 ) iH2 − iε0I + i
2
(H1 − H+

1 )
−iH2 + iε0I + i

2
(H1 − H+

1 ) H2 − ε0I − 1
2
(H1 + H+

1 )

)
, (A.6)

we may rewrite ∆ε in a concise manner:

∆ε = δD · V + δ2D · ΩD + O
(
δ3

)
. (A.7)

The hermiticity of Ω ensures the realness of the quadratic term, and the
decomposition into real and imaginary parts, Ω = <Ω+ i=Ω, leads finally to

∆ε = δD · V + δ2D · <ΩD + O
(
δ3

)
. (A.8)

The stability of the phase (A.1) in the parameter region R of the Hamil-
tonian (3.1) requires V = 0, as well as that the symmetric matrix <Ω be
positive semidefinite1. Assuming that the above expansion can be extended
in a continuous manner beyond the parameter region R with the linear term

1If the phase breaks a continuous symmetry of the Hamiltonian, the eigenvectors of <Ω
that can be associated with symmetry operations of the Hamiltonian will automatically
belong to the eigenvalue zero.
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still vanishing, one may look for a boundary across which one or more of
the eigenvalues of <Ω change sign. Let us suppose that we have only one
such eigenvalue, we may then inject the corresponding eigenvector D1 into
the expression (A.3) and push the expansion to the first non-vanishing order
at the boundary: if the resulting term contains an even power of δ with a
positive coefficient, we may talk about an instability of second order with re-
spect to deformations along the vector D1, and conclude that we have found
a second-order phase boundary2. If the eigenvalue that changes sign across
the boundary is p-fold degenerate, we may find a set of orthonormal eigen-
vectors belonging to this eigenvalue, {Di, i = 1 . . . p}, and inject an arbitrary
normalized real linear combination of the form

∑p
ı=1 αiDi into the expres-

sion (A.3): the coefficients of a subsequent series expansion with respect to
δ at the boundary will then depend on αi and instability issues therefore be-
come more complicated. We will only mention a simple case where the first
non-vanishing term is of fourth order in δ and has a positive coefficient: if
the minimization of this coefficient with respect to αi yields a unique result,
the corresponding vector

∑p
ı=1 αiDi can be associated with the dominant

instability.
Let us briefly demonstrate the practical use of the stability analysis out-

lined above by considering the isotropic model (D = 0). The discussion at
the end of subsection 2.2.3 suggested that spins on a triangular lattice would
retain ferroquadrupolar order in a finite window above ϑ = 3π/2, however,
it did not reveal the true extent of the phase. Assuming that all directors
are parallel to the z axis, we have |ψ0〉 = |z〉|z〉|z〉, and it is convenient to
choose |ψi1〉 = |x〉 and |ψi2〉 = |y〉 for all i. Diagonalizing the matrix <Ω for
ϑ = 3π/2, we find that the eigenvalue zero is two-fold degenerate, and the
vectors

D1 =

(
0,

1√
3
, 0,

1√
3
, 0,

1√
3
, 0, 0, 0, 0, 0, 0

)
,

D2 =

(
1√
3
, 0,

1√
3
, 0,

1√
3
, 0, 0, 0, 0, 0, 0, 0

) (A.9)

define a basis in the corresponding eigenspace. An arbitrary (normalized
and real) linear combination of these vectors corresponds to a simultaneous
rotation of the director axis on every site, and this deformation obviously
costs no energy. In other words, the zero eigenvalue that we found may sim-
ply be attributed to the symmetry-breaking nature of the ferroquadrupolar

2We remind the reader again that we may not exclude on the basis of the present
method that a first-order phase transition occurs before we reach the proposed second-
order phase boundary.
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phase, and the corresponding eigenspace is two-dimensional since the com-
mon director may tilt in two independent directions. All other eigenvalues
of <Ω are strictly positive for ϑ = 3π/2, however, increasing the parameter
ϑ, we find that a four-fold degenerate eigenvalue eventually changes sign at
ϑ = 2π − arctan 2 ≈ 1.65π. The first six components of the corresponding
eigenvectors vanish, which means that dipole moments start developing in
the xy plane that is perpendicular to the directors. Injecting an arbitrary
eigenvector D into (A.3) and carrying out an expansion in δ at the proposed
phase boundary, we find that the first non-vanishing term is of order δ4 and
its coefficient is positive, hence the transition is expected to be continuous.
Furthermore, it turns out that this coefficient is minimized only by eigenvec-
tors that correspond to a 120-degree ordering of the dipole moments, such
as the vector

D =
1√
3

(
0, 0, 0, 0, 0, 0, 0,−1,

√
3

2
,
1

2
,−

√
3

2
,
1

2

)
. (A.10)

A numerical minimization of (3.5) confirms all of these predictions.



Appendix B

Ground-state configurations of
the classical XXZ model on the
triangular lattice

In this appendix, we derive analytically the ground-state configurations of
the model

H = J
∑
〈i,j〉

{(
σx

i σx
j + σy

i σ
y
j

)
+ Aσz

i σ
z
j

}
, (B.1)

where J sets the energy scale, as well as the sign of the in-plane coupling,
A ∈ [−∞, +∞] is the anisotropy parameter, and the spins ~σi are classical
vectors of length |~σi| = 1/2 defined on the sites of a triangular lattice. In
spite of the fact that this model has been studied extensively, we feel that
a complete and detailed analysis of all ground-state configurations is still
missing in the literature, and therefore we aim to present one in this appendix.
Naturally, our discussion will rely on earlier works [68, 69, 70, 71].

We may convince ourselves, using arguments similar to those presented
at the beginning of section 3.1, that it is a priori sufficient to consider the
minimization problem on a triangular plaquette, however, as a second step,
one has to examine whether setting the state on one triangular plaquette
leads to a unique ground state over the whole lattice. The energy of a three-
sublattice ordered configuration is given by

4E

JL
= sin ϑ1 sin ϑ2 cos (ϕ1 − ϕ2) +

+ sin ϑ2 sin ϑ3 cos (ϕ2 − ϕ3) +

+ sin ϑ3 sin ϑ1 cos (ϕ3 − ϕ1) +

+ A (cos ϑ1 cos ϑ2 + cos ϑ2 cos ϑ3 + cos ϑ3 cos ϑ1) ,

(B.2)
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where ϑi ∈ [0, π], ϕi ∈ [0, 2π[ and sin ϑi =
√

1 − cos2 ϑi ≥ 0. Note that
from the point of view of the physical interpretation of the configurations, it
poses no problem whatsoever to leave the variables {ϑi, ϕi} completely un-
constrained: this enables us to treat the energy (B.2) as a smooth periodic
function in all variables, which might only feature a minimum at stationary
points. Obviously, due to periodicity, it is then sufficient to solve the sta-
tionary equations in a domain {ϑi, ϕi} ∈ [−π, π[. In the following, we will
use the notations si = sin ϑi and ci = cos ϑi for brevity.

We begin our analysis by considering the case |A| → ∞, where the in-
plane couplings can be neglected. Dividing the energy (B.2) by A, we have

4E

JAL
= c1c2 + c2c3 + c3c1, (B.3)

i. e. the dependence on the ϕi variables is suppressed. It is then straightfor-
ward to consider ϑi as freely running variables and look for stationary points
of the energy by solving the system of equations ∂

∂ϑi

4E
JAL

= 0, which can be
explicitly written as

s1(c2 + c3) = 0,

s2(c3 + c1) = 0,

s3(c1 + c2) = 0.

(B.4)

Taking into account the symmetry of reflection with respect to the xy plane,
as well as the fact that one may freely permute the three spins, we find the
following types of solutions:

s1 = s2 = s3 = 0: The spins are parallel to the z axis, ferromagnetic
configurations such as ↑↑↑ have energy 4E/JL = 3A, while other con-
figurations such as ↑↑↓ have energy −A.

c2 + c3 = s2 = s3 = 0: Two antiparallel spins are fixed along the z axis,
while the third spin is arbitrary. The energy of this configuration is
−A.

c2 + c3 = c3 + c1 = s3 = 0: These are configurations along the z axis of the
type ↑↑↓ with energy −A.

c2 + c3 = c3 + c1 = c1 + c2 = 0: All spins are in the xy plane and the energy
is zero.

We conclude that in the ferromagnetic case, i. e. JA < 0, all spins point in the
(positive or negative) z direction, while in the antiferromagnetic case JA > 0,
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two of the spins are fixed along the z axis in an antiparallel way, and the
third spin remains arbitrary. In this latter case, setting the spin configuration
on one triangular plaquette does not determine the configuration over the
whole lattice: in fact, similarly to the case of the Ising model, we are faced
with a macroscopic classical degeneracy and a non-vanishing entropy at zero
temperature.

Let us also give a brief reminder of the case of an isotropic exchange
coupling. Setting A = 1 enables us to rewrite the energy as

4E

JL
= 4 (~σ1~σ2 + ~σ2~σ3 + ~σ3~σ1) = 2 (~σ1 + ~σ2 + ~σ3)

2 − 3

2
, (B.5)

and therefore we may easily deduce that in the ferromagnetic case (J < 0),
all three spins point in the same direction and the energy of the configuration
is 3, while for J > 0, the three spins are in a common plane subtending an
angle of 120 degrees with each other and the energy is −3/2.

In the following sections, we will consider an arbitrary anisotropy parame-
ter A ∈]−∞, +∞[ (however, we will assume A 6= 1) and derive all stationary
configurations that are possible candidates for minimizing the energy. The
discussion will naturally break into two parts, one where we treat the general
case of so-called “non-planar” configurations, and one where we investigate
“planar” configurations that feature all three spins in a common plane with
the z axis. At the end of this rather technical analysis, we will present the
phase diagram of the classical XXZ model. Finally, we will conclude the
appendix by discussing some peculiar features of the XXZ model in the case
of quantum spins.

B.1 Stationary “non-planar” configurations

Returning to the expression (B.2), we may note that the energy is invariant
under a simultaneous rotation of all three spins around the z axis, therefore
we may choose ϕ1 = 0 without loss of generality. It will again prove useful
to consider all other angles as freely running variables: this way, one may
look for the energy minima simply by comparing the energy of all station-
ary points. Taking the derivatives with respect to ϕ2 and ϕ3, we find the
equations

s1s2 sin ϕ2 = −s2s3 sin (ϕ2 − ϕ3)

s3s1 sin ϕ3 = s2s3 sin (ϕ2 − ϕ3)

}
⇒ s1s2 sin ϕ2 = −s3s1 sin ϕ3,
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while the derivatives with respect to ϑi lead to the equations

c1 (s2 cos ϕ2 + s3 cos ϕ3) = As1 (c2 + c3) ,

c2 (s1 cos ϕ2 + s3 cos (ϕ2 − ϕ3)) = As2 (c3 + c1) ,

c3 (s2 cos (ϕ2 − ϕ3) + s1 cos ϕ3) = As3 (c1 + c2) .

(B.6)

If we assume s1 = 0, it follows that

0 = s2s3 sin (ϕ2 − ϕ3) = 4 (σy
2σ

x
3 − σx

2σy
3) = −4 (~σ2 × ~σ3)

z , (B.7)

in other words, all three spins lie in a common plane with the z axis. Since
the cases s2 = 0 and s3 = 0 yield similar results, and since we intend to
treat such “planar” configurations separately, we have to assume s1s2s3 6= 0,
which allows us to rewrite the system of equations as

s1 sin ϕ2 = −s3 sin (ϕ2 − ϕ3) ,

s1 sin ϕ3 = s2 sin (ϕ2 − ϕ3) ,

s2 sin ϕ2 = −s3 sin ϕ3,

c1
s2 cos ϕ2 + s3 cos ϕ3 + s1

s1

− c1 = A (c2 + c3) ,

c2
s1 cos ϕ2 + s3 cos (ϕ2 − ϕ3) + s2

s2

− c2 = A (c3 + c1) ,

c3
s2 cos (ϕ2 − ϕ3) + s1 cos ϕ3 + s3

s3

− c3 = A (c1 + c2) .

(B.8)

If we now assume sin ϕ2 sin ϕ3 sin (ϕ2 − ϕ3) = 0, we find sin ϕ2 = sin ϕ3 =
sin (ϕ2 − ϕ3) = 0 and we end up with “planar” configurations again. There-
fore, let us write sin ϕ2 sin ϕ3 sin (ϕ2 − ϕ3) 6= 0 instead, which leads to a
simplification in the last three equations: for instance, the fourth equation
features the expression

s2

s1

cos ϕ2 +
s3

s1

cos ϕ3 + 1 =
sin ϕ3 cos ϕ2 − sin ϕ2 cos ϕ3 + sin (ϕ2 − ϕ3)

sin (ϕ2 − ϕ3)
=

= 0.

(B.9)

We find that the ci variables are solutions of the equation 1 A A
A 1 A
A A 1

 c1

c2

c3

 = 0, (B.10)
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and the ϕi angles can be derived with the help of the following identities:

s2
1 − s2

2 − s2
3

2s2s3

= cos (ϕ2 − ϕ3) ,

s2
3 − s2

2 − s2
1

2s1s2

= cos ϕ2,

s2
2 − s2

3 − s2
1

2s1s3

= cos ϕ3.

(B.11)

A trivial solution is given by c1 = c2 = c3 = 0: in this case, all three spins are
in the xy plane and, since sisj cos (ϕi − ϕj) = −1/2, they show 120-degree
order with an energy value of −3/2. Noting that

det

 1 A A
A 1 A
A A 1

 = (1 − A)2(1 + 2A), (B.12)

we may deduce that another type of solution exists for A = −1/2: in this case,
c1 = c2 = c3 = α is an arbitrary number in the interval ]− 1, 1[, furthermore
sisj cos (ϕi − ϕj) = −1/2(1 − α2), hence the spins form an umbrella around
the z axis and they show 120-degree order in the xy plane. The energy of
this configuration is given by

4E

JL
= −3

2

(
1 − α2

)
− 3

2
α2 = −3

2
, (B.13)

and the case α = 0 reproduces the solution found earlier for an arbitrary A.

B.2 Stationary “planar” configurations

Let us turn our attention now to configurations where all three spins lie in
a common plane with the z axis. Without loss of generality, we may set
ϕ1 = ϕ2 = ϕ3 = 0 if we extend the interval of the variables ϑi to [−π, π[.
The energy can then be written as

4E

JL
= s1s2 + s2s3 + s3s1 + A (c1c2 + c2c3 + c3c1) . (B.14)

We may easily find the minimum in the special case A = 0: indeed, let
us consider ϑi as freely running variables and introduce the variables ϑ∗

i =
π/2 − ϑi, then the energy assumes the simple form

4E

JL
= c∗1c

∗
2 + c∗2c

∗
3 + c∗3c

∗
1, (B.15)
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which is identical to the one we encountered for |A| → ∞. All in all, we find
that in the ferromagnetic case, all spins point in the (positive or negative)
x direction, while in the antiferromagnetic case, two of the spins are fixed
along the x axis in an antiparallel way and the third spin remains arbitrary.
However, one may note that the energy of this latter configuration is higher
than that of the “non-planar” configuration featuring a 120-degree ordering
of the spins in the xy plane. We conclude that for A = 0, all three spins are
in the xy plane, and they show either ferromagnetic order (J < 0 case) or
120-degree order (J > 0 case).

Let us now consider the general case A 6= 0, 1. Leaving the variables ϑi

unconstrained, we find the following equations for the stationary points:

c1 (s2 + s3) = As1 (c2 + c3) ,

c2 (s3 + s1) = As2 (c3 + c1) ,

c3 (s1 + s2) = As3 (c1 + c2) .

(B.16)

It would be sufficient to solve this system of equations in the interval ϑi ∈
[−π, π[, however, this is a non-trivial task due to the fact that the three ϑi

variables appear both through sine and cosine functions, i. e. one effectively
has to treat six variables with three constraints of the type s2

i +c2
i = 1 between

them. We may introduce the function tan (ϑi/2) and use the formulae

sin ϑi =
2 tan ϑi

2

1 + tan2 ϑi

2

,

cos ϑi =
1 − tan2 ϑi

2

1 + tan2 ϑi

2

(B.17)

in order to satisfy the constraints automatically, however, we have to keep
in mind that the case where any of the ϑi variables becomes −π can not be
treated this way. Let us employ the notation ti = tan (ϑi/2) for brevity, then
we may rewrite the stationary equations as

(1 + t2t3)
(
(1 − t21)(t2 + t3) − 2At1(1 − t2t3)

)
= 0,

(1 + t3t1)
(
(1 − t22)(t3 + t1) − 2At2(1 − t3t1)

)
= 0,

(1 + t1t2)
(
(1 − t23)(t1 + t2) − 2At3(1 − t1t2)

)
= 0.

(B.18)

We can easily convince ourselves that demanding that the first term disap-
pear in all three equations yields complex solutions, let us first assume there-
fore that the second term vanishes in the first equation, while the first term
vanishes in the other two equations: in that case we find t3 = t2 = −1/t1, fur-
thermore (t21−1)(1−A) = 0. We conclude that for an arbitrary A there exist
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stationary configurations with energy −1, where the spins are fixed along the
x axis in an ↑↑↓ arrangement. On the other hand, if we assume that the first
term vanishes in the first equation, while the second term vanishes in the
other two, we find the equations

t2t3 = −1,

(−1)t3(1 − t23 − 2A) = t1(1 − t23 + 2At23),

t1t3(1 − t23 − 2A) = 1 − t23 + 2At23,

(B.19)

which can be shown to possess only complex solutions. Finally, we are left
with the case where the second term disappears in all three equations1. We
find the following stationary configurations:

t1 = t2 = t3 = 0: Ferromagnetic alignment along the z axis. The energy of
this configuration is given by 4E/JL = 3A.

t1 = t2 = t3 = ±1: Ferromagnetic alignment along the x axis. This config-
uration has an energy value of 3.

t1 = 0, t2 = −t3 = ±
√

1 + 2A, for A > −1/2: This configuration has energy

4E

JL
= −1 + A + A2

1 + A
, (B.20)

and it may describe for instance a continuous transition between a 120-
degree ordering of the spins with one spin pointing in the z direction
(A → 1+), and an ↑↓↓ configuration along the z axis (A → ∞).

t1 = ±1, and the other two variables are given by t1
(
−1 − A ±

√
2A + A2

)
,

for A < −2 and A ≥ 0: The energy of this configuration is given by
(B.20). This arrangement of spins is suitable for a continuous interpola-
tion between states where one spin is pointing in the x direction and the
other two spins are either adjusted to form 120-degree order (A → 1+),
or they have closed up onto the z axis in an antiparallel way. Another
physically interesting domain of anisotropy is A ∈]− 2,−∞[, where we
find a transition between a ferromagnetic configuration along the x axis
(A → −2−) and a configuration where one of the spins is unchanged,
but the other two form an ↑↓ pair along the z axis (A → −∞).

1While a complete analytical solution exists for this case, it is cumbersome to derive.
We employed the Reduce function of Mathematica 7.0 for this purpose.
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one-parameter degeneracy : As long as t1 6= 0,±1, furthermore t21(1 +
2A) 6= 1, and the expressions

−2At1(1 + A) ±
√

p(t1)

t21(1 + 2A) − 1
(B.21)

with

p(t1) = 1 + 2A + t21(4A
4 + 8A3 − 4A − 2) + t41(1 + 2A) (B.22)

remain real, the parameter t1 may be arbitrarily chosen. The other
two variables are given by (B.21), and the energy of each resulting
configuration is (B.20). An analysis of the polynomial p(t1) in the
square root reveals that the degenerate solution exists for A < −2 and
A > −1/2. It is particularly interesting to note that for A < −2, one
may choose t21 from the domain [t2−, t2+], where

t2∓ =
1 + 2A − 4A3 − 2A4 ± 2

√
(A + A2)3(A + A2 − 2)

1 + 2A
, (B.23)

and choosing either of the two extreme values corresponds to a transi-
tion between a ferromagnetic configuration along the x axis (A → −2−)
and a configuration where the three spins feature an ↑↑↓ or an ↑↓↓ ar-
rangement along the z axis (A → −∞). In fact, p(t1) vanishes in both
cases, which implies that t2 = t3, and choosing furthermore t∓ > 0, one
may easily verify that

t+t− = t2(t1 = t+)t2(t1 = t−) = t3(t1 = t+)t3(t1 = t−) = 1, (B.24)

i. e. the two configurations are related to each other via reflection with
respect to the xy plane.

We conclude our discussion on “planar” states by solving the set of equa-
tions (B.16) in the case where one of the variables, say ϑ1, is set to −π. The
equations are simplified as follows:

s2 + s3 = 0,

c2s3 = As2 (c3 − 1) ,

c3s2 = As3 (c2 − 1) .

(B.25)

A set of solutions is given by s2 = s3 = 0, which corresponds to an ar-
rangement where all three spins are fixed along the z axis: ferromagnetic
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configurations such as ↓↓↓ have energy 3A, while other configurations such
as ↓↓↑ have energy −A. On the other hand, assuming s2s3 6= 0 and switch-
ing to the variables t2 = tan (ϑ2/2) and t3 = tan (ϑ3/2), we may rewrite
our system of equations and find a stable configuration for A > −1/2 with
t2 = −t3 = ±1/

√
1 + 2A. Note however that this latter configuration has

already occurred in our calculations, as reflecting it with respect to the xy
plane corresponds to a ϑi → π − ϑi transformation, therefore we may easily
recover the solution {t1 = 0, t2 = −t3 = ±

√
1 + 2A} found earlier.

B.3 Ground-state configurations

A comparison of the energies of all stationary configurations gives the ground-
state phase diagram of the model (B.1). In order to facilitate the use of these
results in the main text, let us redefine the coupling constants:

H = J ′
∑
〈i,j〉

{
2 sin ϑ′ (σx

i σx
j + σy

i σ
y
j

)
+

+(4 cos ϑ′ − 2 sin ϑ′)σz
i σ

z
j

}
,

(B.26)

where J ′ > 0 and ϑ′ ∈ [0, 2π]. The ground-state energy is plotted as a func-
tion of ϑ′ in figure B.1. We find the following ground-state configurations2:

ϑ′ = 0: For each triangle, two of the spins are fixed along the z axis in an an-
tiparallel way, while the third spin is arbitrary. There is a macroscopic
degeneracy in the ground-state manifold.

0 < ϑ′ < π/4: In addition to the symmetry of rotations around the z axis,
there is a continuous one-parameter degeneracy present. In a three-
sublattice ordered state, one of the sublattices may feature a completely
arbitrary spin, while the spins on the other two sublattices are adjusted
so that all spins lie in a common plane with the z axis3. This degen-
eracy is referred to as “non-trivial”, because it does not correspond
to symmetry operations of the XXZ model4. In figure B.2, we show

2We will use the notation θ = 2π − arctan 2 ≈ 1.65π that was introduced in the main
text.

3In fact, this parameter region of ϑ′ corresponds to A > 1, i. e. all coefficients of the
polynomial (B.22) are strictly positive and t1 may be chosen arbitrarily. One may check
that the limits t1 → 0, t1 → ±1, t1 → ±1/

√
1 + 2A and t1 → ±∞ of the expression (B.21)

make sense and reproduce expected solutions.
4The classical J1-J2 Heisenberg model on the square lattice also features a non-trivial

degeneracy in the ground-state manifold for J2/J1 ≥ 1/2.
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Figure B.1: Ground-state energy of the classical XXZ model on the triangular
lattice. Ferromagnetic configurations along the z axis and in the xy plane
are represented by blue and purple curves, respectively, while the green curve
corresponds to a 120-degree ordering of the spins in the xy plane. The energy
curve of phases featuring a non-trivial continuous degeneracy has red colour.
The ground state is ferromagnetic between the points arctan 4 ≈ 0.4π and
θ ≈ 1.65π.

Figure B.2: Symmetric “planar” configurations for 0 < ϑ′ < π/4. The angle
α (β) decreases (increases) as we move away from the ϑ′ = π/4 point.

Figure B.3: “Planar” configurations for θ < ϑ′ < 2π. The angles γ and δ
increase as we move away from the ϑ′ = θ point.
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symmetric “planar” configurations where one of the spins is kept fixed
either along the z axis or in the xy plane, while the other two spins are
reflections of each other with respect to the first spin.

ϑ′ = π/4: The spins form 120-degree order in an arbitrary plane.

π/4 < ϑ′ < arctan 4 ≈ 0.4π: The spins form 120-degree order in the xy
plane.

ϑ′ = arctan 4: We find a continuous degeneracy associated with an umbrella
configuration around the z axis that interpolates between a 120-degree
ordering of spins in the xy plane and a ferromagnetic alignment along
the z axis.

arctan 4 < ϑ′ < 5π/4: Ferromagnetic configuration along the z axis.

ϑ′ = 5π/4: Ferromagnetic configuration along an arbitrary axis.

5π/4 < ϑ′ ≤ θ: Ferromagnetic alignment in the xy plane.

θ < ϑ′ < 2π: A non-trivial one-parameter degeneracy allows for, among
other states, a particular “planar” configuration where two of the spins
coincide. We find furthermore a symmetric “planar” configuration
where one of the spins is kept fixed in the xy plane, while the other
two are reflections of each other with respect to it. See figure B.3.

B.4 Quantum effects in the XXZ model

We conclude this appendix with a discussion on the way quantum effects
restore the discrete degeneracy of the XXZ Hamiltonian. Linear spin wave
theory reveals that quantum fluctuations lift the non-trivial continuous de-
generacy that the model (B.1) exhibits in the (J > 0, A > 1) region, via an
“order-by-disorder” mechanism [71, 72]: the selected configurations are the
symmetric ones with one of the spins pointing along the z axis (see figure
B.2). This fluctuation effect can be conveniently modeled [71] by introducing
a phenomenological biquadratic exchange of the form

H ′ = −16κ
∑
〈i,j〉

(~σi~σj)
2 , (B.27)

which gives rise to an energy term

E ′

κL
= −(s1s2 + c1c2)

2 − (s2s3 + c2c3)
2 − (s3s1 + c3c1)

2. (B.28)
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Figure B.4: Energy of the biquadratic exchange as a function of the param-
eter t1 for A = 1.05. The minima (maxima) correspond to symmetric spin
configurations where one of the spins points along the z axis (is kept fixed in
the xy plane).

One may express this energy with the help of the familiar variables ti =
tan (ϑi/2) and eliminate t2 and t3 using (B.21). For a given anisotropy pa-
rameter A > 1, the resulting expression will depend on t21, which leads to a
lift of the one-parameter degeneracy. We find that all extrema correspond to
symmetric configurations, and for κ > 0 the minima (maxima) will feature a
spin pointing along the z axis (kept fixed in the xy plane). More precisely,
for t1 ≥ 0, the minima are attained at t1 = 0, t1 = 1/

√
1 + 2A, t1 =

√
1 + 2A

and in the t1 → ∞ limit, the maxima are located at t1 = 1 + A−
√

2A + A2,
t1 = 1 and t1 = 1 + A +

√
2A + A2, and the width of the energy curve is

2(A− 1)3/(A + 1)3. In figure B.4, we show the dependence of the energy on
the parameter t1 for A = 1.05. Interestingly enough, thermal selection takes
place beyond the order of harmonic excitations, and it favours a different sub-
set of the ground-state manifold [71], namely the symmetric configurations
with one of the spins kept fixed in the xy plane (see figure B.2).

A semi-classical treatment is appropriate to account for small fluctuations
around classical ground states, however, the extreme quantum case of the
model (B.1), where the on-site objects ~σi are spins one-half, is also well-
studied in the literature. In particular, a hard-core boson representation
of the local spins is often employed: the spin operators are expressed as
σ+

i = ai
†, σ−

i = ai and σz
i = ni − 1/2, and the XXZ Hamiltonian (B.1) is
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rewritten as

H =
∑
〈i,j〉

{
−t

(
ai

†aj + aj
†ai

)
+ V (ni − 1/2) (nj − 1/2)

}
, (B.29)

where t = −J/2 and V = JA. Ordering of the z component of the spins at
a non-zero wavevector translates into solid order (diagonal long-range order)
in the bosonic language, while spin order in the xy plane corresponds to
superfluidity (off-diagonal long-range order). Since we are mainly interested
in the parameter regions where the classical model features a non-trivial
degeneracy, we may restrict ourselves to a repulsive bosonic interaction (V >
0), however, we allow both for a non-frustrated (t > 0) and a frustrated
(t < 0) hopping term. For the latter case, Quantum Monte Carlo simulations
are faced with the infamous sign problem, but other sophisticated techniques
[73, 74, 75] have revealed the presence of a robust

√
3×

√
3 supersolid phase in

the region −1 < 2t/V < 0. Crystal order is of the type (2mz +δ,−mz,−mz),
i. e. there is a small spontaneous magnetization along the z axis in the spin
model, while the structure of superfluid order is (0, m⊥,−m⊥). Both δ and
mz become more pronounced when the interaction strength V is increased,
superfluid order on the other hand, while it can be shown to persist in the
V → ∞ limit, becomes gradually suppressed. It is interesting to note that
the semi-classical picture we discussed earlier is actually consistent with a
number of these features. When the hopping term is unfrustrated, Quantum
Monte Carlo methods are available, and several studies [76, 77, 78, 79] have
shown that a distinct

√
3×

√
3 supersolid emerges from the large-t superfluid

phase when the hopping amplitude is sufficiently low, t/V ≈ 0.1, and it
persists down to arbitrarily small values of t/V . While crystal order is the
same as in the frustrated case, and there is again a small density deviation
from half-filling, superfluid order is of the type (m⊥, m′

⊥,m′
⊥). We note that

the fact that two of the three sublattices behave identically is reminiscent of
the classical “planar” configuration in the left-hand side of figure B.3.
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