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In this BSc thesis, we consider different aspects of the correlation between the parts of classical
and quantum systems. Motivated by the fact that independence is not necessary for the vanishing
of the covariance in classical probability theory, we investigate the relation between the covariance
of observables and correlation (nonproductness) of states in classical and quantum systems. We
show that productness is necessary for the vanishing of covariance in two-bit classical systems,
while in any larger classical systems and in any quantum systems (including those of two qubits)
the covariance can vanish in correlated systems.
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1. Introduction

Quantum theory offers us several interesting and counter-intuitive phenomena. To get an
understanding at least of the questions, it is enlightening to compare the quantum and classical
description.

Quantum theory is a probabilistic theory, it only gives the probabilities of the different out-
comes in measurements of the observable quantities. Traditionally, we think that observables
can take values in a continuous range; however, in nature, we also see examples of discrete and
finite ranges. Interesting quantum phenomena occur even in these discrete, finite systems, which
are much simpler to describe.

Many of the unusual quantum behaviors emerge when one examines the relations among
parts of a larger, composite system. These are the different forms of quantum correlations, the
most important one is entanglement, which is the main resource in quantum information theory
and quantum computing, offering advantages over the classical ones. This is because quantum
correlations differ in many ways from classical correlations, we will explore one of these ways.
We can best understand and illustrate the differences if we consider the classical and quantum
cases side by side and give a probabilistic description for the classical systems analogous to that
of the quantum ones, which might be not that usual.

First, in section 2, we recall the mathematical tools needed, such as vector spaces and Hilbert
spaces, linear operations, and the Hilbert–Schmidt inner product. Then, using these tools, we
establish the classical and quantum probability theories in section 3 including also the important
entropic quantities coming from classical and quantum information theory. In section 4, we
finally turn our attention to bipartite systems and the ways of quantifying the different aspects
of correlations. In these sections we rely on the excellent textbooks [1, 3, 6].

In section 5, we consider the relation between the covariance of observables, and the correlation
(nonproductness) of the state, in both the classical and the quantum cases. It is already known
in classical probability theory that if the covariance of two probabilistic variables (observables) is
zero, this does not necessarily mean that the probability distribution (state) is a product. (In the
latter case, the probabilistic variables are called independent). In the general theory, we do not
stick to the observables that much; especially in the quantum case, when we have noncommuting
observables in the same system. So the more important notion is the correlation of the state itself,
that is, its nonproductness. So, from our point of view, the difference mentioned is that even if a
state is highly correlated, this correlation cannot necessarily be observed by measuring the zero
or low covariance of a pair of unfortunately chosen observables. We prove in general that such
situation cannot occur in classical two-bit systems (there it is enough for the covariance to vanish
on a fixed pair of nontrivial observables and even this implies that the state is uncorrelated),
but can occur in any larger classical systems and in any quantum systems, including two-qubit
systems (there are pairs of observables of vanishing covariance in states which are correlated).
This result is just another difference between classical and quantum systems: two-bit systems are
too small, but even two-qubit systems are large enough so that the vanishing of the covariance
is not sufficient for the productness.

2. Vector spaces

Vector spaces are the main mathematical tools in describing classical and quantum systems.
It this work we consider discrete finite systems, so we are only concerned with finite dimensional
vector spaces, especially Hilbert spaces.

2.1. Vector spaces in general. A vector space V over the field C is closed with respect to
linear combination, that is, if vi ∈ V and ci ∈ C then

∑m
i=1 civi ∈ V. Linear combination is

understood to be of finite terms, even if this is not written explicitly.



2 COVARIANCE, CORRELATION AND ENTANGLEMENT IN QUANTUM SYSTEMS

Another structure which also turns out to be important in classical and quantum probability
theory is convexity. A convex space C ⊆ V in a vector space V is one that is closed with respect
to convex combination, that is, if ui ∈ C, wi ≥ 0 and

∑
i wi = 1 then

∑m
i=1 wiui ∈ C. The convex

combination of a finite set of vectors gives a convex polytope.
A set of vectors is linearly independent if only their trivial linear combination can give the

null vector. The maximal number of linearly independent vectors in the vector space V is the
dimension of that vector space, dim(V).

The paradigmatic example of finite dimensional vector spaces is the Cd vector space of complex
d-tuples v = (v1, v2, . . . , vd). In Cd one can define the p-norm as ∥v∥p :=

(∑
i |vi|p

)1/p for
p ∈ [1,∞], where ∥v∥∞ := limp→∞ ∥v∥p = max(|vi|).

Linear operators A ∈ Lin(V,W) are functions V → W between vector spaces with the property
A
(∑

i civi
)
:=

∑
i ciA(vi), that is, they preserve the linear structure of the vector space. In case

of linear operators, the parentheses are often omitted. Linear operators form a vector space too,
by the definition

(∑
i ciAi

)
v :=

∑
i ci(Aiv). If W = V then the Lin(V) := Lin(V,V) notation is

used, and I ∈ Lin(V) for the identity operator. Since this is an algebra, we also use the notation
A := Lin(V).

The paradigmatic example of finite dimensional linear operator spaces is the Cd ⊗ Cd′ lin-
ear space of complex d × d′ matrices. In Cd ⊗ Cd′ one can define the Schatten p-norm as
∥M∥p :=

(
Tr(|M |p)

)1/p, where |M | =
√
M†M , so ∥M∥p is just the p-norm of the vector of

the singular values of M . Algebras are usually noncommutative, as in the case of the matrix
algebras Lin(Cd) = Cd ⊗ Cd, however, there are also commutative ones. For example, the com-
plex d-tuples Cd with the elementwise multiplication vw = (v1, v2, . . . , vd)(w1, w2, . . . , wd) :=
(v1w1, v2w2, . . . , vdwd), form a commutative algebra, which we denote as A := Cd, with the
identity element 1 = (1, 1, . . . , 1).

In the special case when the range of a linear operator is the base field of the original vector
space, W = C, the operator f ∈ Lin(V,C) is called a linear functional. The space of linear
functionals is called the dual space of the vector space, V∗ := Lin(V,C), and dim(V∗) = dim(V)
holds.

The tensor product of vectors v ∈ V and w ∈ W is denoted as v ⊗ w, where ⊗ is bilinear,(∑
i

aivi

)
⊗
(∑

j

bjwj

)
:=

∑
i

∑
j

aibj(vi ⊗ wj). (2.1)

The tensor product of the vector spaces V and W is the vector space of linear combinations of
elementary tensors v ⊗ w, that is, V ⊗W := Span{v ⊗ w|v ∈ V, w ∈ W}. The dimension of this
is dim(V) dim(W).

For f ∈ V∗ and w ∈ W, we have the linear operator w ⊗ f ∈ Lin(V,W) with the definition

(w ⊗ f)(v) := f(v)w, (2.2)

by which we have the identification

Lin(V,W) = W ⊗V∗. (2.3)

That is, every operator A ∈ Lin(V,W) can be decomposed as

A =
∑
i

ciwi ⊗ fi, (2.4)

or, equivalently, A =
∑
i,j Aijwi ⊗ fj .

For operators in A = Lin(V) we have the trace map, which is a linear map, acting on elemen-
tary operators as

Tr(v ⊗ f) := f(v), (2.5)
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by which
Tr(A) = Tr

(∑
i

civi ⊗ fi

)
=

∑
i

cifi(vi), (2.6)

or Tr(
∑
i,j Aijvi ⊗ fj) =

∑
i,j Aijfj(vi).

The tensor product of operators A ∈ Lin(V,V ′) and B ∈ Lin(W,W ′) is the linear operator
given on elementary tensors as

(A⊗B)(v ⊗ w) := (Av)⊗ (Bw). (2.7)

The tensor product of linear maps (acting on operators) can be given similarly to that of
operators. Having A := Lin(V) and B := Lin(W), the tensor product of linear maps Φ ∈
Lin(A,A′) and Υ ∈ Lin(B,B′) is the linear map given on elementary tensors of linear operators
A ∈ A and B ∈ B as

(Φ⊗Υ)(A⊗B) := Φ(A)⊗Υ(B). (2.8)
For example, the partial trace is

TrA := Tr⊗ I, (2.9)
where Tr ∈ Lin(A,C) is the trace map of A, I ∈ Lin(B) is the identity map on B, so TrA(A⊗B) =
Tr(A)B.

2.2. Hilbert spaces. A Hilbert space H is a vector space over the complex numbers with a
binary operation called the inner product

⟨., .⟩ : H×H −→ C, (2.10)

which is, by definition non-negative (⟨ψ,ψ⟩ ≥ 0), non-degenerate (⟨ψ,ψ⟩ = 0 if and only if
ψ = 0), Hermitian or conjugate symmetric (⟨ψ, ϕ⟩ = ⟨ϕ, ψ⟩∗), and linear in the second argument
(⟨ϕ,

∑
i ciψi⟩ =

∑
i ci⟨ϕ, ψi⟩). Because of the previous two properties it is also true that the

inner product is conjugate linear in its first argument (⟨
∑
i ciϕi, ψ⟩ =

∑
i c

∗
i ⟨ϕi, ψ⟩). In the case

of d-tuples Cd, we use the notation (v|w) =
∑d
i=1 v

∗
iwi for the usual inner product.

The vectors ψ, ϕ ∈ H are called orthogonal, if ⟨ψ, ϕ⟩ = 0. It follows from the properties of the
inner product that ⟨ψ,ψ⟩ ≥ 0, and then a norm can be defined as ∥ψ∥ :=

√
⟨ψ,ψ⟩. The vector

ψ ∈ H is normalized, if ∥ψ∥ = 1.
It can be shown that with this inner product the Cauchy-Bunyakovsky-Schwarz inequality

holds, so for all ϕ, ψ ∈ H,
|⟨ψ, ϕ⟩|2 ≤ ⟨ψ,ψ⟩⟨ϕ, ϕ⟩, (2.11)

and with the previously defined norm can be rewritten

|⟨ψ, ϕ⟩| ≤ ∥ψ∥∥ϕ∥. (2.12)

We also have a more general inequality for p-norms, as the consequence of Hölder’s inequality,

|⟨ψ, ϕ⟩| ≤ ∥ψ∥p∥ϕ∥q, (2.13)

for any p- and q-norms where 1
p + 1

q = 1. A special case of (2.13) is the Cauchy-Bunyakovsky-
Schwarz inequality above when p = q = 2.

We again have the vector spaces of linear operators Lin(H,K), the operator algebra A :=
Lin(H), and the dual Hilbert space H∗ = Lin(H,C). For an operator A ∈ Lin(H,K), we can
define its adjoint A† ∈ Lin(K,H) as

⟨A†ψ, ϕ⟩ := ⟨ψ,Aϕ⟩ (2.14)

for all ψ ∈ K and ϕ ∈ H.
Having the inner product, we have a natural way to assign to every element in the space H an

element in the dual space H∗. That is, for all ψ ∈ H let ψ† ∈ H∗ be the linear functional acting
on all ϕ ∈ H as ψ†(ϕ) := ⟨ψ, ϕ⟩. This map is antilinear,

(∑
i ciψi

)†
=

∑
i c

∗
iψ

†
i , and bijective
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in this finite dimensional case. This leads to the very convenient Dirac notation. In the Dirac
notation vectors ϕ ∈ H are denoted as |ϕ⟩ := ϕ, called “ket” and linear functionals ψ† ∈ H∗ as
⟨ψ| := ψ†, called “bra”. Then the functional acting on the vector is ψ†(ϕ) = ⟨ψ|(|ϕ⟩) = ⟨ψ, ϕ⟩,
which is then denoted as ⟨ψ|ϕ⟩ := ⟨ψ, ϕ⟩.

Dirac notation is also convenient for operators. In case of elementary operators |ψ⟩ ⊗ ⟨ϕ| ∈
Lin(H,K) = K⊗H∗, we omit the ⊗ symbol, and write simply |ψ⟩⟨ϕ|, as usual in the literature.
Linear operators A ∈ Lin(H,K) are in general of the form

A =
∑
i

ci|αi⟩⟨βi| (2.15)

because of equation (2.4). Also, the trace map is Tr(|ψ⟩⟨ϕ|) = ⟨ϕ|ψ⟩ for elementary operators
|ψ⟩⟨ϕ| ∈ A = Lin(H), or Tr

(∑
i ci|αi⟩⟨βi|

)
=

∑
i ci⟨βi|αi⟩ for A =

∑
i ci|αi⟩⟨βi| ∈ A in general.

The adjoint turns out to be (|ψ⟩⟨ϕ|)† = |ϕ⟩⟨ψ| for elementary operators |ψ⟩⟨ϕ| ∈ Lin(H,K), or(∑
i ci|αi⟩⟨βi|

)†
=

∑
i c

∗
i |βi⟩⟨αi| for A =

∑
i ci|αi⟩⟨βi| ∈ Lin(H,K) in general.

All operators could be decomposed as in equation (2.4), but this decomposition is not unique
in general. In the case of Hilbert spaces, all operators A ∈ Lin(H,K) can be written as

A =
∑
i

ai|αi⟩⟨βi|, (2.16)

where the singular values are ai ≥ 0, and the singular vectors |αi⟩ ∈ K and |βi⟩ ∈ H form
orthonormal sets. This decomposition is essentially unique (up to degeneracies), and called
singular value decomposition. Let us recall also some special cases of operators important in
quantum probability theory. An operator A ∈ A is normal, if A†A = AA†, which holds if and
only if it can be written in the ‘diagonal form’

A =
∑
i

ai|αi⟩⟨αi|, (2.17)

where the eigenvalues are ai ∈ C and the eigenvectors |αi⟩ are orthonormal. An operator A ∈ A is
unitary, if A† = A−1, which holds if and only if it is normal and the eigenvalues in equation (2.17)
are ai ∈ C, |ai| = 1. An operator A ∈ A is self-adjoint, if A† = A, which holds if and only if
it is normal and the eigenvalues in equation (2.17) are ai ∈ R. An operator A ∈ A is positive
semidefinite, denoted as A ≥ 0, if ⟨ψ|A|ψ⟩ ≥ 0 for all |ψ⟩ ∈ H, which holds if and only if it is
normal and the eigenvalues in equation (2.17) are ai ≥ 0. An operator A ∈ A is a projection, if
P 2 = P = P †, which holds if and only if it is normal and the eigenvalues in equation (2.17) are
ai ∈ {0, 1}.

For linear operators A,B ∈ Lin(H,K) we can define the Hilbert-Schmidt inner product

(A|B) := Tr(A†B). (2.18)

With this, Lin(H,K) is also a Hilbert space, called Hilbert-Schmidt space. Although Dirac
notation is rarely used here, it still holds that linear functionals over the Hilbert-Schmidt space
can be given by the Hilbert-Schmidt inner product with operators.

The tensor product of Hilbert spaces H1, H2 is also a Hilbert space H1 ⊗H2 with the inner
product 〈

ψ1 ⊗ ψ2

∣∣ϕ1 ⊗ ϕ2
〉
:= ⟨ψ1|ϕ1⟩⟨ψ2|ϕ2⟩ (2.19)

from the inner products of H1 and H2.

3. Probability theory

Probability theory deals with probabilistic variables and the probabilities of their measurement
outcomes. Those physical quantities which are described probabilistically are called observables,
they are elements in the observable algebra, in both the classical and the quantum cases. Linear
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functionals giving the expectation values of observables (equivalently, the probabilities of the
outcomes) are called states in both the classical and the quantum cases. In the classical theory
the observable algebra is commutative, however in the quantum case it is not. In this work we
deal with discrete finite systems, this means that the observables give a finite number of discrete
values when measured. Then the observable algebras and state spaces are finite dimensional.

3.1. Classical probability theory. Let us have observables taking numerical (possibly com-
plex) values ai in measurement. It is meaningful to have linear combination and (commutative)
product of observables, so let us represent them as a := (a1, a2, . . . , ad) ∈ A := Cd with the
element-wise multiplication, (ab)ij := aibj . We can write

a =

d∑
i=1

aiχi, (3.1)

where χi is the characteristic observable of the i-th measurement outcome, χ1 = (1, 0, 0, . . . , 0),
χ2 = (0, 1, 0, . . . , 0) and so on. As we can see χi takes the value 1 if the i-th outcome occurs,
and 0 otherwise.

Let us have the probability of the i-th outcome pi. That is, pi ≥ 0 and
∑d
i=1 pi = 1. We can

form the expectation value of the observable a

Expp(a) =

d∑
i=1

piai = (p|a), (3.2)

given by the inner product in Cd. We call such d-tuple p := (p1, p2, . . . , pd) ∈ Cd a state. In
general, a state is a linear functional, an element of the dual of the observable algebra, however,
we use the identification of the space and its dual by the inner product. And so similarly to the
observable a more illustrative form of a state is

p =

d∑
i=1

piδi, (3.3)

where δi is a pure state. All the components of a pure state are 0 except the i-th which is 1,
δ1 = (1, 0, 0, ..), δ2 = (0, 1, 0, . . . ) and so on. As we can see, in case of δi the i-th outcome
occurs with certainty, and the others cannot occur. Another special state is the white noise
which means a fully random state, that is 1/d := (1/d, 1/d, . . . , 1/d), all the outcomes occur
with equal probabilities. The expectation value (3.2) is the inner product of an observable and
a state, which illustrates well that the expectation value depends just as much on the state as
on the observable we are measuring.

Let us have the space of all the possible states p (nonnegative, normalized), the state space

∆ :=
{
p ∈ Cd

∣∣∣ pi ≥ 0,
∑
i

pi = 1
}
, (3.4)

which is a subset of dimension d−1 in Rd. The main structure in probability theory is convexity,
which means that the state space is closed under convex combination

m∑
j=1

wjpj ∈ ∆, where wj ≥ 0,
m∑
j=1

wj = 1. (3.5)

Note that it is not closed under linear combination, and so the linear combination of arbitrary
states is not a state, only their convex combination. By equation (3.3), the state space is the
convex hull of the finite number (d) of pure states, so it is a convex polytope. It is of dimension
d−1, so it is a simplex, which means that the pure convex decomposition of every state is unique.
The white noise 1/d is the center of the state space in some sense.
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a bit in the centered basis

Calculating the expectation value of a characteristic observable yields the probability of that
outcome

Expp(χi) =
∑
j

pj(δj |χi) = pi. (3.6)

The a2 squared of an observable a ∈ A (the square is taken elementwisely) is also an observable
and so its expectation value is as equation (3.2) also. This way the variance of a given a observable
is

Varp(a) := Expp((a− Expp(a))
2) = Expp(a

2)− Expp(a)
2 = (p|a2)− (p|a)2. (3.7)

The most simple discrete finite system describes observables having two outcomes (d = 2),
called a bit. And so the pure states are

δ1 = (1, 0), δ2 = (0, 1). (3.8)

The state space is a 1-dimensional line segment. In the center of the line segment is the (1/2, 1/2)
white noise. Figure 1 illustrates the state space of the bit. We have the usual parametrization

p = p1δ1 + p2δ2 = (p1, p2), (3.9)

but we can also use a different one, expressing the difference from the white noise,

p =
1

2
(1+ rσ) =

1

2
(1 + r, 1− r). (3.10)

see in figure 2, where 1 = δ1+δ2 = (1, 1), σ = δ1−δ2 = (1,−1), so r = 2p1−1 = 1−2p2 ∈ [−1, 1].

Considering an observable with 3 outcomes we get the trit (d = 3), with pure states

δ1 = (1, 0, 0), δ2 = (0, 1, 0), δ3 = (0, 0, 1). (3.11)

A general p state given by these pure states is

p = p1δ1 + p2δ2 + p3δ3, (3.12)

so the state space is an equilateral triangle with the white noise in the center of the triangle, this
illustrated in figure 3
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3.2. Quantum probability theory. In quantum theory observables are represented by normal
operators of a H Hilbert space

A =
∑
i

ai|αi⟩⟨αi| ∈ A = Lin(H), (3.13)

where the eigenvalues ai are the discrete values of the measurable quantity and |αi⟩⟨αi| are
the respective projections of the eigenspaces. We can think of Pi = |αi⟩⟨αi| as a characteristic
observable, taking a value 1 if the i-th outcome occurs in a given measurement and 0 otherwise.

The expectation value of an observable A ∈ A is given by the density operator ρ ∈ A∗ =
Lin(H,C), also called quantum state, as

Expρ(A) = Tr(ρA). (3.14)

In general, a state is a linear functional, an element of the A∗ dual of the observable algebra
A, however, we use the identification of the algebra and its dual by the Hilbert-Schmidt inner
product. The Born rule is that the probability of a measurement outcome is given by the
expectation value of the characteristic observable Pi = |αi⟩⟨αi|,

pi = Tr(ρPi), (3.15)

which is equivalent to the formula (3.14) for the expectation value. The collection of the pi
probabilities together is the measurement statistics of the observable A ∈ A. The properties of
the density operators follow from the Born rule. To get pi ∈ R, the density operator needs to be
self adjoint, ρ† = ρ; to get pi ≥ 0, the density operator needs to be positive semidefinite, ρ ≥ 0;
and to get

∑d
i=1 pi = 1, the density operator needs to be (trace-)normalized, Tr(ρ) = 1. If we

consider equation (3.15) for a state π = |ψ⟩⟨ψ|, then for the probability we get

pi = ⟨ψ|αi⟩⟨αi|ψ⟩ = |⟨αi|ψ⟩|2, (3.16)

this is the usual form of the Born rule, however equation (3.15) is the general form. The special
state of the form π = |ψ⟩⟨ψ| ∈ A is called a pure state, and the vector |ψ⟩ ∈ H defining it is
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a state vector, ∥ψ∥ = 1. If |ψ⟩ = |αi⟩, then the pure state π = |αi⟩⟨αi| = Pi is the pure state
describing when the i-th outcome of the observable A =

∑
i ai|αi⟩⟨αi| occurs with certainty, and

the others cannot occur. That is, the measurement statistics of the observable A is a classical
pure state. However even if the state is pure there exists observables for which the measurement
statistics is not pure, that is there will be no outcomes with certainty. In a classical system no
such state exists, it is thanks to the commutativity of the underlying algebra, that is not there
in quantum theory. A state is pure if and only if its squared is itself ρ2 = ρ, that is it is a rank-1
projection. A state that is not pure, a mixed state, consists of a convex combination of pure
states, for such a state there exists no observable for which the measurement statistics is pure.

Let us have the space of all the possible quantum states ρ (positive semidefinite, normalized),
the state space

D :=
{
ρ ∈ Lin(H)

∣∣∣ ρ ≥ 0,Tr(ρ) = 1
}
, (3.17)

which is a subset of (real) dimension d2 − 1 in Lin(H). The main structure in probability theory
is convexity, which means that the state space is closed under convex combination,

m∑
j=1

wjρj ∈ D, where wj ≥ 0,
m∑
j=1

wj = 1. (3.18)

Note that it is not closed under linear combination, and so the linear combination of arbitrary
states is not a state, only their convex combination. The state space is the convex hull of the
continuously many pure states,

D =
{
ρ ∈ Lin(H)

∣∣∣ ρ =
∑
j

wj |ψj⟩⟨ψj |, |ψj⟩ ∈ H, ∥ψj∥ = 1, wj ∈ R, wj ≥ 0,
∑
j

wj = 1
}
. (3.19)

Let us also have the space of pure states

P :=
{
π ∈ Lin(H)

∣∣∣ π = |ψ⟩⟨ψ|, |ψ⟩ ∈ H, ∥ψ∥ = 1
}
, (3.20)

this is a 2d− 2 (real) dimensional subset of ∆12. So a state can be generally written as

ρ =
∑
i

wi|ψi⟩⟨ψi|. (3.21)

Contrary to the classical case, the pure convex decomposition of a (non-pure) state is not unique,
there are infinitely many different decompositions. However there is a minimal number of pure
states that is needed for the decomposition, which is the rank of the state. A special state is the
white noise I/d ∈ D for which the measurement statistics is the (classical) white noise for any
observable. Again the white noise is the center of the state space in some sense.

The A2 ∈ A square of an observable A ∈ A is A2 =
∑
i a

2
i |αi⟩⟨αi|, and its expectation value is

Expρ(A
2) = Tr(ρA2). The variance Varp(a) of the measured values a = (a1, a2, . . . , ad) ∈ Cd by

the measurement statistics p = (p1, p2, . . . , pd) ∈ Cd can also be formulated in terms of operators,

Varρ(A) := Expρ((A− Expρ(A)I)
2) = Expρ(A

2)− Expρ(A)
2 = Tr(ρA2)− Tr(ρA)2, (3.22)

which equals to Varp(a). For a pure state there exist observables of 0 variance and for mixed
states there does not.

Note that if we consider only observables which are commuting (for example, when only those
are accessible), then these can be simultaneously diagonalized, and the quantum probability
theory boils down to the classical one.

The simplest quantum system is the qubit, with d = 2. Thus D is a dim(D) = 3 dimensional
convex body. In Lin(H) the basis (orthonormal with respect to the Hilbert-Schmidt inner prod-
uct) is given by I and the Pauli operators

(
I√
2
, σ1√

2
, σ2√

2
, σ3√

2

)
with the following multiplication
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rule

σaσb = δabI + i

3∑
c=1

εabcσc. (3.23)

The Pauli operators in matrix form are

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (3.24)

We can express the commutator and anticommutator for the above basis as

[σa, σb] = σaσb − σbσa = 2i

3∑
c=1

εabcσc, (3.25)

{σa, σb} = σaσb + σbσa = 2δabI. (3.26)

With this basis a given state is parametrized by r = (r1, r2, r3) ∈ R3 the Bloch vector as
ρ = 1

2 (I+rσ), where rσ = r1σ1+r2σ2+r3σ3. This affine map preserves the convex combination,
that is ρ(

∑
j wjrj) =

∑
j wjρ(rj) where w ≥ 0,

∑
j wj = 1, so we have the same geometry in the

space of Bloch vectors as in the space of operators. To find out the shape of the state space D,
let us consider the pure states first, for which the ρ2 = ρ equality must hold,

1

4
(I + rσ)(I + rσ)

!
=

1

2
(I + rσ). (3.27)

The left-hand side is 1
4 (I + ∥r∥2 + 2rσ), expanding it we see that this equation can hold if and

only if ∥r∥2 = 1, so the space of pure states P is a sphere, and the state space D is the convex
hull of this, which is a (solid) ball. These are called Bloch sphere and Bloch ball, respectively.
The white noise 1

2I is the ∥r∥2 = 0 center of the Bloch ball.
We want to compute the eigenvalues of the state ρ. For this we have to know the eigenvalues

of rσ. To get these we need to realize two things. First (rσ)2 = ∥r∥2I, because of this the
squared of all the eigenvalues is ∥r∥2. Secondly Tr(rσ) = 0, so the eigenvalues can only be the
opposites of each other. This way the eigenvalues of rσ are ±∥r∥. So the spectral decomposition
of rσ is

rσ = ∥r∥|ϕ+⟩⟨ϕ+| − ∥r∥|ϕ−⟩⟨ϕ−|. (3.28)

Since I = |ϕ+⟩⟨ϕ+|+|ϕ−⟩⟨ϕ−|, we can express the spectral projections as |ϕ±⟩⟨ϕ±| = (I± rσ
∥r∥ )/2.

Then we also have the spectral decomposition of ρ as

ρ =
1

2
(I + rσ) =

1

2

((
1 + ∥r∥

)
|ϕ+⟩⟨ϕ+|+

(
1− ∥r∥

)
|ϕ−⟩⟨ϕ−|

)
. (3.29)

In this expression we see that the ρ density operator has the eigenvalues
(
1 ± ∥r∥

)
/2, and the

same spectral projections as rσ.
Observables can be expressed via the

(
I√
2
, σ1√

2
, σ2√

2
, σ3√

2

)
basis also. An observable A =∑2

i=1 ai|αi⟩⟨αi| ∈ A can be expressed as A = A0I +Aσ, where Aσ = A1σ1 + A2σ2 + A3σ3. If
A ∈ R3 then the spectral decomposition of the observable A can be obtained similarly to that
of the density operator, for example, the eigenvalues are A0 ± ∥A∥.

An illustrative example of an observable is the Sv̂ = ℏ
2 v̂σ spin operator of direction v̂ ∈ R3,

where ∥v̂∥ = 1. The spectral decomposition of this is Sv̂ = ℏ
2 |α+⟩⟨α+| − ℏ

2 |α−⟩⟨α−|, where the
spectral projections are |α±⟩⟨α±| = (I ± v̂σ)/2. Measuring this in a state ρ = 1

2 (I + rσ) for the
+/− outcomes gives the measurement statistics

p± = Tr(ρ(r)|α±⟩⟨α±|) = Tr
(1
2
(I + rσ)

1

2
(I ± v̂σ)

)
=

1

4
Tr(I ± v̂rI) =

1

2
(1± v̂r). (3.30)
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1
2 I

v
| + + |

| |

r
| + + |

| |

p

p +

Figure 4. State space of a qubit, the Bloch ball and the measurement statistics

What this means is that one will get the outcome ±ℏ
2 with probabilities 1

2 (1± v̂r). So even if one
measures in a pure state it is still possible to not get a certain outcome, for a certain outcome
v̂ and r must point in the same (or complelety opposite) direction. One can see the Bloch ball
and the measurement statistics on figure 4.

We can see that the classical bit is a special case of the quantum bit, when both v̂ = (0, 0, 1)
and r = (0, 0, r) points in the z direction. Then the matrices of A and ρ are diagonal, and the
diagonal entries of ρ form the classical state (p+, p−), parametrized by r, see equation (3.10).
More generally, if the considered observables are commuting, then these can be simultaneously
diagonalized, and the quantum probability theory boils down to the classical one.

3.3. Classical entropies. In the classical theory we have the Shannon-entropy for quantifying
the uncertainty of a state p ∈ ∆

S(p) := −
d∑
i=1

pi ln pi. (3.31)

The Shannon-entropy takes values in the range [0, ln(d)], if we make the function f(x) = −x lnx
right-continuous in x = 0, that is f(0) := limx→0+ f(x) = 0. It takes the value 0 if and only
if p is a pure state and ln(d) if and only if the state is the white noise. The Shannon entropy
quantifies the information content of a source with an outcome distribution p, by Shannon’s
noiseless coding theorem, for the optimal length L of an output (bitstring) code in terms of the
Shannon entropy as

S(p)

ln(2)
≤ L ≤ S(p) + 1

ln(2)
. (3.32)
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The Shannon entropy is concave, that is∑
i

wiS(pi) ≤ S
(∑

i

wipi

)
, (3.33)

expressing that the entropy is increasing for information loss. More importantly the Shannon
entropy is Schur-concave, that is,

p1 ⪯ p2 =⇒ S(p1) ≥ S(p2), (3.34)

where p1 ⪯ p2 means that p1 majorizes p2, which is given as
∑k
i=1 p

↓
1,i ≤

∑k
i=1 p

↓
2,i for all k,

where p↓1,i, p
↓
2i are the values of p1,p2 in descending order. Majorization compares the mixedness

of the two states in a way, therefore the Shannon entropy also reflects the mixedness of the
state. Moreover the Shannon entropy is also subadditive, strongly subadditive and extensive. It
is increasing in those physical processes (channels) which leave the white noise invariant, and in
particular it does not change in processes permuting the indices i.

To describe the distinguishability of two states we have the relative entropy (or Kullback-
Leibler divergence) of the states p, q ∈ ∆

D(p||q) :=
d∑
i=1

pi(ln(pi)− ln(qi)), (3.35)

if pi = 0 when qi = 0, and ∞ otherwise. It can be proven that D(p||q) ≥ 0 and D(p||q) = 0 if
and only if p = q, so the relative entropy takes values in the range [0,∞]. The relative entropy is
not symmetric, that is the relative entropy of p with respect to q, is not the same as the relative
entropy of q with respect to p, so the relative entropy is a divergence, not a metric. By Sanov’s
theorem, it describes the distinguishability of the states p and q, in the sense that it is the rate
of the decaying (with the sample size) of the probability of error in hypothesis testing scenarios.
The relative entropy is jointly convex, that is

D
(∑

i

wipi

∥∥∥∑
i

wiqi

)
≤

∑
i

wiD(pi||qi). (3.36)

It is decreasing in all physical processes (channels). The relative entropy can be compared with
the 1-norm distance with the following Pinsker inequality

D(p||q) ≥ 1

2
∥p− q∥21. (3.37)

3.4. Quantum entropies. In a quantum system the uncertainty of a state ρ ∈ D is given by
the von Neumann entropy

S(ρ) := −Tr(ρ ln(ρ)). (3.38)
If the eigendecomposition of the state is ρ =

∑
i ηi|ϕi⟩⟨ϕi| then the von Neumann entropy is

S(ρ) = −
∑
i

ηi ln(ηi) = S(η), (3.39)

which is the classical Shannon entropy of the η = (η1, η2, . . . , ηd) eigenvalues. It follows then
that the von Neumann entropy can take values in the range [0, ln(d)]. It can be shown that the
von Neumann entropy takes zero if and only if ρ is a pure state and ln(d) if and only if it is
the white noise. The von Neumann entropy quantifies the quantum information content of a
source described by ρ, as a coding theorem can be formulated also in the quantum case, called
Schumacher’s noiseless coding theorem. The von Neumann entropy is concave, that is∑

i

wiS(ρi) ≤ S
(∑

i

wiρi

)
, (3.40)
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expressing that the entropy is increasing for information loss. The most important property of
the von Neumann entropy is that it is Schur-concave, that is

ρ1 ⪯ ρ2 =⇒ S(ρ1) ≥ S(ρ2), (3.41)

where ρ1 ⪯ ρ2 means that ρ2 majorizes ρ1, which is defined by the majorization of the spectra,
η1 ⪯ η2. Majorization compares the mixedness of the two states in a way, therefore the von
Neumann entropy also reflects the mixedness of the state. Moreover the von Neumann entropy is
also subadditive, strongly subadditive and extensive. It is increasing in those physical processes
(quantum channels) which leave the white noise invariant, and in particular it does not change
in unitary channels, S(UρU†) = S(ρ).

To describe the distinguishability of two states we have the Umegaki quantum relative entropy
(or quantum Kullback-Leibner divergence) of the states ρ, σ ∈ D

D(ρ||σ) := Tr
(
ρ(ln(ρ)− ln(σ))

)
(3.42)

if Supp(ρ) ⊆ Supp(σ) and ∞ otherwise. It can be proven that D(ρ||σ) ≥ 0 and D(ρ||σ) = 0
if and only if ρ = σ, so the quantum relative entropy can take values in the range [0,∞]. The
quantum relative entropy is not symmetric, therefore it is not a metric rather a divergence. By
the quantum Sanov’s theorem, it describes the distinguishability of the states ρ and σ, in the
sense that it is the rate of the decaying (with the sample size) of the probability of error in
hypothesis testing scenarios. The quantum relative entropy is jointly convex, that is

D
(∑

i

wiρi
∥∥∑

i

wiσi

)
≤

∑
i

wiD(ρi||σi). (3.43)

It is decreasing in all physical processes (channels) and in particular it does not change in unitary
channels, D(UρU†||UσU†) = D(ρ||σ). The quantum relative entropy can be compared to the
1-norm distance of the states with Pinsker’s inequality, which states that,

D(ρ||σ) ≥ 1

2
∥ρ− σ∥21. (3.44)

4. Composite systems and correlations

Composite systems consist of two or more subsystems, which can be of arbitrary size individ-
ually. We restrict our attention to the case of two subsystems. Composite systems are described
by the use of the tensor product of the spaces describing the subsystems. In this way we can
describe the pairs of outcomes of simultaneously measurable observables, also having the linear
structure on the whole system.

4.1. Classical composite systems. Let us have two systems, described by the observable
algebras A1 := Cd1 and A2 := Cd2 , with observables of the form

a =

d1∑
i=1

aiχ1,i ∈ A1, b =

d2∑
j=1

bjχ2,j ∈ A2, (4.1)

where the characteristic observables satisfy (χ1,i)j = δij and (χ2,j)k = δjk, as before. The
corresponding states of the systems are of the form

p1 =

d1∑
i=1

p1,iδ1,i ∈ ∆1 ⊂ Rd1 p2 =

d2∑
j=1

p2,jδ2,j ∈ ∆2 ⊂ Rd2 , (4.2)
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where the pure states (δ1,i)j = δij , (δ2,j)k = δjk, as before. This way the expectation values of
the observables of the systems in the particular states are

Expp1
(a) = (p1|a) =

d1∑
i=1

p1,iai, Expp2
(b) = (p2|b) =

d2∑
j=1

p2,jbj , (4.3)

as before.
The equations above describe the case when we measure the observables separately in two

systems. But what if we measure the product of the variables, which is a joint measurement in
the joint system? Let us have the joint observable

a⊗ b =
∑
i

∑
j

aibjχ1,i ⊗ χ2,j ∈ A1 ⊗ A2, (4.4)

which is the tensor product of the observables a ∈ A1 and b ∈ A2. This represents the product
observable, taking the aibj values. The characteristic observable χ12,ij := χ1,i ⊗ χ2,j is the
observable taking the value 1 if the i-th outcome occurs in the measurement of a and the j-th
outcome occurs in the measurement of b and 0 otherwise. If p12,ij is the joint probability of the
i-th outcome of the measurement of a and the j-th outcome of the measurement of b, then the
state of the whole system is

p12 =

d1∑
i=1

d2∑
j=1

p12,ijδ12,ij ∈ ∆12 ⊂ Rd1 ⊗ Rd2 . (4.5)

Again, if the system is described by the pure state δ12,ij , then the i-th outcome of the measure-
ment of a and the j-th outcome of the measurement of b occur with certainty and the other
combinations cannot occur. The expectation value of the product observable is

Expp12
(a⊗ b) = (p12|a⊗ b) =

d1∑
i=1

d2∑
j=1

p12,ijaibj , (4.6)

as before and the expectation value of the joint characteristic observable χ12,ij gives the proba-
bility of the joint outcome,

Expp12
(χ12,ij) =

∑
i,j

p12,ij(p12|χ12,ij) = p12,ij , (4.7)

as before.
Note that we do not only have product observables a ⊗ b ∈ A12 = A1 ⊗ A2, but any linear

combinations of these are meaningful, so a joint observable in general is of the form

c =
∑
i

∑
j

cijχ12,ij ∈ A12. (4.8)

The expectation value of such an observable is

Expp12
(c) = (p12|c) =

∑
i,j

p12,ijcij . (4.9)

We would like to obtain the state of the subsystems, or reduced/marginal states from the state
of the whole system. This means that if we have the observables a ∈ A1 of subsystem 1 as
observables of form a ⊗ 1 ∈ A12 of the joint system (where 1 = (1, 1, . . . , 1)), then the reduced
state Red2(p12) is the state giving the expectation value of the observables a ∈ A1 of subsystem
1, obtained from the joint state p12. That is,

ExpRed2(p12)
(a) := Expp12

(a⊗ 1). (4.10)
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Writing the right-hand side,

Expp12
(a⊗ 1) =

∑
i,j

p12,ijai1 =
∑
i

(∑
j

p12,ij

)
ai, (4.11)

so we have

Red2(p12) =
(∑

j

p12,ij

)
δ1,i ∈ ∆1, (4.12)

and similarly

Red1(p12) =
(∑

i

p12,ij

)
δ2,j ∈ ∆2, (4.13)

the components of which are the usual marginal probabilities. It is easy to check that this can
also be formulated by the linear functional Red : Rd → R, acting as Red(p) := (1|p) =

∑
i pi,

then Red2 := I ⊗ Red : ∆12 → ∆1 and Red1 := Red⊗ I : ∆12 → ∆2.

4.2. Quantum composite systems. In quantum theory the states and observables are oper-
ators acting on Hilbert spaces. Let us have two systems, described by the observable algebras
A1 = Lin(H1) and A2 = Lin(H2), with observables of the form

A =
∑
i

ai|αi⟩⟨αi| =
∑
i

aiP1,i ∈ A1, B =
∑
j

bj |βj⟩⟨βj | =
∑
j

bjP2,j ∈ A2, (4.14)

where the characteristic observables are rank-1 projections P1,i = |αi⟩⟨αi| and P2,j = |βj⟩⟨βj |,
as before. The corresponding states of the systems are

ρ1 =
∑
i

wi|ψi⟩⟨ψi| ∈ D1, ρ2 =
∑
j

wj |ϕj⟩⟨ϕj | ∈ D2, (4.15)

where the pure states are rank-1 projections |ψi⟩⟨ψi| and |ϕj⟩⟨ϕj |, as before. This way the
expectation values of the observables of the systems in the particular states are

Expρ1(A) = Tr(ρ1A), Expρ2(B) = Tr(ρ2B), (4.16)

as before.
The equations above describe the case when we measure the observables separately in two

systems. But what if we measure the product of the variables, which is a joint measurement in
the joint system? Let us have the joint observable

A⊗B =
∑
i,j

aibjP1,i ⊗ P2,j ∈ A1 ⊗A2, (4.17)

which is the tensor product of the observables A ∈ A1 and B ∈ A2. This represents the product
observable, taking the aibj values. The characteristic observable P12,ij := P1,i ⊗ P2,j is the
observable taking the value 1 if the i-th outcome occurs in the measurement of A and the j-th
outcome occurs in the measurement of B and 0 otherwise. The state of the whole system is

ρ12 =
∑
i

wi|ψ12,i⟩⟨ψ12,i| ∈ D12 ⊂ A1 ⊗A2. (4.18)

Again, if the system is described by the pure state |ψ⟩⟨ψ| = P12,ij , then the i-th outcome of the
measurement of A and the j-th outcome of the measurement of B occur with certainty, and the
other combinations cannot occur. Note however that there are other pure states too, for which
this does not hold. The expectation value of the product observable is

Expρ12(A⊗B) = (ρ12|A⊗B) =
∑
k,i,j

wkaibj |⟨ψ12,k|αi ⊗ βj⟩|2, (4.19)
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as before, and the expectation value of the joint characteristic observable P12,ij gives the proba-
bility of the joint outcome,

Expρ12(P12,ij) =
∑
k

wk|⟨ψ12,k|αi ⊗ βj⟩|2 = p12,ij , (4.20)

as before.
Note that we have not only product observables A ⊗ B ∈ A12 = A1 ⊗ A2, but any linear

combinations of these are meaningful, so a joint observable in general is of the form

C =
∑
i

ciQ12,i ∈ A12, (4.21)

whereQ12,i = |γ12,i⟩⟨γ12,i| are joint characteristic observables. Note that these are not necessarily
of a product form. The expectation value of such an observable is

Expρ12(C) = (ρ12|C) =
∑
i

qici, (4.22)

where qi = (ρ12|Q12,i) is the measurement statistics.
We would like to obtain the state of the subsystems, or reduced/marginal states from the state

of the whole system. This means that if we have the observables A ∈ A1 of subsystem 1 as
observables of form A⊗ I ∈ A12 of the joint system (where I is the identity operator), then the
reduced state Red2(ρ12) is the state giving the expectation value of the observables A ∈ A1 of
subsystem 1, obtained from the joint state ρ12. That is,

ExpRed2(ρ12)(A) := Expρ12(A⊗ I). (4.23)

It turns out that the reduction map is given by the partial trace,

Red2(ρ12) = Tr2(ρ12) ∈ D1, (4.24)

and similarly

Red1(ρ12) = Tr1(ρ12) ∈ D2, (4.25)

see in equation (2.9).
Again see the example of the qubit, for 2 qubit systems we use the Pauli basis on each qubits.

This way we can express a product state as

ρ1 ⊗ ρ2 =
1

2

(
I + rσ

)
⊗ 1

2

(
I + sσ

)
=

1

4

(
I ⊗ I + rσ ⊗ I + I ⊗ sσ + rσ ⊗ sσ

)
, (4.26)

where r, s ∈ R3 are the Bloch vectors on the subsystems. Now consider a general state, it can
be written as

ρ12 =
1

4

(
I ⊗ I + rσ ⊗ I + I ⊗ sσ + t(σ ⊗ σ)

)
, (4.27)

where t ∈ R3 ⊗ R3 a matrix, and we use the shorthand notation t(σ ⊗ σ) =
∑
ij tijσi ⊗ σj .

Expressing ρ12 in this form is useful because one can clearly see the parameters r, s of the
two subsystems, this way the reduced states are seen instantly, as Tr2(ρ12) = 1

2

(
I + rσ

)
and

Tr1(ρ12) =
1
2

(
I + sσ

)
. The matrix t contains the nonlocal information of the quantum state.
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4.3. Classical correlation. The two observables a ∈ A1 and b ∈ A2 are uncorrelated in the
system described by the state p12 ∈ ∆12 if

Expp12
(a⊗ b) = Expp1

(a) Expp2
(b) (4.28)

holds.
The state p12 ∈ ∆12 is uncorrelated if any pair of observables are uncorrelated, that is,

Expp12
(a⊗ b) = Expp1

(a) Expp2
(b) for all a ∈ A1,b ∈ A2 (4.29)

This is equivalent to that the state is a product state

p12 = p1 ⊗ p2, (4.30)

which we will show in section 5.1. That is the state must be the product of its reduced states. (In
usual probability theory in this case it is said that the two probabilistic variables are independent.
Here we take a more general point of view, as the observables are not fixed.) The components
of the product state are the products of the components of the reduced states: p12,ij = p1,ip2,j .
It easily follows that all pure states are uncorrelated, because any pure state of the composite
system is a product of pure states of the subsystems, (δ12,ij)kl = δikδjl = (δ1,i)k(δ2,j)l. Let us
have the state space of uncorrelated states

∆unc :=
{
p1 ⊗ p2

∣∣∣ p1 ∈ ∆1,p2 ∈ ∆2

}
⊂ ∆12. (4.31)

Moreover

∆12 = Conv({δ12,ij | i = 1, 2, . . . , d1; j = 1, 2, . . . , d2}) = Conv(∆unc), (4.32)

so any state can be prepared by the statistical mixture (convex combination) of uncorrelated
(tensor product) states.

4.4. Quantum correlation. The definition of uncorrelated observables is formally the same
as in the classical case. The two observables A ∈ A1, B ∈ A2 are uncorrelated in the system
described by the state ρ12 ∈ D12 if

Expρ12(A⊗B) = Expρ1(A) Expρ2(B), (4.33)

holds.
The state ρ12 ∈ D12 is uncorrelated, if any pair of observables are uncorrelated, that is,

Expρ12(A⊗B) = Expρ1(A) Expρ2(B) for all A ∈ A1, B ∈ A2. (4.34)

This is equivalent to that the state is a product state

ρ12 = ρ1 ⊗ ρ2, (4.35)

which we will show in section 5.2. That is the state must be the product of its reduced states.
The components of the product state are the products of the components of the reduced states:
ρ12,ii′jj′ = ρ1,ii′ρ2,jj′ . It is important to note that, contrary to the classical case, pure states are
not always uncorrelated. This is the notion of entanglement, see in the next subsection. (An
example for a non-product pure state is the Bell state, given by the vector (|00⟩+ |11⟩)/

√
2.) Let

us have the state space of uncorrelated states

Dunc :=
{
ρ1 ⊗ ρ2

∣∣∣ ρ1 ∈ D1, ρ2 ∈ D2

}
⊂ D12. (4.36)

Note that, since we have pure states which are correlated,

D12 = Conv(P12) ⊋ Conv(Dunc), (4.37)

which, again, points towards entanglement.
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4.5. Quantum entanglement. In the quantum case there is another important category be-
sides uncorrelated states. We have seen in equation (4.37) that, since there are correlated pure
states, so there are (correlated) states which cannot be prepared by mixing uncorrelated states.
This is the definition of entanglement [5]. First, let us have the space of separable states, being
the convex combination of uncorrelated states,

Dsep := Conv(Dunc) =
{∑

k

wkρ1,k ⊗ ρ2,k

∣∣∣ wk ≥ 0,
∑
k

wk = 1, ρ1,k ∈ D1, ρ2,k ∈ D2

}
⊂ D12.

(4.38)
These are the states which can be prepared locally with classical communication, where the latter
establishes the statistical mixing. The states which are not separable are called entangled. To
prepare those, some quantum communication is needed.

4.6. Classical correlation measures. The covariance of the observables a ∈ A1 and b ∈ A2

of a system described by the state p12 ∈ ∆12 is

Covp12
(a, b) := Expp12

(a⊗ b)− Expp1
(a) Expp2

(b). (4.39)

This can also be expressed as
Covp12

(a, b) = (g12|a⊗ b) (4.40)
where g12 := p12 − p1 ⊗ p2 encodes the correlation in the state p12 ∈ ∆12. Indeed,

Expp12
(a⊗ b)− Expp1

(a) Expp2
(b) = (p12|a⊗ b)− (p1|a)(p2|b) = (p12 − p1 ⊗ p2|a⊗ b),

where we have used the properties of the inner product.
The correlation of the observables a ∈ A1 and b ∈ A2 of a system described by the state

p12 ∈ ∆12 is

Corrp12
(a, b) :=

Covp12
(a, b)√

Varp1
(a)Varp2

(b)
. (4.41)

This is a normalized variant of the covariance, −1 ≤ Corrp12
(a, b) ≤ 1. However in our case it is

better to just stick to using covariance as it is linear in its variables while correlation is not. In
addition, this kind of normalization is not useful at all.

We can also quantify the correlation of the state itself, without respect to the observables. The
relative entropy of correlation, also called correlation (of the state itself) of a system described
by the state p12 ∈ ∆12 is

C(p12) := min
q12∈∆unc

D(p12||q12), (4.42)

where D(p12||q12) is the relative entropy, given in equation (3.35). It expresses how distinguish-
able the state is from the uncorrelated ones, in terms of the relative entropy. This is a correlation
measure in the sense that it is nonincreasing with respect to local operations, reflecting that cor-
relation cannot be created nor strengthened locally. (This follows from that the relative entropy
is decreasing in all channels and the local operations map the set of uncorrelated states onto
itself.) It is a faithful correlation measure, that is,

p12 ∈ ∆unc ⇐⇒ C(p12) = 0. (4.43)

(This follows from the properties of the relative entropy.) For pure states C is zero, since pure
states are always uncorrelated in the classical case.

It turns out that the minimization in the formula (4.42) can be done explicitly. One can prove
that the minimum is taken at q12 = p1 ⊗ p2, see [2], leading to that

C(p12) = D(p12||p1 ⊗ p2) = S(p1) + S(p2)− S(p12). (4.44)

Note that this is also called mutual information in a different context.
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The correlation of the state is lower bounded by the covariance of any pair of (properly
normalized) observables [7] as

1

2

∣∣∣Covp12

( a

∥a∥∞
,

b

∥b∥∞

)∣∣∣2 ≤ C(p12), for all a ∈ A1,b ∈ A2, (4.45)

which we will show in section 5.1.

4.7. Quantum correlation measures. The covariance of two observables A ∈ A1, B ∈ A2 of
a system described by the state ρ12 ∈ D12 is

Covρ12(A,B) := Expρ12(A⊗B)− Expρ1(A) Expρ2(B). (4.46)

This can also be expressed as

Covρ12(A,B) = (Γ12|A⊗B), (4.47)

where Γ12 = ρ12 − ρ1 ⊗ ρ2 encodes the correlation in the state ρ12 ∈ D12. Indeed,

Expρ12(A⊗B)− Expρ1(A) Expρ2(B) = (ρ12|A⊗B)− (ρ1|A)(ρ2|B) = (ρ12 − ρ1 ⊗ ρ2|A⊗B),

where we have used the properties of the inner product.
The correlation of the observables A ∈ A1, B ∈ A2 of a system described by the state ρ12 ∈ D12

is

Corrρ12(A,B) :=
Covρ12(A,B)√

Varρ1(A)Varρ2(B)
. (4.48)

This is a normalized variant of the covariance, −1 ≤ Corrρ12(A,B) ≤ 1. However again sticking
to covariance as a measure of correlation is more convenient, because it is linear in the observables
A ∈ A1, B ∈ A2.

We can also quantify the correlation of the state itself, without respect to the observables. The
relative entropy of correlation, also called correlation (of the state itself) of a system described
by the state ρ12 ∈ D12 is

C(ρ12) := min
τ12∈Dunc

D(ρ12||τ12), (4.49)

where D(ρ12||τ12) is the relative entropy as in equation (3.42). It expresses how distinguishable
the state is from the uncorrelated ones, in terms of the relative entropy. This is a correlation
measure in the sense that it is nonincreasing with respect to local operations, reflecting that
correlation cannot be created nor strengthened locally. (This follows from that the quantum
relative entropy is decreasing in all quantum channels and the local operations map the set of
uncorrelated states onto itself.) It is a faithful correlation measure, that is,

ρ12 ∈ Dunc ⇐⇒ C(ρ12) = 0. (4.50)

(This follows from the properties of the relative entropy.) Note that C is not necessarily zero for
pure states, since pure states can also be correlated in the quantum case.

It turns out that the minimization in the formula (4.49) can be done explicitly. One can prove
that the minimum is taken at ρ12 = ρ1 ⊗ ρ2, see [2],

C(ρ12) = min
τ12∈Dunc

D(ρ12||τ12) = D(ρ12||ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2)− S(ρ12). (4.51)

Note that this is also called quantum mutual information in a different context. The correlation
in pure states π12 = |ψ12⟩⟨ψ12| is

C(π12) = 2S(π1) = 2S(π2), (4.52)

two times the entropy of the reduced state, since S(π) = 0, and the reduced states have the same
nonzero eigenvalues.
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The correlation of the state is lower bounded by the covariance of any pair of (properly
normalized) observables [7] as

1

2

∣∣∣Covρ12( A

∥A∥∞
,

B

∥B∥∞

)∣∣∣2 ≤ C(ρ12), for all A ∈ A1,B ∈ A2, (4.53)

which we will show in section 5.2.

4.8. Quantum entanglement measures. We may have a similar construction for measuring
entanglement as in the previous subsection for correlation. The relative entropy of entanglement
of a system described by the state ρ12 ∈ D12 is

E(ρ12) := min
τ12∈Dsep

D(ρ12||τ12), (4.54)

where D(ρ12||τ12) is again the quantum relative entropy as in equation (3.42). It expresses how
distinguishable the state is from the separable ones, in terms of the quantum relative entropy.
This is an entanglement measure in the sense that it is nonincreasing with respect to local
operations and classical communications, reflecting that entanglement cannot be created nor
strengthened locally with classical communication. (This follows from that the quantum relative
entropy is decreasing in all quantum channels and the local operations and classical communi-
cations map the set of separable states onto itself.) It is a faithful entanglement measure, that
is,

ρ12 ∈ Dsep ⇐⇒ E(ρ12) = 0 (4.55)
(This follows from the properties of the quantum relative entropy.)

Contrary to the correlations, the minimization in the formula (4.54) cannot be done explicitly.
However, it is proven [4] that the relative entropy of entanglement in pure states π12 = |ψ⟩⟨ψ| is

E(π12) = S(π1) = S(π2), (4.56)

the entropy of the reduced state. This is also called entanglement entropy in a different context,
being the asymptotic ratio n/m of the encoding (by local operation and classical communication)
of m copies of the pure state into n copies of Bell-states.

5. Covariance versus correlation

We would like to explore the specific requirements for the covariance to be zero and how this
relates to the state being uncorrelated. In two-bit and two-qubit systems this can be explicitly
calculated.

5.1. Covariance and correlation in classical systems. Here we prove some properties stated
previously in the classical case.

First we show that the uncorrelated states (equation 4.29) are exactly the product ones (equa-
tion 4.30), that is

Covp12
(a, b) = 0,∀a ∈ A1, b ∈ A2 ⇐⇒ p12 ∈ ∆unc. (5.1)

To see the “if ” direction, we have that if p12 ∈ ∆unc then p12 = p1 ⊗ p2 and so

Covp12
(a, b) = (p12 − p1 ⊗ p2|a⊗ b) = (0|a⊗ b) = 0,

which is true for any pair of observables a, b. To see the “only if” direction, we have that if
Covp12

(a, b) = 0 then

Covp12
(a, b) = (p12 − p1 ⊗ p2|a⊗ b) = 0,∀a ∈ A1, b ∈ A2

means that p12 −p1 ⊗p2 = 0, because the elementary tensors a⊗ b span the observable algebra
of the composite system, and a vector is zero if and only if its inner product with all vectors is
zero.
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Second, we show the inequality (4.45) [7]. It follows from

|Covp12
(a, b)| = |(p12 − p1 ⊗ p2|a⊗ b)|

≤ ∥p12 − p1 ⊗ p2∥1∥a⊗ b∥∞
≤

√
2D(p12||p1 ⊗ p2)∥a∥∞∥b∥∞,

where the Hölder inequality (2.13) for p = 1 and q = ∞ and the Pinsker inequality (3.37) were
used. After rearranging the terms, and using the second form of the correlation in equation (4.44)
we have 1

2

∣∣Covp12

(
a

∥a∥∞
, b
∥b∥∞

)∣∣2 ≤ C(p12), with the a
||a||∞ , b

||b||∞ normalized observables. The
values of such observables lie inside the unit circle.

5.2. Covariance and correlation in quantum systems. Here we prove some properties
stated previously in the quantum case.

We show that the uncorrelated states (equation (4.34)) are exactly the product ones (equa-
tion (4.35)), that is

Covρ12(A,B) = 0 ⇐⇒ ρ ∈ Dunc. (5.2)

To see the “if ” direction, we have that if ρ12 ∈ Dunc then ρ12 = ρ1 ⊗ ρ2 and so

Covρ12(A,B) = (ρ12 − ρ1 ⊗ ρ2|A⊗B) = (0|A⊗B) = 0

which is true for any pair of A,B observables. To see the “only if” direction, we have that if
Covρ12(A,B) = 0 then

Covρ12(A,B) = (ρ12 − ρ1 ⊗ ρ2|A⊗B) = 0,∀A ∈ A1, B ∈ A2

means that ρ12− ρ1⊗ ρ2 = 0, because the elementary tensors A⊗B span the observable algebra
of the composite system, and a vector is zero if and only if its inner product with all vectors is
zero.

Next we show the inequality (4.53) [7]. We have

|Covρ12(A,B)| = |(ρ12 − ρ1 ⊗ ρ2|A⊗B)|
≤ ∥ρ12 − ρ1 ⊗ ρ2∥1∥A⊗B∥∞
≤

√
2D(ρ12||ρ1 ⊗ ρ2)∥A∥∞∥B∥∞,

where the Hölder inequality (2.13) for p = 1 and q = ∞ and the Pinsker inequality (3.44) were
used. After rearranging the terms, and using the second form of the correlation in equation (4.51),
we have

∣∣Covρ12 ( A
∥A∥∞

, B
∥B∥∞

)∣∣2 ≤ C(ρ12), with the A
∥A∥∞

, B
∥B∥∞

normalized observables. The
values of such observables lie inside the unit circle.

5.3. Two-bit systems. For 2 bits we will prove that zero covariance on one pair of nontrivial
observables (taking two different values) guarantees that the state is uncorrelated. So let us
restrict ourselves to observables a ∈ A1, b ∈ A2 which are nontrivial, which means a, b ̸∼ 1. For
any pair of such observables, for d1, d2 = 2 we have

Covp12
(a, b) = 0 ⇐⇒ p12 ∈ ∆unc. (5.3)

Note that the ⇐= implication is obvious by the result (5.1), the extra point here is the =⇒
implication. We can prove this by the use of the classical Pauli basis given in equation (3.10).
That is the states of the two bits take the form

p1 =
1

2
(1+ rσ) =

1

2
(1 + r, 1− r), p2 =

1

2
(1+ sσ) =

1

2
(1 + s, 1− s). (5.4)
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Similarly, the general form of a state of the whole 2 bit system p12 is

p12 =
1

4

(
1⊗ 1+ rσ ⊗ 1+ s1⊗ σ + tσ ⊗ σ

)
=

1

4

(
(1, 1, 1, 1) + r(1, 1,−1,−1) + s(1,−1, 1,−1) + t(1,−1,−1, 1)

)
=

1

4

(
1 + r + s+ t, 1 + r − s− t, 1− r + s− t, 1− r − s+ t

)
.

(5.5)

In the end we want to get the covariance, so we have to compute g12 = p12 −p1 ⊗p2 and a⊗ b.
For p1 ⊗ p2 we have to take the product of p1 and p2 elementwise

p1 ⊗ p2 =
1

4

(
1⊗ 1+ rσ ⊗ 1+ s1⊗ σ + rsσ ⊗ σ

)
=

1

4

(
(1 + r)(1 + s), (1 + r)(1− s), (1− r)(1 + s), (1− r)(1− s)

)
=

1

4
(1 + r + s+ rs, 1 + r − s− rs, 1− r + s− rs, 1− r − s+ rs).

(5.6)

Now to get g12 we substitute p12 and p1 ⊗ p2

g12 = p12 − p1 ⊗ p2 =
1

4
(t− rs)σ ⊗ σ =

t− rs

4
(1,−1,−1, 1). (5.7)

To get a⊗ b we again have to multiply elementwise

a⊗ b = (a1, a2)⊗ (b1, b2) = (a1b1, a1b2, a2b1, a2b2). (5.8)

Now finally the covariance is given as

Covp12
(a⊗ b) = (g12|a⊗ b) =

t− rs

4
(σ|a)(σ|b) = t− rs

4
(b1 − b2)(a1 − a2)

!
= 0. (5.9)

From this result we can see that either any of the observables is trivial (that is, a1 = a2 or
b1 = b2) or t− rs = 0. So the (5.9) condition can only be satisfied by t = rs, which holds if and
only if the state is uncorrelated (a product) (see equation (5.7)).

We can visualize the state space of a 2 bit system with the
(

1√
2
, σ√

2

)
basis. First we have to

express r, s, t with the pi probabilities. We have two expressions for p12, p12 = (p0, p1, p2, p3)
and p12 = 1

4 (1+ r+ s+ t, 1+ r− s− t, 1− r+ s− t, 1− r− s+ t). This way the r, s, t parameters
are

r = 2(p0 + p1)− 1, s = 2(p0 + p2)− 1, t = 2(p0 + p3)− 1. (5.10)

When considering the pure states in pi (δ1 = (1, 0, 0, 0) and so on) we get the extremal points of
this 3-dimensional simplex in r, s, t.

5.4. Bit-trit systems. Next we want to check if (5.3) can be true for larger systems. The most
simple case is when d1 = 3, d2 = 2. Can we find a correlated state with nontrivial observables
of zero covariance? Let us have the ansatz for the state

p12 = (0, x, y, 0, 0, z), (5.11)
p1 = (x, y, z), p2 = (y, x+ z) (5.12)

with the free variables 0 ≤ x, y, z ∈ R such that x+ y + z = 1. Taking the tensor product of the
reduced states we get

p1 ⊗ p2 =
(
xy, x(x+ z), y2, y(x+ z), yz, z(x+ z)

)
. (5.13)
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The observables and their tensor product in general are

a = (a1, a2, a3), b = (b1, b2), (5.14)
a⊗ b = (a1b1, a1b2, a2b1, a2b2, a3b1, a3b2). (5.15)

We need to calculate g12, that is

g12 = p12 − p1 ⊗ p2

=
(
− xy, x(1− x− z), y(1− y),−y(x+ z),−yz, z(1− x− z)

)
=

(
− xy, xy, y(x+ z),−y(x+ z),−yz, yz

)
.

(5.16)

Here we also see that p12 can only be uncorrelated if either y = 0 or x = z = 0. The question is,
wether the covariance could be zero for correlated states. The covariance is

Covp12
(a, b) = (g12|a⊗ b)

= −a1b1xy − a1b2xy + a2b1y(x+ z)− a2b2y(x+ z)− a3b1yz + a3b2yz

= y
(
x(−a1b1 + a1b2 + a2b1 − a2b2) + z(a2b1 − a2b2 − a3b1 + a3b2)

)
= y(b2 − b1)

(
x(a1 − a2) + z(a3 − a2)

)
,

(5.17)

we can again see that a nontrivial b can not lead to a zero result. However x(a1−a2)+z(a3−a2)
can be zero for nontrivial 3 valued observables. Thus even for the system slightly larger than two
bits equation (5.3) does not hold anymore. To see this through a more concrete example, let us
have a = (1, 0,−1) and b = (1,−1) similar to a spin measurement. In this case if the state is of
the form p12 = (0, x, y, 0, 0, x), then the covariance always vanishes even though p12 is correlated
(which is x, y ̸= 0).

As smaller systems can be embedded into larger ones, we can conclude that (5.3) can hold
only in the two-bit systems, that is, for nontrivial observables a ∈ A1, b ∈ A2 for d1, d2 > 2,

Covp12
(a, b) = 0 ̸=⇒

(⇐=)

p12 ∈ ∆unc. (5.18)

5.5. Two-qubit systems. Here we pose the question whether a result analogue to (5.3) could
hold in quantum systems. For this we consider two-qubit systems, which is the smallest possi-
bility.

We can exploit the wider possibilities of the quantum systems by considering states which do
not commute with the observables. We again write the particular ansatz for the state of the
subsystems and the whole system

ρ1 =
1

2
(I + rσ) :=

1

2
(I + rσ1) (5.19)

ρ2 =
1

2
(I + sσ) :=

1

2
(I + sσ1) (5.20)

ρ12 =
1

4

(
I ⊗ I + rσ ⊗ I + I ⊗ sσ + t(σ ⊗ σ)

)
:=

1

4

(
I ⊗ I + rσ1 ⊗ I + I ⊗ sσ1 + tσ1 ⊗ σ1

)
.

(5.21)

Now substituting the Pauli matrices σ1 =
[
0 1
1 0

]
into the states we get

ρ1 =
1

2

[
1 r
r 1

]
, ρ2 =

1

2

[
1 s
s 1

]
, (5.22)
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ρ12 =
1

4



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ r


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

+ s


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+ t


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 (5.23)

=
1

4


1 s r t
s 1 t r
r t 1 s
t r s 1

 .
For Γ12 = ρ12 − ρ1 ⊗ ρ2 we need ρ1 ⊗ ρ2, that is

ρ1 ⊗ ρ2 =
1

4


1 s r rs
s 1 rs r
r rs 1 s
rs r s 1

 . (5.24)

This way

Γ12 =
1

4


1 s r t
s 1 t r
r t 1 s
t r s 1

− 1

4


1 s r rs
s 1 rs r
r rs 1 s
rs r s 1

 =


0 0 0 t− rs
0 0 t− rs 0
0 t− rs 0 0

t− rs 0 0 0

 (5.25)

is the expression for Γ12. The observables are of the same form as previously A =
[
a1 0
0 a2

]
B =

[
b1 0
0 b2

]
, so we can finally get the covariance Covρ12(A,B) = Tr(Γ12(A⊗B)) as

Covρ12(A,B) = Tr


0 0 0 (t− rs)a2b2
0 0 (t− rs)a2b1 0
0 (t− rs)a1b2 0 0

(t− rs)a1b1 0 0 0

 = 0. (5.26)

We see that Γ12 is not the zero operator, so the state is correlated, however, Covρ12(A,B) = 0.
(A very similar derivation of covariance can be done for the case when rσ = rσ2 with the same
result.) This example already rules out the quantum analogue of the result (5.3), however, we
will also elaborate on this in a more general form, without using matrices explicitly.

For this again consider the states of the 2 qubit system

ρ1 =
1

2
(I + rσ), ρ2 =

1

2
(I + sσ), (5.27)

ρ1 ⊗ ρ2 =
1

4

(
I ⊗ I + rσ ⊗ I + I ⊗ sσ + rσ ⊗ sσ

)
, (5.28)

ρ12 =
1

4

(
I ⊗ I + rσ ⊗ I + I ⊗ sσ + t(σ ⊗ σ)

)
. (5.29)

Now to use them we need to rewrite them in indexed form, this looks as

ρ1 =
1

2

(
I +

∑
i

riσi
)
, ρ2 =

1

2

(
I +

∑
j

sjσj
)
, (5.30)

ρ1 ⊗ ρ2 =
1

4

(
I ⊗ I +

∑
i

riσi ⊗ I + I ⊗
∑
j

sjσj +
∑
ij

risj(σi ⊗ σj)
)
, (5.31)

ρ12 =
1

4

(
I ⊗ I +

∑
i

riσi ⊗ I + I ⊗
∑
j

sjσj +
∑
ij

tij(σi ⊗ σj)
)
. (5.32)
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Now to get the operator Γ12 encoding the correlation as

Γ12 = ρ12 − ρ1 ⊗ ρ2 =
1

4

∑
ij

(tij − risj)(σi ⊗ σj), (5.33)

and finally the covariance as

Covρ12(A,B) = Tr(Γ12(A⊗B))

=
1

4
Tr

(∑
ij

(tij − risj)(σi ⊗ σj)A⊗B
)

=
1

4

∑
ij

(tij − risj) Tr(σiA) Tr(σjB).

(5.34)

From this expression we see that to get zero covariance one has to measure such state-observable
pairs in which the observable A⊗ B and the correlation operator Γ12 has non-zero components
in different Pauli directions. Meaning that at least one subsystem has to have a zero component
in the direction that the state has a non-zero component. Therefore the covariance being zero
on a pair of observables does not imply that the state ρ12 is uncorrelated even on two qubits.

We can illustrate these if we consider for example a Bell state |Bell⟩ = 1√
2
(|00⟩ + |11⟩) and

another state |Bell′⟩ = 1
2 (|00⟩ + |01⟩ + |10⟩ − |11⟩), where |ij⟩ is the computational basis, by

which all the matrices are expressed. The matrices of the density operators of the two states
ρB = |B0⟩⟨B0| and ρψ = |ψ⟩⟨ψ| are

ρBell =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , ρBell′ =
1

4


1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

 (5.35)

We get the reduced states from both density operators by the partial trace. When calculating
for both matrices we see that their reduced states are the same, these are

ρ1 := Tr2(ρBell) = Tr2(ρBell′) =
1

2

[
1 0
0 1

]
, ρ2 := Tr1(ρBell) = Tr1(ρBell′) =

1

2

[
1 0
0 1

]
, (5.36)

so even the reduced states are the same. Now if we calculate Γ12 = ρ12 − ρ1 ⊗ ρ2 for both cases,
we get

ΓBell =
1

4


1 0 0 2
0 −1 0 0
0 0 −1 0
2 0 0 1

 , ΓBell′ =
1

4


0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0

 . (5.37)

Now we can identify what combination of Pauli products are these ΓBell, ΓBell′ matrices. This
way the Pauli forms of the matrices are

ΓBell =
1

4
(σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3), ΓBell′ =

1

4
(σ1 ⊗ σ3 + σ2 ⊗ σ2 + σ3 ⊗ σ1). (5.38)

These are nonzero, so the Bell states are correlated. On the other hand, the covariances for spin
measurements Aσ, Bσ are

CovρBell(Aσ,Bσ) = A1B1−A2B2+A3B3, CovρBell(Aσ,Bσ) = A1B3+A2B2+A3B1, (5.39)

which can be zero for carefully chosen measurement directions.
As smaller systems can be embedded into larger ones, we can conclude that a result analogue

to (5.3) cannot hold in the quantum systems, that is, for nontrivial observables A ∈ A1, B ∈ A2
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for d1, d2 ≥ 2,
Covρ12(A,B) = 0 ̸=⇒

(⇐=)

ρ12 ∈ Dunc. (5.40)

6. Summary, remarks and open questions

We have reviewed the tools that are used in classical and quantum probability theory to
describe discrete finite systems and the useful and expressive measures for quantifying different
kinds of correlations. By the use of these tools we have examined the properties of the covariance
of observables and the correlation of the states in both the classical and the quantum cases. A
state is uncorrelated (product), by definition, if covariance vanishes for all pairs of observables.
(In the classical probability theory this is also called independence.) The point is that it might
happen that we may have zero covariance for a specific pair of observables, while the state is not
uncorrelated. Or we may have a low value of covariance for a specific pair of observables, while
the state is highly correlated. (See also the inequalities (4.45), (4.53).) In this case that pair
of observables is not good enough to detect the correlation. We obtained the result that such
situation cannot occur in the classical two-bit system, it is enough for the covariance to vanish
on a fixed pair of nontrivial observables and even this implies that the state is uncorrelated (see
equation (5.3)). This, however, holds only in the two-bit case. In any larger classical systems (see
equation (5.18)) and in any quantum systems (see equation (5.40)) there are pairs of observables
of vanishing covariance in states which are correlated. We have shown this by constructing
explicit examples. The result on bit/qubit systems is just another difference between classical
and quantum correlations: two-bit systems are too small, but even two-qubit systems are large
enough for the vanishing of the covariance not to be sufficient for the productness.

There are many interesting directions to proceed in this research. For example, we plan to
quantify the strength of these phenomena, and study its relation to the entanglement in the
quantum state, at least in the two-qubit case.
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