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Abstract

Due to the Nobel Prize in physics in 2016 the Haldane phase has be-
came focused in the field of topological phases and strongly correlated sys-
tems. The simplest model showing the properties of this special phase is
the widely studied bilinear-biquadratic model in a given range of the phase
space. At a special point this model, known as AKLT model (after Affleck,
Kennedy, Lieb and Tasaki), is integrable and its ground state gives the sim-
plest structure among matrix product states (MPS). Analysing these kind of
quantum systems the most powerful method is the density matrix renormal-
ization group (DMRG) algorithm, which inherently represents the structure
of MPS. Pair correlation and entanglement of spins are fundamental notions
to study in strongly correlated systems, however, multipartite correlations
can offer a much more essential and evident framework.

In my thesis the bilinear-biquadratic and the J1–J2 Heisenberg model are
investigated with the methods of multipartite correlations and entanglement
using analytical techniques and DMRG algorithms. The exponents for mul-
tipartite correlation are determined in the different intervals of phase space
(e.g. critical-, dimerised-, Haldane phase).
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1 Introduction
The first intuitive model by which the transport phenomena in metals can be

described was the naive but successful Drude model. Due to the development
of quantum mechanics it became obvious that the classical idea, which considers
the ions as fixed obstacles and the valence electrons as bouncing balls, could not
be supported further. Sommerfeld was the one who described metals as ideal
gases of electrons obeying Fermi–Dirac statistics. His model explains the specific
heat and susceptibility of some common metals of simple structure. However, it
turned out that the theory of magnetic systems and superconductivity needs to
consider the interaction between electrons for the proper description. Moreover,
beyond the time-honoured methods, e.g. mean field and perturbation theory, new
mathematical and numerical frameworks have recently been developed for the
treatment of strongly correlated systems [1]. Also, in quantum systems a special
type of correlation occurs, which is called entanglement [2, 3].

The important goals of modern solid-state physics are to investigate the be-
haviour of spin and electron systems and to characterise the interactions in them;
and also to improve models in order to fit the experimental results. By the tuning
of the control parameters of the models novel phenomena can also be predicted,
which have not been observed yet.

1.1 Spin models

The magnetic properties of solids can be described in the simplest way by the
Heisenberg model. In this model atoms are represented as spins fixed on lattice
sites. The internal structure of them is not taken into consideration, only the
exchange interaction between them. The Hamilton operator is

H = J
∑
〈i,j〉

SiSj (1)

if the coupling coefficient J is constant, and only the interaction between the
nearest neighbours 〈i, j〉 contribute to the energy. The spin operator acting on the
i-th site is Si = (Sxi , S

y
i , S

z
i ), which obeys the commutation relation

[Sαi , S
β
j ] = δij

∑
γ

iεαβγSγj (2)

of the Lie algebra su(2).
The sign of J determines whether the system is ferromagnetic (J < 0) or

antiferromagnetic (J > 0). In the ferromagnetic ground state the spins are aligned,
they point to the same direction. According to Goldstone’s theorem, the breaking

2



J1

J2

J2

J1

J1

J2

J2

J1

J1

J2

J2

J1

J2

J2

J1

J2

J2

Figure 1: The illustration of couplings between lattice sites in the J1–J2 Heisenberg
model.

of the rotational symmetry results in a dispersion relation that starts from k = 0
without gap, e.g. for cubic lattice it is quadratic. In an antiferromagnetic material
neighbouring spins tend to have opposite direction. In case of Néel-type order the
spin structure is built up by two interlacing sublattices the net magnetization of
which sum up to zero. The excitations start also at k = 0 without gap, however,
the dispersion relation is linear.

Some well-known materials, e.g. graphite and quartz, exhibit huge anisotropy
with respect to certain transport phenomena. Important novel results were the ob-
servation and construction of magnetic materials in which the exchange interaction
is restricted to one direction. For instance, CsNiCl3 behaves as an antiferromag-
netic spin-one chain in which the spins are realized by the electron structure 3d8

of nickel ions Ni2+ [4, 5]. The quantum fluctuations can enlarge if the system is
restricted to lower dimensions. In the one-dimensional isotropic Heisenberg model
there is no ferromagnetic order except at zero temperature; in case of antiferro-
magnetic coupling the Néel order in unstable even though the temperature is zero,
and the system exhibits the so-called spin liquid state.

The ground sate of spin-half Heisenberg model in one dimension is exactly
solvable by the Bethe ansatz, the excited states are obtained by spin flips. In the
general Hamilton operator of S > 1

2
isotropic systems, the besides the bilinear

term, higher order terms have to be included that are invariant under SU(2) sym-
metry. Models of these kinds are solvable analytically only for special choices of
parameters. Consider a one-dimensional isotropic half-integer spin system which
is invariant under translation by lattice constant. According to the Lieb–Schultz–
Mattis theorem [6], the energy spectrum is gapless with non-degenerate ground
state, or gapped and has degenerate ground state due to the breaking of the
translational symmetry. Such degenerate ground state can be obtained if in the
Heisenberg chain the next nearest neighbour interaction is also taken into account
with a different coefficient J2. Then the Hamilton operator of this model is

H = J1

∑
i

SiSi+1 + J2

∑
i

SiSi+2, (3)

which is illustrated in figure 1. Frustration can occur in this system if the anti-
ferromagnetic couplings are in the same order. One can give the exact solution of
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Figure 2: The schematic diagram of the phase space and the energy gap in term of θ
for the bilinear-biquadratic model.

this model for spin-half chain at J2 = 1
2
J1 > 0, which is called Majumdar–Ghosh

model. In this case the Hamilton operator (3) is the sum of projectors which maps
onto the spin-3

2
subspace of three neighbouring spins [1], that is, the ground state is

the tensor product of singlet states, which leads to the twofold degeneracy if open
boundary conditions are assumed. An excited state can be obtained by breaking
up a singlet bond, which process requires a given energy, therefore there is a gap in
the dispersion relation. These excitations, called spinons, can move freely through
the chain because the recombination of singlet bonds needs zero energy [7, 8].

The properties of half-integer spin systems can be explained through the spin-
half Heisenberg model: the models are critical, excitations are just above the
ground state. Haldane pointed out that the integer spin systems exhibit funda-
mentally different behaviour [9], which was one of his results honoured by the
Nobel Prize in 2016. In the so-called Haldane phase there is a gap in the dis-
persion relation above the antiferromagnetic ground state, that is, the model is
not critical and the correlation functions decay exponentially. This phase can be
investigated by the widely studied bilinear-biquadratic model, which is the general
model of spin-1 chains including nearest neighbour interaction:

H = cos θ
∑
i

SiSi+1 + sin θ
∑
i

(SiSi+1)2. (4)

The interaction can be tuned by the parameter θ, leading to a diverse phase
diagram, seen in figure 2. The different phases are discussed in section 5.2.

1.2 Numerical methods

The aforementioned models, as usual in physics, are solvable exactly only in
restricted regions of the phase space of the parameters. Analytical approxima-
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tions can be obtained, however, for example, perturbation theory cannot provide
a general treatment for strongly correlated systems.

In the recent decades many numerical methods have been improved which are
specified on low-dimensional systems. The straightforward method is the exact di-
agonalization of the Hamilton operator, in which the cost of the calculation scales
exponentially with the number of sites. Despite applying optimized iterative al-
gorithms, only an order of ten sites can be handled, which is insufficient for the
description of the system. Therefore finite-size scaling has to be used to extrap-
olate to the thermodynamic limit. Accordingly, we need a method which finds
the appropriate representation of a system on a restricted Hilbert space. Wilson
developed the numerical renormalization group (NRG) method by which impu-
rity problems were able to be handled. He was awarded the Nobel Prize in 1975
for his results in the solution of the Kondo problem. However, the due to the
bad scaling of numerical errors the application of the NRG algorithm is limited.
The major breakthrough was the development of density matrix renormalization
group (DMRG) method by White in the 90s [10, 11]. Nowadays the most efficient
method for the treatment of low-dimensional strongly correlated systems is the
DMRG algorithm, by which chains of hundreds of sites can be modelled. This
algorithm inherently provides the matrix product state (MPS) representation of
the wave function, which is discussed in the further sections. The dimensions of
matrices depend on the strength of the entanglement in the system.

1.3 Structure of the thesis

In this thesis, first, I recall the theoretical background of multipartite correla-
tion and entanglement, which will serve as a method for the investigation of spin
chains. Then, I discuss the DMRG and MPS based methods I implemented and
used during my research presented here. After this I apply the theory of mul-
tipartite correlation for the investigation of spin chains for the first time in the
literature. I calculate the decay of the different two-, three- and four-site corre-
lations for several parameter values of the models (3) and (4) by the use of the
implementations developed by myself. Finally, I summarize the further plans and
opportunities.

2 Multipartite correlations

2.1 Elementary subsystems

Quantum mechanics gives a statistical description of a system. The expectation
value of physical quantities can be calculated by the state vector which represents
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our knowledge of the system [12, 13, 14].
A system is pure if there is a non-degenerate Neumann measurement that gives

the same result when it is repeated on the different copies of that system. Systems
having this property are represented by a pure state π = |ψ〉〈ψ|, where |ψ〉 is a
normalised element of Hilbert space H (〈ψ|ψ〉 = 1), which is supposed to be final
in this thesis. The set of pure states is

P(H) :=
{
π ∈ LinSAH

∣∣∣ π2 = π, Tr π = 1
}
. (5)

The expectation value of a physical quantity, represented by operator O, can be
evaluated on a pure system as 〈ψ|O|ψ〉 = Tr(πO).

If a system can not be described by a pure state, than it is represented by
mixed state, which is the convex combination (statistical mixture) of pure states.
In general, the state of a system is in the set

D(H) := ConvP(H) ≡
{
% = %†

∣∣∣ πi ∈ P(H), pi ≥ 0, ‖p‖1 = 1 : % =
∑
i

piπi

}
.

(6)

Consequently, the mixed states are such positive semidefinite linear operators that
are also self-adjoint and normalised (Tr % = 1); the expectation value of O is

〈O〉 = Tr(%O) =
∑
i

pi Tr(πiO) =
∑
i

pi〈ψi|O|ψi〉. (7)

To quantify the mixedness of a state % ∈ D, entropic quantities are introduced.
In classical information theory the well-known Shannon entropy measures the in-
formation content of a system. The corresponding quantity in quantum mechanics
is the so-called von Neumann entropy,

S(%) := −Tr(% ln %), (8)

having beneficent properties: non-negative, continuous, additive for uncorrelated
states, faithful (zero iff the state is pure), non-decreasing in bistochastic quantum
channels [15, 16].

The (measure of) distinguishability of two states (%, σ ∈ D) is the Umegaki
relative entropy,

D(%||σ) = Tr[%(ln %− lnσ)], (9)

which is also non-negative, zero iff % = σ, non-decreasing in bistochastic quantum
channels [17, 18].
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2.2 Bipartite systems

One of the most characteristic manifestations of the non-classical nature of
quantum systems is the non-classical behaviour of the correlations among the sub-
systems. Let us introduce the corresponding notions in the simplest, bipartite case
first. The state vector representing the composition of two elementary subsystems
is the normalized element of the tensor product Hilbert spaceH12 = H1⊗H2. Sim-
ilarly, the set of pure states P1 := P(H1), P2 := P(H2), P12 := P(H12) and the set
of mixed states D1, D2, D12 are understood. The reduced state of state % ∈ D12

can be obtained by the partial trace operation: %1 = Tr2 %, where Tr2 : D12 → D1

is linear and for elementary tensor A ⊗ B the operation is Tr2(A ⊗ B) = ATrB
[12, 14].

The correlation of two random variable is 〈O1O2〉 − 〈O1〉〈O2〉. (In mathemat-
ical terminology this is called covariance, and the normalized covariance is the
correlation.) In quantum mechanics the correlation of two observables measured
on different subsystems is

C(%;O1, O2) := 〈O1 ⊗O2〉 − 〈O1〉〈O2〉 = Tr
[
(%− %1 ⊗ %2)O1 ⊗O2

]
. (10)

A bipartite system is uncorrelated if this expression vanishes for all pairs of ob-
servables, leading to % = %1 ⊗ %2. Therefore the set of uncorrelated states is

Dunc :=
{
% ∈ D12

∣∣∣ ∃%1 ∈ D1, ∃%2 ∈ D2 : % = %1 ⊗ %2

}
. (11)

All classical pure states are uncorrelated. In quantum systems, however,
Punc := Dunc∩P12 6= P12, that is, pure states can be correlated, which is called en-
tanglement (for pure state). The uncorrelated pure states are also named separable
pure states,

Psep ≡ Punc =
{
π ∈ P12

∣∣∣ ∃π1 ∈ P1,∃π2 ∈ P2 : π = π1 ⊗ π2

}
; (12)

the others are entangled, Psep = P12 \ Psep.
In general (not only for pure states) the separable states are the mixture of

separable pure ones, or equivalently, the the mixture of uncorrelated states [19]:

Dsep := ConvPsep = ConvDunc. (13)

The definition is motivated by the transformation called “ local operation and clas-
sical communication” (LOCC ), which can create such kind of states. The classical
communication corresponds to classical interaction, while quantum correlation is
generated by quantum interaction, that is, separable states do not have quantum
correlations from this point of view. A state is entangled if it is not separable, so
the set of entangled states are Dsep = D12 \ Dsep.
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To sum up, the structure of bipartite state spaces are the following.

P12 ⊆ D12 ≡ ConvP12

Punc ≡ Psep ⊆ Dunc ⊆ Dsep ≡ ConvPsep
(14)

An arbitrary state vector can be expanded on the orthonormal bases {|ϕ1,γ1〉}
and {|ϕ2,γ2〉}:

|ψ〉 =

d1∑
γ1=1

d2∑
γ2=1

ψγ1γ2|ϕ1,γ1〉 ⊗ |ϕ2,γ2〉. (15)

One can apply the singular value decomposition on the coefficient matrix, that is
ψ = USV †, where U ∈ U(d1) and V ∈ U(d2) are unitary matrices, S is diagonal
having non-negative sα entries called the singular values of ψ. By this the state
vector can be expressed as

|ψ〉 =

min(d1,d2)∑
α=1

sα|ϕ′1,α〉 ⊗ |ϕ′2,α〉, (16)

which is commonly known as Schmidt decomposition. The eigenvalues of the re-
duced state are s2

α, the eigenstates are {|ϕ′1,α〉} and {|ϕ′2,α〉}. So that it is easy to
decide whether a pure state is separable or not:

π ∈ Psep ⇐⇒ Tr2 π ∈ P1 ⇐⇒ Tr1 π ∈ P2. (17)

For example, let |ψ1〉, |ψ′1〉 ∈ H1 and |ψ2〉, |ψ′2〉 ∈ H2 be two orthonormal pairs
of state vectors.

i) The state vector |ψ〉 = |ψ1〉⊗ |ψ2〉 ∈ H12 is an elementary tensor, so the state
π = |ψ〉〈ψ| is separable, that is,

Tr2 π = |ψ1〉〈ψ1| ∈ P1

Tr1 π = |ψ2〉〈ψ2| ∈ P2
π = π1 ⊗ π2 ∈ Psep. (18a)

ii) On the other hand, if |ψ〉 = 1√
2
(|ψ1〉⊗|ψ2〉+ |ψ′1〉⊗|ψ′2〉) ∈ H12, the pure state

π = |ψ〉〈ψ| is entangled because

Tr2 π = 1
2

(
|ψ1〉〈ψ1|+ |ψ′1〉〈ψ′1|

)
/∈ P1

Tr1 π = 1
2

(
|ψ2〉〈ψ2|+ |ψ′2〉〈ψ′2|

)
/∈ P2

π 6= (Tr2 π)⊗ (Tr1 π) (18b)

8



2.3 Bipartite measures

After introducing the notions of uncorrelated (11) and separable states (13),
our aim is to quantify the correlation and the entanglement of the states.

The correlation of two physical quantity was defined previously (10), however,
we want to give how the state % itself is correlated. Let the correlation of the state
be the distinguishability from the uncorrelated ones using the relative entropy (9):

min
σ∈Dunc

D(%||σ) = S(%1) + S(%2)− S(%) = I(%). (19)

The minimum of the relative entropy is attained when σ = %1 ⊗ %2 [20], leading
to that the correlation of the state can be expressed as the sum of the entropies.
This quantity is known as the (quantum) mutual information [14].

Since the entanglement of a pure state is the correlation, then let the measure
of the entanglement be the measure of the correlation of the state,

E|P(π) := I|P(π) = 2S(π1) = 2S(π2), (20)

which is the double of the entanglement entropy [21]. Due to the Schmidt decom-
position (16) the (non-zero part of the) spectra of the marginals of pure states are
equal. For mixed states the average entanglement of the optimal pure decomposi-
tion is a natural definition for the role of the entanglement measure [22].

E(%) = min
{∑

i

piI|P(πi)
∣∣∣ πi ∈ P12, pi ≥ 0, ‖p‖1 = 1 :

∑
i

piπi = %
}

(21)

The minimization, which is a hard numerical problem, takes place over the en-
tire set of the possible decompositions, and this approach is called convex roof
extension. This measure is appropriate because it is non-increasing for LOCC
transformations so it expresses the quantum nature of the entanglement, being a
correlation cannot be increased by classical interaction.

The measures are faithful, that is, I and E are zero iff the state is uncorrelated
and separable, respectively. The inequality E ≤ I reveals that some part of the
correlation of a system is the quantum entanglement.

2.4 Structure of multipartite correlations

In the following sections we discuss the extension of the bipartite notions to
multipartite case, resulting in a four-level lattice structure [23, 24].

A partially ordered set, or poset, is a set P endowed with a partial order �
(reflexive, antisymmetric, transitive) relation. If greatest lower bound (infimum)
and least upper bound (supremum) exist uniquely for all pairs of elements in the
poset, then the structure is called a lattice [25, 26]. For example, in the set of
integers the divisibility is a possible partial order, the infimum is the greatest
common divisor, the supremum is the lowest common multiple.
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{1, 2, 3}

{2, 3} {1, 3} {1, 2}

{1} {2} {3}

∅

Figure 3: The lattice of power set P0({1, 2, 3}).

2.4.1 Level 0: subsystems

For n-partite system let the labels of the elementary subsystems be denoted
by i ∈ L = {1, 2, . . . , n} and the associated Hilbert spaces are Hi. A subsystem
(not elementary in general) is labelled by X ⊆ L, so we have the Hilbert space
HX =

⊗
i∈X Hi and states DX := D(HX). Every label X is an element of the

power set of L, given as

P0(L) := 2L, (22)

which is a basic example for a lattice structure with respect to set inclusion, in-
tersection and union.

Let us write out the tripartite case. The size of the power set of L = {1, 2, 3}
is eight. Its lattice structure is shown in Figure 3, where the encircled black dots
illustrate the elements of the power set, the arrow symbolizes the partial order
(inclusion).

2.4.2 Level I: partitions

The only possible way of partitioning of a bipartite system, and the correspond-
ing notions of correlation and entanglement, were shown in section 2.2. Now, our
aim is to extend these notions for all the different partitionings of an arbitrary,
n-partite system.

A partition of the system is a set ξ = {X1, X2, . . . , X|ξ|} (with the shorthand
notation ξ = X1|X2| . . . |X|ξ|) having parts X ⊆ L that are non-empty (i), disjoint
(ii) and together amount to the whole system L (iii). The set of all possible
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partitions of the system is

PI(L) :=
{
ξ = X1|X2| . . . |X|ξ|

∣∣∣ ∀X ∈ P0 \ {∅}, (i)

∀X 6= X ′ ∈ ξ : X ∩X ′ = ∅, (ii)⋃
X∈ξ

X = L (iii)
}
.

(23)

For two partitions ξ, υ ∈ PI, one can say υ is the refinement of ξ (or “υ is finer
than ξ” or “ξ is coarser than υ” ), if ξ can be obtained by joining some parts of υ.
That is, the partial order

υ � ξ
def⇐⇒ ∀Y ∈ υ ∃X ∈ ξ : Y ⊆ X (24)

is introduced. It can be shown that the set of partitions is a lattice w.r.t. the
refinement.

In accordance with the definition (11), the set of ξ-uncorrelated states is

Dξ-unc :=
{
% ∈ D

∣∣∣ ∀X ∈ ξ, ∃%X ∈ DX : % =
⊗
X∈ξ

%X

}
, (25)

resulting arbitrary OX observables of corresponding subsystems X are uncorre-
lated: 〈

⊗
X∈ξ OX〉 =

∏
X∈ξ〈OX〉.

As the generalization of (10), introduce the correlation of observables Oi (i ∈ L)
defined in elementary subsystems with respect to ξ partition:

Cξ(%;O1, . . . , On) =
〈⊗

i∈L

Oi

〉
−
∏
X∈ξ

〈⊗
i∈X

Oi

〉
= Tr

[(
%−

⊗
X∈ξ

%X
)⊗
i∈L

Oi

]
. (26)

Following definition (13), the ξ-separable states are the mixtures of ξ-uncorre-
lated ones [27, 28, 29, 30, 31, 32],

Dξ-sep := ConvDξ-unc, (27)

exhibiting the lack of quantum correlation among the parts X ∈ ξ. Corollary, the
set Dξ-sep is closed under LOCC transformation.

If a state is uncorrelated w.r.t. a partition, then it is uncorrelated w.r.t. every
coarser partition, that is,

υ � ξ ⇐⇒ Dυ-unc ⊆ Dξ-unc. (28a)

Because of (27), the similar expression follows for ξ-separable states [23, 24]:

υ � ξ ⇐⇒ Dυ-sep ⊆ Dξ-sep. (28b)

11



Figure 4: The lattice structure of the partitions of a tripartite system PI({1, 2, 3}).

Consequently, the sets of state-sets, Dξ-unc and Dξ-sep corresponding to different
partitions ξ, form lattices that are isomorphic to the lattice of partitions PI(L).

Let us write out the tripartite case. The number of elements of PI set can be
given by the Bell numbers having the recursion Bn+1 =

∑n
k=0

(
n
k

)
Bk (B0 = B1 =

1). There are five possible combinations of parts X ∈ P0({1, 2, 3}) to form the full
system:

PI({1, 2, 3}) =
{

1|2|3, 12|3, 13|2, 23|1, 123
}
. (29)

Endowing this set with the refinement we have: 1|2|3 � ab|c � 123 (a, b, c ∈
{1, 2, 3}). These partitions are shown in figure 4.

2.4.3 Level II: sets of partitions

Consider the previous n = 3 example. Let us have a state % /∈ Dab|c-sep, meaning
it is neither the convex combination of 12|3- nor of 13|2- nor of 23|1-uncorrelated
states. However, a crucial observation in the theory of multipartite entanglement
is that there are such % /∈ Dab|c-sep states that can be mixed with the simultaneous
use of 12|3-, 13|2-, 13|2-uncorrelated states, that is, % ∈ Conv

(
D12|3-unc∪D13|2-unc∪

D23|1-unc
)
. Such states should not be considered as fully tripartite-entangled ones

[29, 30, 31, 32, 23], since there is no need for tripartite-entangled states to mix
them, so further notions of correlation have to be introduced; this leads to the
Level II structure.

Let ξ = {ξ1, ξ2, . . . , ξ|ξ|} be a non-empty subset of PI that includes every par-
titions that are finer then its maximal element(s). The collection of these subsets
(called down-sets or ideals) is

PII(L) := O↓(PI(L)) \ {∅} ≡
{
ξ ∈ 2PI(L) \ {∅}

∣∣∣ ∀ξ ∈ ξ : υ � ξ ⇒ υ ∈ ξ
}
.

(30)

In the figure of PI a down-set is closed under following the arrows backwards.
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A partial order � in the set PII is the set-inclusion (⊆), that is, ξ � υ ⇔ ξ ⊆ υ.
Together with the intersection (∩) and union (∪) one can prove that PII is a lattice.

A state % is ξ-uncorrelated if it is uncorrelated for at least one ξ ∈ ξ partition
(% ∈ Dξ-unc), so we have

Dξ-unc :=
⋃
ξ∈ξ

Dξ-unc
(28a)
=

⋃
ξ∈max ξ

Dξ-unc. (31)

We introduce the correlation of observables Oi (i ∈ L) defined in elementary
subsystems with respect to ξ down-set:

Cξ(%;O1, . . . , On) = min
ξ∈ξ

Cξ(%;O1, . . . , On). (32)

Following definition (27) a state is ξ-separable if it is the mixture of ξ-uncor-
related states, so it is the element of

Dξ-sep := ConvDξ-unc, (33)

which is closed under LOCC transformation as is was observed for ξ-separable in
(27) [23].

Similarly to (28a) and (28b), the following isomorphisms can be derived [23, 24]:

υ � ξ ⇐⇒ Dυ-unc ⊆ Dξ-unc, (34a)
υ � ξ ⇐⇒ Dυ-sep ⊆ Dξ-sep. (34b)

The number of possible down-sets rapidly increases with the number of subsystems
but there are some down-sets, and corresponding state sets, that have expressive
meaning. A partition is k-partitionable if the number of its parts is at least k. The
set of these partitions is

µk :=
{
µ ∈ PI

∣∣ |µ| ≥ k
}
∈ PII, (35)

and the corresponding states are the k-partitionably uncorrelated states
Dk-part, unc := Dµk-unc and the k-partitionably separable states Dk-part, sep := Dµk-sep.

The k′-producibility, which is a dual property in a certain sense, sets a maxi-
mum size to every parts, that is

νk′ :=
{
ν ∈ PI

∣∣ ∀N ∈ ν : |N | ≤ k′
}
∈ PII, (36)

and the corresponding states are k′-producibly uncorrelated ones Dk′-prod, unc :=
Dνk′ -unc and k′-producibly separable ones Dk′-prod, sep := Dνk′ -sep.
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Figure 5: The lattice diagram corresponding to the PII set.

Let us write out the tripartite case. Since the maximal elements of a non-
empty down-set (max ξ) uniquely determines the down-set itself, the ξ = ↓max ξ
shorthand notation can be used:

PII =
{
↓{123} = PI,
↓{12|3, 13|2, 23|1},
↓{12|3, 13|2}, ↓{12|3, 23|1}, ↓{13|2, 23|1},
↓{12|3}, ↓{23|1}, ↓{23|1},
↓{1|2|3} = {1|2|3}

}
.

(37)

The illustration in figure 5 shows the maximal elements of the PII labels.
The relation of partitionability and producibility is demonstrated with the

lining of the PI lattice in figure 6. The two notions coincide for bi- and tripartite
cases.

2.4.4 Level III: entanglement classes

For the completeness of this section the Level III type lattice structure ought to
be mentioned, although being not studied in this thesis. The introduced notions
of entanglement result in containing sets (34b), that is, the sufficient set of ξ-
uncorrelated states is given by which the a state can be mixed. Moreover, all
the possible intersections of ξ-separable states can be constructed (entanglement
classes) that determine the necessary and sufficient set of ξ-uncorrelated states
for the mixing.

One can derive that the labelling of the entanglement classes are the up-sets
(or filters) of PII [23]. This generates the coarsening of the LOCC classification: if
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Figure 6: The illustration of partitionability and producibility on the diagram of PI

lattice. The k-partitionable partitions are below the k-th lilac line, the k′-producible
ones are below the k′-th orange line. For n > 3 the two notions are different.
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there is an LOCC transformation bringing a state from a class to an other, than
these classes are in relation w.r.t. to that of this lattice [23].

2.5 Multipartite measures

2.5.1 Level 0: subsystems

With the aid of the relative entropy, defined in (9), correlation and entan-
glement measures can be formulated in the same way as in the bipartite case.
This leads to measures given in the terms of entropies (8) of states of subsystems
X ∈ P0. This is summarized in the forthcoming sections.

2.5.2 Level I: partitions

The introduction of correlation and entanglement of a system w.r.t. a partition
ξ = X1|X2| . . . |X|ξ| follows easily from the basic ideas discussed in section 2.3.
The correlation of a state % ∈ D w.r.t. a partition ξ, or ξ-correlation (ξ-mutual
information) for short, is the measure of distinguishability from the ξ-uncorrelated
states [20, 23]:

Iξ(%) := min
σ∈Dξ-unc

D(%||σ) =
∑
X∈ξ

S(%X)− S(%). (38)

(The second equality is that the minimal value is attained when σ =
⊗

X∈ξ %X
[20].)

The ξ-entanglement is defined as the convex roof extension of the pure state
restriction of the ξ-correlation [23],

Eξ(%) = min
{∑

i

piIξ|P(πi)
∣∣∣ πi ∈ PL, pi ≥ 0, ‖p‖1 = 1 :

∑
i

piπi = %
}
, (39)

which is also non-increasing w.r.t. LOCC transformations. These quantities are
faithful, that is, Iξ and Eξ are zero iff the state is ξ-uncorrelated and ξ-separable,
respectively. Furthermore, Eξ ≤ Iξ holds.

One can prove the multipartitie monotonicity of ξ-correlation and ξ-entangle-
ment [23, 24],

υ � ξ ⇐⇒ Iυ ≥ Iξ, (40a)
υ � ξ ⇐⇒ Eυ ≥ Eξ, (40b)

that is, for finer partitions the states are more correlated and entangled. Hence,
the set of functions describing correlation and entanglement has the same structure
as that of PI lattice.
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2.5.3 Level II: sets of partitions

To give the amount of correlation and entanglement w.r.t. up-sets
ξ = {ξ1, ξ2, . . . , ξ|ξ|}, we extend the quantities introduced in section 2.5.2. So,
the ξ-correlation (ξ-mutual information) of a state % ∈ D is the measure of dis-
tinguishability from the ξ-uncorrelated states [23, 24]:

Iξ(%) = min
σ∈Dξ-unc

D(%||σ) = min
ξ∈ξ

min
σ∈Dξ-unc

D(%||σ) = min
ξ∈ξ

∑
X∈ξ

S(%X)− S(%). (41)

The second equality means that the minimization over the union of sets (31) is
equivalent to minimizing over each set and having the lowest value.

The ξ-entanglement is the convex roof extension of the pure state restriction
of the ξ-correlation [23]:

Eξ(%) = min
{∑

i

piIξ|P(πi)
∣∣∣ πi ∈ PL, pi ≥ 0, ‖p‖1 = 1 :

∑
i

piπi = %
}
, (42)

that is also non-increasing w.r.t. LOCC transformations.
These quantities are faithful again, that is, Iξ and Eξ is zero if and only if the

state is ξ-uncorrelated and ξ-separable, respectively. The inequality Eξ ≤ Iξ also
holds.

One can prove the multipartitie monotonicity of ξ-correlation and ξ-entangle-
ment [23, 24],

υ � ξ ⇐⇒ Iυ ≥ Iξ, (43a)
υ � ξ ⇐⇒ Eυ ≥ Eξ. (43b)

For the particular elements µk, νk′ of set PII the measures are derived following
definitions (35) and (36). The k-partitionability correlation and the k′-producibility
correlation are [24]

Ik-part(%) := Iµk (%) = min
|µ|≥k

Iµ(%), (44a)

Ik-prod(%) := Iνk′ (%) = min
∀N∈ν: |N |≤k′

Iν(%); (44b)

and the k-partitionability entanglement and the k′-producibility entanglement are

Ek-part(%) := Eµk(%), (45a)
Ek′-prod(%) := Eνk′

(%). (45b)

The multipartie monotonicty can be expressed as inequalities of k, k′ parameters:

µk � µl ⇐⇒ k ≥ l ⇐⇒ Ik-part ≥ Il-part, (46a)
νk′ � νl′ ⇐⇒ k′ ≤ l′ ⇐⇒ Ik′-prod ≥ Il′-prod, (46b)
µk � µl ⇐⇒ k ≥ l ⇐⇒ Ek-part ≥ El-part, (46c)
µk′ � µl′ ⇐⇒ k′ ≤ l′ ⇐⇒ Ek′-prod ≥ El′-prod. (46d)
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3 Density matrix renormalization group (DMRG)
The previously introduced new framework has already been applied to study

the electronic structure of molecules [24]. In this thesis it is being used for the
examination of spin chains, which are numerically handled by the powerful DMRG
method.

The solution of the Kondo problem brought the Nobel Prize for Wilson, al-
though the desired universality of NRG did not come to fruition. In 1992 the
NRG method was rethought by White and the fundamentals of DMRG algorithm
was laid down. One of the basic ideas was to add environment to the spin chain
being renormalized, and the other one was to select the basis states via truncation
by the use of Schmidt decomposition [10, 11].

The state vector representing a chain of length N is expanded on the basis

a b{ℓ+1}{ℓ+2}

A B

|ψa,γa〉 ⊗ |ψ{`+1},γ{`+1}〉 ⊗ |ψ{`+2},γ{`+2}〉 ⊗ |ψb,γb〉, (47)

where a = {1, . . . , `} denotes the left block consisting of ` lattice point, ψ{`+1}
and ψ{`+2} are two one-point states, b = {` + 3, . . . , N} is the right block. This
scheme is the so-called superblock representation, symbolized by a••b, which is also
illustrated in figure 7. By the diagonalization of the full-chain Hamilton operator
one can obtain the eigenstate to be examined, which is usually the ground state.
This is called the target state of the DMRG and represented in the basis (47) as

|ψ〉 =
∑

γa,γ{`+1},γ{`+2},γb

cγa,γ{`+1},γ{`+2},γb|ψa,γa〉 ⊗ |ψ{`+1},γ{`+1}〉 ⊗ |ψ{`+2},γ{`+2}〉 ⊗ |ψb,γb〉

≡
∑
γA,γB

cγA,γB |ϕA,γA〉 ⊗ |ϕB,γB〉, (48)

where the states of subsystems a• and •b are |ϕA,γA〉 and |ϕB,γB〉, respectively.
Within one renormalization step the partial trace operation is applied to get the
reduced density matrix of subsystem A, which is

%A = TrB |ψ〉〈ψ| =
∑
γA,γ

′
A

(∑
γB

cγA,γBc
∗
γ′A,γB

)
|ϕA,γA〉〈ϕA,γ′A |. (49)

Let the number of states in the block a be D and the degrees of freedom of one site
be d. The number of states of the chain scales exponentially with the chain length,
therefore the aim of the truncation is to keep such D′ states that are presented
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infinite lattice DMRG

N = 4

N = 6

N = 8

finite lattice DMRG (“sweeping”)

|a| = 4 |b| = 2

|a| = 5 |b| = 1

|a| = 4 |b| = 2

Figure 7: The infinite lattice algorithm builds up the chain. The finite lattice algorithm
reloads and iterates the stored block states and block operators until the representation
is converged enough.

with the highest weight in the subsystem A. That is, using the decomposition
(16), the eigenvectors with the largest ω1, . . . , ωD′ eigenvalues are arranged into
the transformation matrix OT , having size of (D′ × Dd), by which the operators
Oa′ acting on the new a′ = {1, . . . , `, `+ 1} block are generated:

Oa′ = OT (Oa ⊗O{`+1})O
†
T ≡ OT (OA)O†T , (50)

where the size of Oa and O{`+1} are (D×D) and (d× d), respectively. Because of
the incompleteness of the new basis,

D′∑
γa′=1

|ψa′,γa′ 〉〈ψa′,γa′ | 6= I , (51)

truncation error arises in a renormalization step, which can be quantified as

ε = 1−
D′∑

γa′=1

ωγa′ . (52)

The next step of the algorithm is started with the relabelling a′ → a.
To build up the chain four one-site states are obtained at the beginning. With

the symmetric expansion of the left and right blocks, the DMRG steps are re-
peated until the demanded chain length is reached. This is the so-called infinite
lattice DMRG algorithm, in which the data of blocks is stored in the machine in
each step. After constructing the chain of length N , the finite lattice DMRG algo-
rithm systematically resizes the blocks to iterate the states and lattice operators
(“sweeping”) as it is illustrated schematically in Figure 7.

A DMRG step can be considered as a singular value decomposition (SVD). In
each renormalization step one can reshape the transformation operator OT , which
is of size D′ ×Dd, to obtain d pieces of matrices A each is of size D′ ×D. If the
chain is represented by these matrices, this is called an MPS type representation of
the problem, which will be discussed in details in the following section. A chain of
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c

γ1 γ2
. . . γN

. . .A1 A2 AN

γ1 γ2 γN

Figure 8: Representation of the coefficient tensor c and the MPS matrices A.

length N without truncation would be represented by matrices A1, . . . ,AN of size
(1×d), (d×d2), . . . , (d

N
2
−1×dN2 ), (d

N
2 ×dN2 −1), . . . , (d×1). However, the necessity

of restriction of the Hilbert space to a submanifold accessible by MPS is obvious.
That is, the number of the retained states is limited via truncation so the matrices
A are of size, e.g. (1×d), (d×d2), (d2×d3), (d3×D), (D×D), . . . , (D×d3), . . . , (d×1)
in practical calculations.

From this point of view one can say that the DMRG algorithm does the opti-
mization of the MPS matrices, or in other words, DMRG is a variational method
that uses ansatz of form MPS [33, 34]. The relation between DMRG and MPS
are comprehensively detailed in reference [35], while in the next section only the
fundamentals are discussed which are related to this thesis.

4 Matrix product state (MPS)
An arbitrary state vector expanded on the tensor product basis is written as

|ψ〉 =
∑

γ1,γ2,...

cγ1,γ2,...|ϕ1,γ1〉 ⊗ |ϕ2,γ2〉 ⊗ . . . , (53)

where the indices γ1, γ2, . . . can attain d1, d2, . . . number of values (local degrees of
freedom). The entries of the coefficient tensor c ∈ Cd1×d2×... scales exponentially
with the chain of length N , thus the numerical treatment is infeasible even for
not too large systems. A possible solution is to factorize the coefficient tensor into
coefficient matrices as it is illustrated in figure 8. For this reason let us consider
the reshaping cγ1,γ2,... = C

[1]
(γ1),(γ2,γ3,...)

, and apply the singular value decomposition
(16) on matrix C [1] ∈ Cd1×(d2·d3·...) to get the form C = USV †.

C
[1]
(γ1),(γ2,γ3,...)

=
∑
α1

U
[1]
(γ1),α1

S[1]
α1,α1

(V [1]†)α1,(γ2,γ3,...) ≡
∑
α1

Aα1
1,γ1

C
[2]
(α1,γ2),(γ3,...)

(54a)

In the second equation we merge the singular values sα1 into V [1]† to get C [2].
Indices of physical relevance are the γ-s (e.g. projection of angular momentum or
the occupation number of molecular orbitals) so they are called physical indices,
while the α-s are the virtual indices appearing in the SVD. Accordingly, U [1] should
be represented as the collection of vectorsA1,γ1 . In the next step the decomposition
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is

C
[2]
(α1,γ2),(γ3,...)

=
∑
α2

U
[2]
(α1,γ2),α2

S[2]
α2,α2

(V [2]†)α2,(γ3,...) ≡
∑
α1

Aα1α2
2,γ2

C
[3]
(α2,γ3),(γ4,...)

, (54b)

where the matrices A2,γ2 correspond to the order-three tensor U [2]. Continuing
the decomposition until the end of the chain the MPS form of the state vector is

|ψ〉 =
∑

γ1,γ2,...,γN

A1,γ1A2,γ2 . . .AN,γN |ϕ1,γ1〉 ⊗ |ϕ2,γ2〉 ⊗ . . .⊗ |ϕN,γN 〉. (55)

By this one can obtain the expectation value of an observable O = O1⊗O2⊗ . . .⊗
ON ,

〈ψ|O|ψ〉 =

∑
γN ,
γ′N

ON,γ′N ,γN
A†N,γ′N

. . .(∑
γ2,
γ′2

O2,γ′2,γ2
A†2,γ′2

(∑
γ1,
γ′1

O1,γ′1,γ1
A†1,γ′1

A1,γ1

)
A2,γ2

)
. . .

AN,γN ,

(56)

where Oi is a linear operator of the Hilbert space assigned to the i-th site, and the
matrix elements of it are Oi,γ′i,γi

= 〈ϕi,γ′i |Oi|ϕi,γi〉. The density matrix of the pure
system is

|ψ〉〈ψ| =
∑

γ1,γ2,...,γN
γ′1,γ

′
2,...,γ

′
N

A1,γ1A2,γ2 . . .AN,γNA
†
N,γ′N

. . .A†2,γ′2
A†1,γ′1

×

×|ϕ1,γ1〉〈ϕ1,γ′1
| ⊗ |ϕ2,γ2〉〈ϕ2,γ′2

| ⊗ . . .⊗ |ϕN,γN 〉〈ϕN,γ′N | . (57)

The DMRG state, according to (47), is represented by a order-four tensor, and
the operators are matrices of size (Da×Da), (d{`+1}×d{`+1}), (d{`+2}×d{`+2}), (Db×
Db). Therefore, the DMRG framework is an operator-like approach because the
operators Oa (50) are renormalized during an iteration. While, in the MPS rep-
resentation the site operators are of size (dj × dj) but N pieces of D × D′ sized
matrices are needed to construct the state with configuration γ1, . . . , γN ; for this
reason this is a state-like approach. The graphical illustration of the two represen-
tations is in figure 9.

In case of spin models d is in order 1. To examine gapped models, in which
block entropy and D saturate, chains with thousands of sites can be obtained.
In critical models 20 − 50 thousand block states are need to be retained for the
appropriate description, which limits the achievable chain length.

In the literature algorithms based on MPS representation are known as post-
DMRG algorithms since DMRG provides the MPS from of the wave function. The
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γ{ℓ+1} γ{ℓ+2}

c∗

Oa ObO{ℓ+1} O{ℓ+2}
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. . .

Figure 9: Calculation of expectation value with DMRG and MPS wave function. The
contraction of two tensors are symbolized by joining the boxes with a line.

benefit of this framework manifests when expectation values of arbitrary operator
combinations between different MPS-s, provided by independent DMRG calcula-
tions, are calculated. Such algorithms are being developed and optimized during
my research work.

4.1 Valence bond solid

The importance of MPS formalism can be illustrated in a special, exactly solv-
able point of the bilinear-biquadratic model (4), named the AKLT point after
Affleck, Lieb, Kennedy and Tasaki [36]. The ground state is the so-called valence
bond solid (VBS) state, and the matrices A are not obtained by SVD (54) but
they can be calculated exactly for this particular problem.

One can prove the equivalence of the bilinear-biquadratic model (4) with the
choice θ = arctan 1

3
and a Hamilton operator which is the sum of projectors map-

ping onto the S = 2 subspace of two neighbouring spins [1]. The S = 1 state space
is built up by basis vectors |ϕi,± 1

2
〉 representing spin-halves (dimHi = 2). The an-

tiferromagnetic ground state is constructed such a way that certain neighbouring
spin-halves form singlet state, which can be interpreted as valence bonds:

. . .
S{1,2} = 1 S{3,4} = 1

singlet

end-spin

H = H1 ⊗ H2 ⊗H3 ⊗ H4 ⊗H5 ⊗ . . .

|Ψ̃〉 = |ϕ1〉 ⊗ |φ{2,3}〉 ⊗ |φ{4,5}〉 ⊗ . . .
(58)
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The singlet states in the basis 1
2
⊗ 1

2
are

|φ{i,i+1}〉 =
∑

αi,αi+1=− 1
2
, 1
2

φ
αiαi+1

{i,i+1} |ϕi,αi〉 ⊗ |ϕi+1,αi+1
〉 , i = 2, 4, 6, . . . ,

φ{i,i+1} =

[
0 1√

2

− 1√
2

0

]
. (59)

We need a map that gives the state vector of the chain expanded on the triplet
subspace

{
|ϕ{i−1,i},γ〉

}
γ=−1,0,1

with the restriction in the sum of the neighbouring
spins-ones, which is |S{i−1,i} + S{i+1,i+2}| < 2 [1]. This is obtained by retaining
only the triplet states of the spin-1

2
pairs in each bubble (seen in the figure of (58)),

which are

|ψ{i−1,i},γ〉 =
∑

αi−1,αi=− 1
2
, 1
2

ψ
αi−1αi
{i−1,i},γ|ϕi−1,αi−1

〉 ⊗ |ϕi,αi〉 , i = 2, 4, 6, . . . ,

ψ{i−1,i},−1 =

[
1 0
0 0

]
, ψ{i−1,i},0 =

[
0 1√

2
1√
2

0

]
, ψ{i−1,i},+1 =

[
0 0
0 1

]
. (60)

That is, applying the map

P{i−1,i},γ : Hi−1 ⊗Hi → K{i−1,i} (dimK{i−1,i} = 3)

P{i−1,i} =
∑

γ=−1,0,1

P{i−1,i},γ =
∑

γ=−1,0,1

|ϕ{i−1,i},γ〉〈ψ{i−1,i},γ|, (61)

on the state vector |Ψ̃〉 in equation (58), then the ground state of the AKLT model
is

|Ψ〉 =
(
P{1,2} ⊗ P{3,4} ⊗ . . .

)(
|ϕ{1}〉 ⊗ |φ{2,3}〉 ⊗ |φ{4,5}〉 ⊗ . . .

)
. (62)

Writing out the operation of P , using the formulas (59) and (60), finally relabelling
as {i− 1, i} → i

2
, the MPS form is obtained:
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0.436 + − + −

0.218
0 0 0 0
0 + 0 −
+ 0 − 0

−0.218
+ 0 0 −
+ − 0 0
0 0 + −

≈ 10−16 + + − −
+ − − +

Table 1: DMRG calculation for VBS state in the quantum number sector Sztot = 0
without truncation since N = 4. States obtained by exchanging + ←→ − are not
listed, they have the same coefficient in the wave function.

|Ψ〉 =

∑
γ{1,2},
γ{3,4},...
=−1,0,1

∑
α1,α2,...
=− 1

2
, 1
2

ϕα1

{1}ψ
∗ α1α2

{1,2},γ{1,2}︸ ︷︷ ︸ φα2α3

{2,3}ψ
∗ α3α4

{3,4},γ{3,4}︸ ︷︷ ︸ . . . |ϕ{1,2},γ{1,2}〉 ⊗ |ϕ{3,4},γ{3,4}〉 . . . =

∑
γ1,γ2,...
=−1,0,1

∑
β1,β2,...
=− 1

2
, 1
2

Aβ11,γ1
Aβ1β22,γ2

. . . |ϕ1,γ1〉 ⊗ |ϕ2,γ2〉 . . . =

∑
γ1,γ2,...
=−1,0,1

A1,γ1 A2,γ2 . . . |ϕ1,γ1〉 ⊗ |ϕ2,γ2〉 . . .

(63)

Except for the ends, three matrices are assigned to every sites, which are

Ai,−1 =

[
0 0
− 1√

2
0

]
, Ai,0 =

[
1
2

0
0 −1

2

]
, Ai,+1 =

[
0 1√

2

0 0

]
. (64)

The matrices Ai,±1 are nilpotent, that is, components in which two +1 or two −1
are next to each other have zero coefficient in the expansion of MPS vector. More-
over, if one disregards the 0 index values in the non-zero terms of the expansion,
then the +1 and −1 index values appear alternately, which is shown in the table
1. This Néel-type order is preserved in ground state and the 0 states can move
freely, which indicates a hidden topological order, which can be characterized with
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the expectation value of the string operator [37]:

g(i, j) = −

〈
Szi exp

(
iπ

j−1∑
k=i+1

Szk

)
Szj

〉
. (65)

In the VBS state the limit is non-vanishing, g(|i−j| → ∞) = 4
9
, and in case of open

boundary conditions the S = 1
2
end-spins, emphasised in the figure of equation

(58), lead to the fourfold degeneration of the ground state. Having this exactly
solvable problem in the bilinear-biquadratic model (4) in hand, my first task was
the implementation of this problem to have a reference point for the general MPS
routines.

5 Results
In statistical physics for the description of the long-range order correlation

functions are introduced, that is, correlations of observables (26) are examined in
the function of real or momentum space distance.

In case of spin chains the correlation function of the spin projection operator
Sz,

Ci|j(%ij;S
z
i , S

z
j ) = 〈Szi ⊗ Szj 〉 − 〈Szi 〉〈Szj 〉, (66)

is commonly studied. Loosely speaking, this detects the relationship of sites i and
j considering the projection of the spins. The long range behaviour of physical
models having energy gap ∆ between the ground state and the excited states can
be characterized by the correlation length ξc ∝ 1

∆
as

Ci|j(%ij;S
z
i , S

z
j ) ∝

∆ 6=0
e−
|i−j|
ξc . (67)

On the other hand, the energy of excited states in a critical system are infinites-
imally close to the ground state energy in thermodynamic limit; the correlation
function (66) decays not exponentially but algebraically (with power-law) with
exponent η:

Ci|j(%ij;S
z
i , S

z
j ) ∝

∆=0
|i− j|−η. (68)

In section 2 the close relation of the correlations of observables and the mu-
tual information w.r.t. a partition was discussed in details. In addition, from the
definitions (38) and (26) one can derive the inequality [38, 39]

Ii|j(%ij) ≥
Ci|j(%ij;Oi, Oj)

2

2‖Oi‖2
∞‖Oj‖2

∞
. (69)
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Supposing the same type of function (exponential or algebraic) for Ii|j and Ci|j,
then the exponent ( 2

ξc
or 2η) in Ii|j is at least twice as big as that in the slowest de-

caying Ci|j [39]. Moreover, analogous inequalities can be obtained for ξ-correlation
functions and ξ-mutual informations.

Besides the expression (66) many other correlation functions with physically
relevant operator combinations could have expressive meaning, so the generalized
correlation functions are useful to study [39]. Therefore, let us introduce linear
operators in the d dimensional Hilbert space H which bring the basis vectors into
each other:

Tγ′γ|ϕγ〉 = |ϕγ′〉, Tα
′α

γ′γ = δγ′α′δγα. (70)

There are d2 transition operators Tγ′γ = |ϕγ′〉〈ϕγ|, which can be represented as
d × d matrices each with one non-zero entry. They span the space LinH, so
arbitrary operator of observable can be expanded in it. For example, for spin-
halves Szi = −1

2
Ti,↓↓ + 1

2
Ti,↑↑. The expectation values of operators defined in (70)

are the matrix elements of the one-site state %i. The two-site correlation function
of operators Ti, Tj can be expressed with the entries of the one- and two-site density
matrices:

C(%i|j, Ti,γ′iγi , Tj,γ′jγj) = 〈Ti,γ′iγi ⊗ Tj,γ′jγj〉 − 〈Ti,γ′iγi〉〈Tj,γ′jγj〉 = %
γiγ
′
i,γjγ

′
j

ij − %γiγ
′
i

i · %γjγ
′
j

j .

(71)

Since inequality (69) is valid for correlation functions of arbitrary operators Oi, Oj,
then it is also valid for that of operators Ti, Tj. Similarly, ξ-correlation functions
of transition operators can be introduced for a multipartite system.

Let us consider a chain of length N , and extract a tripartite system {a, b, c}
from the entire system L = {1, 2, . . . , N} as

a(l) =
N

2
− l,

b(l) =
N

2
,

c(l) =
N

2
+ l. (72)

That is, the middle elementary subsystem b is fixed, and symmetrically further and
further sites are chosen for elementary subsystems a and c by the increment of l =
1, 2, . . .. The construction and the partitioning is shown in figure 10. Consequently,
ξ-correlation functions (26) and ξ-mutual information (38) for the states %abc are
single-variable (l) functions.

26



1 N =12
b =

N

2a c

l =3 l =3

a|b|c

bc|a

ab|c

ac|b

Figure 10: The tripartite system {a, b, c} ⊂ L in the function of l and its non-trivial
partitions illustrated for N = 12.

In section 2.4.1 the elementary subsystems were considered to be of equal role.
Now, due to the geometry of (72), the elementary subsystems are not of equal role
and the same holds for the different partitions of the same shape.

Considering the tripartite system (72) for a spin-1
2
model there are 4 ·4 ·4 = 64

possible combinations of transition operators. However, the state vector is ob-
tained by a DMRG calculation which is performed in a given total spin projection
Sztot sector. Therefore, the expectation value is zero if an operator combination
brings the state vector to an other sector, that is, it does not commute with the
symmetry operator. Consequently, there are 20 combinations left. In addition, if
we take into account that the role of subsystems a and c are the same, than there
are 12 combinations to examine.

5.1 Spin-half J1–J2 model

In the following, the illustration of the aforementioned notions is given using
the model (3).

5.1.1 Majumdar–Ghosh model: J2 = 1
2
J1

The ground state of the spin-half J1–J2 Heisenberg model (3) can be dimerized,
as it was mentioned in the introduction. More precisely, it is dimerized when
J2
J1
> 0.241 [1]. Additionally, it is exactly solvable if J2 = 1

2
J1, and then the ground

state is totally dimerized: the state vector is the tensor product of singlets |φ{i,i+1}〉
(59),

|ψ〉 = |φ{1,2}〉 ⊗ |φ{3,4}〉 ⊗ . . . , (73)

and only the energy of the singlet bond εs = −3
4
determines the total energy

ε = N
2
εs.

In this special case the graphs of pair correlations and block entropy, in figure
11, is easily understandable by the cutting of singlet bonds. The state of the
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Figure 11: The ground state of the Majumdar–Ghosh model is totally dimerized, so pair
correlation (pairwise mutual information) Ii|j (i, j ∈ L) and the block entropy S(%A)
(|A| = `) have an extreme characteristic.
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ba c1

|↑↓〉−|↓↑〉√
2

l =1

ba c1

|↑↓〉−|↓↑〉√
2

l =2

Figure 12: The non-trivial partitions of tripartite system {a, b, c} ⊂ L on the totally
dimerized chain for l = 1 and l = 2.

tripartite system of which geometry was described in the previous section is %abc =
TrL\{a,b,c}(%). On can apply the Schmidt decomposition (16) to the singlet bond
which tells us that Tr1 |φ{1,2}〉〈φ{1,2}| ∼= Tr2 |φ{1,2}〉〈φ{1,2}| and the entropy of the
one-site states is

Sa = Sb = Sc = ln 2 (74)

for all l. (If it is not misleading, the notations Sa := S(%a) or Iab|c := Iab|c(%abc) are
used.) If the sites are directly next to each other (l = 1), then one pair certainly
forms a singlet bond, let us say a and b (see figure 12). This leads to

Sab = 0, Sac = Sbc = 2 ln 2,

Sabc = ln 2,

because of the additivity of von Neumann entropy. This means that the entropy
of a subsystem is as many times ln 2 as many bonds are cut (partial trace applied
on a singlet state) to obtain this system from the N -partite system. For the
configuration of l = 1 the mutual informations (38) are

Ia|b = 2 ln 2, Ia|c = Ib|c = 0,

Iab|c = 0, Iac|b = Icb|a = 2 ln 2,

Ia|b|c = 2 ln 2.

However, for l > 1 each picked site is “contained” in a different singlet, as it is
presented in the bottom part of figure 12. That is, as many cuts are needed as
many subsystems we have. For this reason all further mutual informations of
tripartite system {a, b, c} are zero.
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With these exactly calculated measures in hand one can check the general
formula

Ii|j|k − Iij|k = Ii|j, (75)

which follows easily from the definition (38).
The oscillation of the block entropy can be explained similarly. The state

of block A containing even number of lattice sites is uncorrelated, while that
containing odd number of sites is correlated with the complement (with other
words, system L is correlated w.r.t. the partition A|B):

%{1,...,2k} = |φ{1,2}〉〈φ{1,2}| ⊗ . . .⊗ |φ{2k−1,2k}〉〈φ{2k−1,2k}|
%{1,...,2k+1} = %{1,...,2k} ⊗ Tr2k+2 |φ{2k+1,2k+2}〉〈φ{2k+1,2k+2}| (76)

That is, the block entropy oscillates between S(%{1,...,2k}) = 0 and S(%{1,...,2k+1}) =
ln 2 along the chain as shown in figure 11.

The ξ-mutual informations (38), depending only on the state, were discussed
so far for this model. It is easy to see that every ξ-correlation functions (26) are
zero if l > 1, and also zero if it is taken w.r.t. ab|c for l = 1.

5.1.2 Nearest neighbour interaction: J2 = 0

The well-known antiferromagnetic Heisenberg chain is obtained by switching
off the next nearest neighbour interaction in the model (3). The system is critical,
long-range correlations occur, which can be seen in figure 13. The low-energy
dispersion relation is ε(k) = J1

π
2
|sin k|, that is, there are soft modes at k = 0, π

resulting two-site periodicity in real space quantities. One can prove that the
behaviour of the block entropy for critical systems is

SA(`) ∝ ln

[
2N

π
sin

(
π`

N

)]
, (77)

which is now modulated by two-site oscillations [40, 7].
The correlation functions (66) exhibit power-law decay with exponent η = 1,

but at higher l distances the surface exponent (ηs ≈ 2) can be observed for the
partition a|c, which is shown in figure 14. The distance of a(l) and c(l) is increasing
by two in the term of l, that is, quantities w.r.t. partition a|c and ac|b do not
exhibit that periodicity. A DMRG calculation illustrates the lack of tripartite Sz
correlation in the table 2. A spin configuration and its flipped pair has the same
coefficient in the wave function, therefore the expectation value of products of odd
Sz operators is zero. Consequently, the corresponding correlation functions vanish,
they are in the order of numerical precision, as it is in the second graph in figure
14.

The inequality (69) is probed by the correlation functions of transition opera-
tors in figure 15. Numerical equality is found for some operator combinations.
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Figure 13: The pairwise mutual information clearly shows the long-range correlation
in the S = 1

2 Heisenberg model. The characteristics of the block entropy, obtained via
infinite and finite lattice DMRG algorithm, is typical for critical systems.
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Figure 14: Correlation functions and mutual informations of the S = 1
2 Heisenberg

model. The tolerance of the diagonalization of the Hamilton operator is in the order of
10−9, so for tripartite state the Sz operators are considered to be uncorrelated because
the correlation functions are below this tolerance.
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Figure 15: Fitting of mutual information and the slowest correlation function w.r.t. a
given partition in the spin-half Heisenberg model. The slope of other correlation func-
tions is plotted by dashed line.
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0.558 | ↑↓↑↓〉
0.558 | ↓↑↓↑〉
−0.149 | ↑↑↓↓〉
−0.149 | ↓↓↑↑〉
−0.408 | ↑↓↓↑〉
−0.408 | ↓↑↑↓〉

Table 2: Demonstrative DMRG calculation in the subspace Sztot = 0 for S = 1
2 Heisen-

berg chain of length N = 4.

5.2 Bilinear-biquadratic model

Special points and regions of the phase space of the model (4), illustrated in
figure 2, is examined in the following.

5.2.1 Valence bond solid (VBS): θ = arctan 1
3

The model is gapped so the correlation length is finite as the block entropy
and mutual information show in figure 16. When the chain is built up by the
infinite algorithm, the block entropy falls and saturates after only a few sites; this
indicates the shortness of the correlation length. One can understand the plateau
of the block entropy considering the diagram in equation (58). Every neighbouring
sites are joint by a singlet bond in the ground state of AKLT model, which was
discussed in section 4.1. If the chain is cut into two anywhere in the bulk, roughly
speaking, singlet bond is cut, then each of the two subsystems has approximately
the entropy of a traced singlet bond ln 2.

The AKLT model is illustrative to study because the correlation functions are
purely exponential with correlation length 1

ξc
= ln 3 ≈ 1.099 [41]. This results in

the clear observation of the factor two between the slowest correlation function
and mutual information [39]. In addition, with the help of tripartite measures we
demonstrate the effect of one characteristic length in this gapped system. Mutual
informations, in the function of the shortest distance between subsystems, decay
with the same exponent ξc; an example is given in figure 17. For every distance l the
tripartite mutual informations are approximately equal, Iac|b = Iab|c = Ibc|a = Ia|b|c,
which is the result of the short correlation length. In this model the system {a, b, c}
is not sensitive to the partitioning in this sense.

According to figure 2, being in the same (Haldane) phase, the AKLT model
can be continuously transformed without closing the gap into the θ = 0 Heisenberg
model, which is studied in the following section.
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Figure 16: The VBS model has short correlation length, which is shown by the pair-
wise mutual information and the block entropy (obtained by infinite and finite DMRG
algorithm).
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Figure 17: The purely exponential decays of mutual informations in VBS model, and
the examination of the inequality (69).

36



5.2.2 Heisenberg model: θ = 0

The correlation length in the S = 1 Heisenberg model is ξc ≈ 6.03, which is
longer than that of the VBS model. This leads to that the block entropy obtained
by infinite lattice algorithm (in figure 18) increases until a critical block size (` ≈
50), which is larger then that of VBS model. Also, the graph of pairwise mutual
information confirms the increased correlations in the chain.

In the figure 19 two- and four-site measures are examined. The bipartite system
{a, c} is obtained from the tripartite case (72), indicated in figure 10, that is, the
distance between a and c increases by two. In case of the fourpartite system
{a′, b′, c′, d′} there is no fixed site. They are symmetric to the point N

2
+ 1

2
and the

distance between the neighbouring sites is l = 1, 3, 5, . . ., that is,

a′(l) =
N + 1

2
− 3

2
l,

b′(l) =
N + 1

2
− 1

2
l,

c′(l) =
N + 1

2
+

1

2
l,

d′(l) =
N + 1

2
+

3

2
l. (78)

Due to the topological properties of the Haldane phase one can observe the end-
spin correlation. The expectation value of the spin projection, presented in the
third plot of figure 19, in the bulk tends to zero. However, the DMRG calculation
is restricted to the Sztot = 0 subspace, that is why the spin projection increases
in absolute value towards the surface. In the first plot of figure 19 the two-site
Sz correlation function decays exponentially as expected, but tending towards the
surface it increases with the same exponent for short chains. For longer chains
the end-spin correlation dies out because of the finite correlation length. Mutual
informations are also presented to show the equality in (69) for the bipartite Sz
correlation function. Fourpartite quantities are also presented in figure 19. If
elementary subsystems a′ and d′ are packed into one subsystem, than the end-
spin correlation cannot be observed, that is, the a′d′|b′c′-correlation functions and
a′d′|b′c′-mutual information decays until the end of the chain. Contrary, quantities
w.r.t. partition a′c′|b′d′ shows the end-spin correlation.

5.2.3 Edges of the Haldane phase: θ = ±π
4

The gap of the Haldane phase is closed at θ = ±π
4
, so in these points the models

are critical but one can observe a difference in the oscillation of the block entropies,
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Figure 18: The pairwise mutual information and the block entropy for S = 1 Heisenberg
model.
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Figure 19: End-spin correlation in spin-one Heisenberg model.
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Figure 20: Block entropy of the “apparently trimerized” (θ = +π
4 ) and “apparently

dimerized” (θ = −π
4 ) phase obtained by the finite lattice DMRG algorithm.
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shown in figure 20. The Lai–Sutherland model, at θ = +π
4
, is integrable, and it

turns out that the soft modes are at k = 0,±2π
3
in momentum space, which leads to

a threefold periodicity in the block entropy. The region between ferromagnetic and
Haldane phase shows similar properties, thus this is called apparently trimerized
phase [42]. At θ = −π

4
the model is also integrable, and it exhibits soft modes at

k = 0, π, so twofold jumps can be seen in the block entropy. Therefore, this model,
called Takhtajan–Babujian model, is said to be apparently dimerized [43].

The translational symmetry is not broken, hence the “apparently” adverb only
refers to the finite-size effect. In thermodynamic limit (N → ∞) the oscillations
disappear in the block entropy, correlation functions and mutual informations.
Calculations for longer chains are needed for the observation of this behaviour.

5.2.4 In the dimerized phase: θ = −π
2

Leaving the Haldane phase in negative direction the massively dimerized phase
can be found. At θ = −π

2
the Hamilton operator (4) can be mapped onto the nine-

state quantum Potts model, which provides an exact solution for the ground state
[43].

As a result of the spontaneous breaking of the translational symmetry twofold
periodicity appears in the block entropy, seen at the bottom of figure 21, which do
not disappear in the thermodynamic limit. Having a gapped system in hand, for
longer chains the envelope of the block entropy saturates, although the oscillations
still occurs. Since the role of a and c is the same, as it was discussed around (72),
mutual informations w.r.t. partitions a|b and b|c are on an equal footing. The
oscillations in the decays are just shifted by one site, which can be seen at the top
of figure 21. The same holds for partitions ab|c and bc|a.

5.2.5 Spin nematic phase: θ ↘ −3π
4

While the properties of the aforementioned phases are well established, there is
a region in the phase diagram on which there has been long debate in the literature
[44, 45, 46].

In the diagrams of figure 2 a possible phase, refered to as spin nematic phase,
is depicted between the ferromagnetic and dimerized phase. In the dimerized
phase the translational, in the ferromagnetic phase the SU(2) symmetry is broken
spontaneously. However, these symmetries are largely unrelated, and there seems
to be no constraint which tells that the two transitions occur at the same point.
According to the assumption of Chubukov, the gap could vanish and reopen at
θc before the point θ = −3π

4
, resulting in a non-dimerized phase [47]. An other

possibility is, instead of reopening, a critical region is sandwiched between the
dimerized and ferromagnetic phases; or there is no intermediate phase. The three
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Figure 21: The mutual informations and the bock entropy in the massively dimerized
phase at θ = −π

2 .
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Figure 22: The energy gap according to the three possible ideas in the bilinear-
biquadratic model around θ = −3π

4 [48].

idea is illustrated in figure 22.
Block entropy obtained by DMRG calculation can be seen in figure 23. Longer

chains and more block states are needed in our calculations in order to decide
whether this region is gapped or not.
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Figure 23: Block entropy for θ = −0.7π in the bilinear-biquadratic model. Going closer
to the ferromagnetic phase, it is more difficult to decide whether the phase is gapped
or not.
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6 Summary
In my thesis I studied one-dimensional strongly correlated systems. This topic

is of central importance in the field of quantum statistical physics, since sev-
eral paradigmatic examples of exotic quantum phases can be observed even in
one-dimensional systems. For the calculations I used the Budapest-QC-DMRG
implementation [49, 50], for which I developed MPS-based algorithms for the calcu-
lations of, for example, reduced density matrices or expectation values of arbitrary
operators. In my investigations the main tool was the theory of multipartite cor-
relations. For this I also implemented the lattice-theoretical structures encoding
different kinds of multipartite correlations.

I have studied the multipartite correlations in the J1–J2 Heisenberg model
and the bilinear-biquadratic model. I determined the decays of ξ-mutual infor-
mations and ξ-correlation functions for different parameters of these models. In
the Majumdar–Gosh case of the J1–J2 Heisenberg model the totally dimerized
ground state served as an illustrative example for the particular case when the
multipartite correlations are built up from bipartite ones. Also the AKLT case of
the bilinear-biquadratic model served as paradigmatic example of the MPS.

The numerical and theoretical methods I have learned during the preparation
of my MSc thesis represent a versatile toolbox for the investigation of strongly
correlated systems, therefore a wide range of possibilities opens for me in further
research. I plan to investigate the multipartite correlations of chains exhibiting
topological phases. Also, the two-site correlations show cluster structure in the
SU(N) Hubbard model (ultracold atomic systems), here I plan to investigate the
multipartite correlations for the adequate analysis. I also plan to investigate the
multipartite entanglement of two-dimensional electronic systems such as graphene
nanoribbons and nanoflakes.
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