Quantum entanglement homework, 23th March 2018. Deadline 16th April 2018.

Let us have the finite dimensional Hilbert space \mathcal{H} and the density operators $\mathcal{D} \subset$ Lin \mathcal{H} over it. Let us have two POVMs (*positive operator valued measures*)

$$E = \left\{ E_i \ge 0 \mid i \in I, \sum_{i \in I} E_i = \mathbf{I} \right\} \subset \operatorname{Lin} \mathcal{H} \text{ and}$$
$$F = \left\{ F_j \ge 0 \mid j \in J, \sum_{j \in J} F_j = \mathbf{I} \right\} \subset \operatorname{Lin} \mathcal{H}.$$

We have the following relations between them:

(COM) E and F commute, if $\forall i \in I$ and $\forall j \in J$ we have $[E_i, F_j] = 0$.

(ND) *E* does not disturb *F*, if there exists an instrument $\{\Phi_{E,i}\}$, which implements *E* (that is, $\forall i \in I$ and $\forall \varrho \in \mathcal{D}$ we have tr $\Phi_{E,i}(\varrho) = \operatorname{tr} E_i \varrho$) and which does not disturb *F* (that is, $\forall j \in J$ and $\forall \varrho \in \mathcal{D}$ we have tr $\sum_i \Phi_{E,i}(\varrho)F_j = \operatorname{tr} \varrho F_j$).

(JM) *E* and *F* are *jointly measurable*, if there exists a POVM $G = \{G_{i,j} \ge 0 \mid i \in I, j \in J, \sum_{i \in I, j \in J} G_{i,j} = I\}$, for which $\forall i \in I$ we have $\sum_{j \in J} G_{i,j} = E_i$ and $\forall j \in J$ we have $\sum_{i \in I} G_{i,j} = F_j$.

(COEX) E and F are *coexistent*, if there exists a POVM $H = \{H_l \ge 0 \mid l \in L, \sum_{l \in L} H_l = I\}$, for which ran $E \cup$ ran $F \subseteq$ ran H. (The *range* of a POVM is ran $E = \{E_{I'} \mid \exists I' \subseteq I \text{ s.t. } E_{I'} = \sum_{i \in I'} E_i\}$.)

We have seen that $\text{COM} \Rightarrow \text{ND} \Rightarrow \text{JM} \Rightarrow \text{COEX}$, in the following exercises we will see that $\text{COM} \neq \text{ND} \neq \text{JM} \neq \text{COEX}$. (After each exercise, think over how it proves the corresponding \neq .)

Exercise 19. – Nondisturbance

Let us have $\mathcal{H} = \mathbb{C}^3$, and the two-outcome POVMs $E = \{E_1, E_2\}$ and $F = \{F_1, F_2\}$, and

$$E_1 = \frac{1}{4} \begin{pmatrix} 2 & 0 & -\sqrt{2} \\ 0 & 4 & 0 \\ -\sqrt{2} & 0 & 3 \end{pmatrix}, \qquad F_1 = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Calculate E_2 and F_2 .
- (b) Do E and F commute?

Let us have the instrument $\{\Phi_i\}$ in the form $\Phi_1(\varrho) = \sum_{k=1}^4 K_{1,k} \varrho K_{1,k}^{\dagger}$ and $\Phi_2(\varrho) = K_2 \varrho K_2^{\dagger}$ with

$$K_{1,1} = \frac{1}{2} \begin{pmatrix} \sqrt{2} & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ K_{1,2} = \frac{1}{10} \begin{pmatrix} 0 & 0 & 1 \\ 0 & -\sqrt{10} & 2\sqrt{10} \\ 0 & 0 & 0 \end{pmatrix}, \ K_{1,3} = \frac{1}{10} \begin{pmatrix} 0 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(c) Construct the Kraus operators $K_{1,4}$ and K_2 in such a way that $\{\Phi_i\}$ implements E, and it does not disturb F.

What are the conclusions?

Exercise 20. – Joint measurability

We will make use of the following.

Lemma: Let us have two POVMs E and F. Suppose that $F_j \in F$ is proportional to a projection for a given $j \in J$. Then, if an instrument $\{\Phi_{E,i}\}$ implements E, and $\operatorname{tr} \sum_i \Phi_{E,i}(\varrho)F_j = \operatorname{tr} \varrho F_j$ (for that given j), then $[E_i, F_j] = 0$ for all $i \in I$ (for that given j).

Let us have the two-outcome noncommuting POVMs $E = \{E_1, E_2\}$ and $F = \{F_1, F_2\}$, and damp them by T-transforms $E_s = \{E_{1,s}, E_{2,s}\}, F_t = \{F_{1,t}, F_{2,t}\}$ as

$$E_{1,s} = sE_1 + (1-s)E_2, \qquad E_{2,s} = (1-s)E_1 + sE_2, \qquad 0 \le s \le 1,$$

$$F_{1,t} = tF_1 + (1-t)F_2, \qquad F_{2,t} = (1-t)F_1 + tF_2, \qquad 0 \le t \le 1.$$

First step:

Let us form $G = \{G_{1,1}, G_{1,2}, G_{2,1}, G_{2,2}\}$ as $G_{1,1} = aI, G_{1,2} = bE_1, G_{2,1} = cF_1$.

(a) Express a, b and c by t such that $G_{1,1} + G_{1,2} = E_{1,t}$, $G_{2,1} + G_{2,2} = E_{2,t}$, $G_{1,1} + G_{2,1} = F_{1,t}$, $G_{1,2} + G_{2,2} = F_{2,t}$.

- (b) For which values of t is this a POVM? Second step:
- (c) Calculate the ranges of s and t for which E_s and F_t do not commute.
- (d) Prove that E_s and F_t are not jointly measurable for suitable values of s and t. (Hint:
- prove by contradiction, and use the Lemma above.)

What are the conclusions?

- For extra point:
- (e) Prove also the Lemma above.

Exercise 21. – Coexistence

Let us have $\mathcal{H} = \mathbb{C}^3$, and the POVMs $E = \{E_1, E_2, E_3\}$ and $F = \{F_1, F_2\}$, and

$$E_1 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad E_2 = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad F_1 = \frac{1}{6} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- (a) Calculate E_3 and F_2 .
- (b) Find a POVM H of size |H| = 5, for which ran $E \cup \operatorname{ran} F \subseteq \operatorname{ran} H$.
- (c) Show that E and F are not jointly measurable (hint: use proof by contradiction). What are the conclusions?