
Exercise sheet for the course Quantum entanglement (Wigner RCP, 2023 spring) for the
interested attendants. There is no submission, although we may consult; there is no
deadline, although it is helpful to consider the exercises alongside the lectures, as they
deepen and illustrate the material.

This document is planned to be updated week-by-week, following the topics of the
lectures. This version is [June 21, 2023]. Exercises for previous or extra topics can also
be inserted. Please report errors or misprints at szalay.szilard@wigner.hu.

1 Linear algebra

We have the finite dimensional Hilbert space H, dim(H) =: d, and we use the Dirac
notation. An orthonormal set of vectors spanning H is called basis, e.g., {|αi⟩ ∈ H | i =
1, 2, . . . , d}, ⟨αi|αj⟩ = δi,j .

1.1 Trace map

The trace map Tr : Lin(H) → C is linear, and given as Tr(|α⟩⟨β|) = ⟨β|α⟩ on elementary
operators |α⟩⟨β|.
• Show the cyclicity of the trace, Tr(BCA) = Tr(ABC) for all A ∈ Lin(H′′,H), B ∈
Lin(H′,H′′) and C ∈ Lin(H,H′).
• Show that the trace of an operator equals the usual trace of its matrix.

1.2 Adjoint

The adjoint map † : Lin(H,H′) → Lin(H′,H) is antilinear, and given as (|α⟩⟨β|)† =
|β⟩⟨α| on elementary operators |α⟩⟨β| ∈ Lin(H,H′), that is, |α⟩ ∈ H′, |β⟩ ∈ H.
• Show that ⟨α|Aβ⟩ = ⟨(A†α)|β⟩ for all |α⟩ ∈ H′ and |β⟩ ∈ H.
• Show that the matrix of the adjoint of an operator equals the usual adjoint of its matrix
(that is, flipping the matrix to its main diagonal and taking the complex conjugate).

1.3 Hilbert-Schmidt space

The Hilbert-Schmidt inner product is given as (A|B) := Tr(A†B) for A,B ∈ Lin(H,H′).
• Show that it is indeed an inner product.
(Then Lin(H,H′) with this inner product is also a Hilbert space, called the Hilbert-
Schmidt space.)

1.4 Operators

• Show that for all operators A ∈ Lin(H,H′), there exist scalars si ≥ 0 and bases
{|αi⟩ ∈ H′}, {|βi⟩ ∈ H} by which

A =

min{d,d′}∑
i=1

si|αi⟩⟨βi|. (1)
eq:SVDeq:SVD
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(This is called singular value decomposition, or singular decomposition, the {si} singular
values, and {|αi⟩} and {|βi⟩} left and right singular vectors.) (Hint: a simple proof is
based on the diagonalization of normal operators, which is the following exercise.)

Normal operators are the operators A ∈ Lin(H) obeying AA† = A†A.
• Show that A is normal if and only if there exist scalars ai ∈ C and basis {|αi⟩ ∈ H}
by which

A =
d∑

i=1

ai|αi⟩⟨αi|. (2)
eq:NormalDeq:NormalD

(This is called eigendecomposition, the {ai} eigenvalues, and {|αi⟩} eigenvectors. It is
also said that normal operators are diagonalizable, and we say that (2) is diagonal in
the basis {|αi⟩}, since its matrix elements in this basis ⟨αi|A|αj⟩ form a diagonal matrix
aiδij .)

Self-adjoint operators are the operators A ∈ Lin(H) obeying A† = A.
• Show that A is self-adjoint if and only if ai ∈ R in the decomposition (2).

Positive (semidefinite) operators are the operators A ∈ Lin(H) obeying ⟨ψ|A|ψ⟩ ≥ 0
for all |ψ⟩ ∈ H. This is denoted as A ≥ 0.
• Show that positive operators form a pointed (convex) cone.
• Show that A is positive if and only if there exists B ∈ Lin(H,H′) by which A = B†B.
• Show that A is positive if and only if (A|B) ≥ 0 for all 0 ≤ B ∈ Lin(H).
(That is, the “angle” of the cone of positive operators at the point 0 is at most π/2.)
• Show that A is positive if and only if ai ≥ 0 in the decomposition (2).

Unitary operators are the invertible operators U ∈ Lin(H) obeying U−1 = U †.
• Show that U is unitary if and only if ⟨Uψ|Uϕ⟩ = ⟨ψ|ϕ⟩ for all |ψ⟩, |ϕ⟩ ∈ H.
• Show that U is unitary if and only if |ai| = 1 in the decomposition (2).
(These operators form the unitary group of H, which is a Lie group, denoted as U(H).)

Projectors are the self-adjoint operators P ∈ Lin(H) obeying P 2 = P (idempotent).
• Show that P is a projector if and only if ai = {0, 1} in the decomposition (2).

We have now the important types of operators over finite dimensional Hilbert spaces.
• What is the relation among these?

1.5 Basis change

Let us have two bases {|αi⟩ ∈ H}, {|βi⟩ ∈ H}.
• Write the operator mapping |αi⟩ 7→ |βi⟩.
• Write its matrixelements in both bases. How to think of these?
• Which kind of operator is this? (From the previous exercise.)

2 Convexity

Here we consider convexity in finite dimensional vector spaces.
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2.1 Cones

A vector space is closed under finite linear combination. Inside that, a cone is a set
closed under finite linear combination with nonnegative real numbers.
• Show that d-tuples of nonnegative numbers form a cone in Rd.
• Show that positive semidefinite operators over a d-dimensional Hilbert space form a
cone in the R-linear space of the self-adjoint operators of the Hilbert space.

3 States and observables

During the course we consider “discrete finite systems”, that is, physical systems on
which measurements can result in a finite number of different outcomes.

3.1 Classical states

First, consider classical(ly behaving) systems. The set of classical discrete probability
densities (classical states) is

∆ :=
{
p ∈ Cd

∣∣∣ p∗ = p,p ≥ 0, ∥p∥1 =
∑
i

|pi| = 1
}
. (3)

eq:Deltaeq:Delta

(Complex conjugation and relation is understood elementwisely.) The set of pure states
is

Π :=
{
δj ∈ Cd

∣∣∣ j = 1, 2, . . . , d; (δj)k = δjk

}
. (4)

eq:Pieq:Pi

The mixed states are the others.
• Show that Π ⊂ ∆, ∆ = Conv(Π), and Π = Extr(∆).
• Show that the extremal convex decomposition of a state is unique (that is, ∆ is a
simplex).
• Show that p ∈ Π if and only if p2 = p. (Taking the power is understood element-
wisely.)

3.2 Quantum states

. . . I know this was easy, let’s see the quantum case. The set of the density operators
(states) of discrete finite quantum systems is

D :=
{
ρ ∈ Lin(H)

∣∣∣ ρ† = ρ, ρ ≥ 0, ∥ρ∥1 = Tr(ρ) = 1
}
. (5)

eq:Deq:D

The set of pure states is

P :=
{
π ∈ Lin(H)

∣∣∣ π = |ψ⟩⟨ψ|, |ψ⟩ ∈ H, ∥ψ∥ = 1
}
. (6)

eq:Peq:P

The mixed states are the others.
• Show that P ⊂ D, D = Conv(P), and P = Extr(D).
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• Which ones of the density operators given by the following matrices represent pure
states? [

1/2 0
0 1/2

]
,

[
3/4 0
0 1/4

]
,

[
1/2 1/4
1/4 1/2

]
,

[
1/2 −1/2
−1/2 1/2

]
.

• Show that the extremal convex decomposition of a quantum state is not unique (that
is, D is not a simplex). That is, taking a state ρ ∈ D, we may have many different ways
of writing it as ρ =

∑m
j=1wj |ψj⟩⟨ψj | (where w ∈ ∆m−1 and ∥ψj∥2 = 1). Show some

examples, by writing at least two different decompositions of the density operators given
by the matrices above. (Have you succeeded?)
• Show that a density operator ρ ∈ D is pure if and only if ρ2 = ρ.
• Show that a density operator ρ ∈ D is pure if and only if Tr(ρ2) = 1.

3.3 Qubits and roations

For dim(H) = 2, the systems are called qubits. Let us have the Pauli operators σj ∈
Lin(H) for j = 1, 2, 3, self adjoint and traceless, obeying the product rule

σjσk = δjkI + i

3∑
l=1

ϵjklσl, (7)
eq:Paulieq:Pauli

leading to
(xσ)(yσ) = (xy)I + i(x× y)σ, (8)

eq:Pauliprodeq:Pauliprod

for x,y ∈ C3, with the notation xσ = x1σ1 + x2σ2 + x3σ3.
• Show that the operator A = A0I +Aσ for A0 ∈ C and A ∈ C3 is normal if and only
if A×A∗ = 0, and it is self adjoint if and only if A0 ∈ R and A ∈ R3.
• Show/recall that the eigenvalues of xσ are ±

√
xx, and the corresponding eigenpro-

jectors are |ξ±⟩⟨ξ±| = 1
2(I ±

xσ√
xx

).

• Show/recall that ρ ∈ D (ρ is a quantum state) if and only if it is of the form

ϱ =
1

2

(
I + rσ

)
, where r ∈ R3, ∥r∥ ≤ 1, (9)

eq:Blocheq:Bloch

and ρ ∈ P (ρ is a pure quantum state) if and only if ∥r∥ = 1 above. (The vectors r in
(9) describing the states of qubits are called Bloch vectors, they form the Bloch ball B3,
and, in the case of pure states, the Bloch sphere S2.)
• Write the eigenvalues and eigenprojectors of ϱ.
(These can be done without the concrete matrices, only the product rule (8) of the Pauli
operators is needed.)

Let us have the unit vector û ∈ R3 (∥û∥2 = 1), the angle γ ∈ R, and the operator

Uû(γ) := e−i γ
2
ûσ. (10)

eq:Ueq:U
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• Carry out the exponentialization, that is, find the parameters s ∈ C and s ∈ C3 for
which Uû(γ) = sI + sσ.
• Find the determinant of Uû(γ).
• Find the inverse of Uû(γ).
(These can be done without the concrete matrices, only the product rule (8) of the Pauli
operators is needed.)

Let us have the Σi operators for i = 1, 2, 3, acting on R3 as (xΣ)y = i(x× y), with
the notation xΣ = x1Σ1+x2Σ2+x3Σ3. Let us have the unit vector û ∈ R3 (∥û∥2 = 1),
the angle γ ∈ R, and the operator

Rû(γ) = e−iγûΣ. (11)
eq:Req:R

• Carry out the exponentialization.
• Find the determinant of Rû(γ).
• Find the inverse of Rû(γ).
• What is the meaning of Rû(γ)?
(These can be done without the concrete matrices, only some known identities of the
vectorial product × are needed.)

Now we connect the two.
• Show that the adjoint action of Uû(γ) in Lin(H) is the same as the action of Rû(γ)
on the Bloch sphere. That is,

ρ 7−→ ρ′ = Uû(γ)ρUû(γ)
†,

r 7−→ r′ = Rû(γ)r.

Note that 1
2σi and Σi are the 2 and 3 dimensional representations of the same Lie

algebra. Both obey the commutation relation

[Jj , Jk] = i

3∑
l=1

ϵjklJl,

defining the Lie algebra su(2) ≃ so(3), and 1
2σi and Σi are the so called spin-12 and spin-1

representations. Then the exponential map (see equations (10) and (11)) leads to Uû(γ)
and Rû(γ), which give the spin-12 and spin-1 representations of the Lie group SU(2). (The
2 dimensional representation is the defining representation.) The spin-1 representation
is also the (3 dimensional, defining) representation of SO(3), describing the rotations of
the three dimensional space. The Lie group SU(2) is the double covering of SO(3), which
can also be seen from Uû(γ)xσUû(γ)

† = (Rû(γ)x)σ, since Uû(2π) = −I, and ±Uû(γ)
lead to the same Rû(γ).

3.4 Qubits and matrices

The matrices of the Pauli operators are

σ1 :

[
0 1
1 0

]
, σ2 :

[
0 −i
i 0

]
, σ3 :

[
1 0
0 −1

]
,
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and for x ∈ R3 we use the notation xσ = x1σ1 + x2σ2 + x3σ3. The operators cor-
responding to the three spin directions are Si = ℏ

2σi. Then the spin operator corre-

sponding to the direction v̂ =
(
sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)

)
∈ R3 (so ∥v̂∥2 = 1) is

Sv̂ := v̂S = ℏ
2 v̂σ.

• Calculate the matrix of Sv̂, its eigenvalues, the matrices of its eigenprojectors, and
the 2-tuples of its eigenvectors.
• Write these out also for the concrete cases of the six main coordinate directions
v = (+1, 0, 0), (−1, 0, 0), (0,+1, 0), (0,−1, 0), (0, 0,+1) and (0, 0,−1).
• Calculate the matrix of ρ given in (9), its eigenvalues, the matrices of its eigenprojec-
tors, and the 2-tuples of its eigenvectors.
• Write these out also for the concrete cases of the six main coordinate directions
v = (+1, 0, 0), (−1, 0, 0), (0,+1, 0), (0,−1, 0), (0, 0,+1) and (0, 0,−1).

The so called Hadamard transform is the adjoint action of the operator of the matrix

H =
1√
2

[
1 1
1 −1

]
∈ U(2). (12)

(The concrete matrix form is coming from the discrete Fourier transformation for d = 2.)
• Calculate the determinant of this.
• Calculate the inverse of this.
• How to imagine this, how does this act on the Bloch ball? That is, for a ρ of the form
given in (9),

ϱ 7−→ HϱH†,

r 7−→ r′ =?

• Can this transformation be given as the adjoint action of operators of the form (10)?
The so called flip operation on the state of a qubit is complex conjugation of its

matrix (in the usual σ3 eigenbasis) followed by the adjoint action of σ2. (This is an
anti-unitary transformation.)
• How to imagine this, how does this act on the Bloch ball? That is, for a ρ of the form
given in (9),

ϱ 7−→ ϱ̃ = σ2ϱ
∗σ†2,

r 7−→ r′ =?

(Star denotes the elementwise complex conjugation of the matrix.)
• Calculate the inverse of this.
• Can this transformation be given as the adjoint action of operators of the form (10)?
• What if we drop the complex conjugation?
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3.5 Qutrits and matrices

It is known in general that the d2−1 (self-adjoint, traceless) generators of the Lie group
SU(d) can be choosen to obey the product rule

σjσk =
2

d
δjkI +

d2−1∑
l=1

(
djkl + ifjkl

)
σl, (13)

eq:SUdeq:SUd

where the coefficients djkl and fjkl are real, and djkl is completely symmetric and fjkl
is completely antisymmetric with respect to the permutations of the indices. (For the
special case of SU(2), we had djkl = 0 and fjkl = ϵjkl, see equation (7).)

In the case of qutris, we have dim(H) = d = 3, and we can use the basis {I, σj |
j = 1, 2, . . . 8} in the real vector space of self-adjoint linear operators, where I is the
identity operator, and the operators σj are the generators of SU(3), given by the so
called Gell-Mann matrices. The usual representations of these are

σ1 :

0 1 0
1 0 0
0 0 0

 , σ2 :

0 −i 0
i 0 0
0 0 0

 , σ3 :

1 0 0
0 −1 0
0 0 0

 ,
σ4 :

0 0 1
0 0 0
1 0 0

 , σ5 :

0 0 −i
0 0 0
i 0 0

 ,
σ6 :

0 0 0
0 0 1
0 1 0

 , σ7 :

0 0 0
0 0 −i
0 i 0

 , σ8 :
1√
3

1 0 0
0 1 0
0 0 −2

 .
Then the state of a qutrit can be written by the density operator

ρ =
1

3

(
I + rσ

)
,

where r ∈ R8 is the (generalized) Bloch vector. Contrary to the case of qubits, now
we cannot describe the compact closed convex set (convex body) C ⊂ R8 in terms of
Bloch vectors, inside which the vectors r lead to a state, that is, a positive semidefinite
operator.
• Write out the matrix of ρ.
• Consider particular cases, that is, fix some coordinates as
(0, 0, . . . rj , . . . , 0) (only one nonzero),
(0, 0, r3, 0, 0, 0, 0, r8) (diagonal),
(r1, r2, r3, 0, 0, 0, 0, 0) (what is this?),
(0, 0, r3, r4, r5, 0, 0,

√
3r3) (and this?),

(r1, 0, 0, r4, 0, r6, 0, 0) (a bit more interesting).
What are the possible ranges of the parameters in r in these cases?
• Voluntary task: check if the Gell-Mann matrices above obey equation (13). If they
do, what are the values of the coefficients djkl and fjkl? If they do not, what are the
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coefficients of σl in the product σjσk? (This may be tedious by pen and paper, feel free
to implement it in arbitrary computer algebra system.)

4 Events, logic

This was presented later in the semester for didactic reasons, but should come here
logically.

4.1 Classical events, Boolean lattice

Let us have the usual representation of the classical event algebra Σ = {0, 1}d (the set of
d-tuples of 0s and 1s), with the elements 0 = (0, 0, . . . , 0) ∈ Σ and 1 = (1, 1, . . . , 1) ∈ Σ,
and the operations

α ∧ β := α · β,
α ∨ β := α+ β −α · β,

α := 1−α,

for all α,β ∈ Σ. (Here not only + but also · is meant elementwisely.)
• Check that Σ is closed with respect to the three operations above.
• Check the following properties:

α ∧ β = β ∧α, α ∨ β = β ∨α,

(α ∧ β) ∧ γ = α ∧ (β ∧ γ), (α ∨ β) ∨ γ = α ∨ (β ∨ γ),

α ∧ (α ∨ β) = α, α ∨ (α ∧ β) = α,

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ), α ∨ (β ∧ γ) = (α ∨ β) ∧ (α ∨ γ),

α ∧ 0 = 0, α ∨ 0 = α,

α ∧ 1 = α, α ∨ 1 = 1,

α ∧α = 0, α ∨α = 1,

for all α,β,γ ∈ Σ. That is, Σ is a Boolean lattice. (Some of these are trivial, kept for
the sake of completeness.)

Let us have the partial order ≤ defined as α ≤ β if and only if α ∧ β = α.
• Write the events α ∈ Σ for which α ≤ β holds for a given β ∈ Σ.
• Write the events β ∈ Σ for which α ≤ β holds for a given α ∈ Σ.
This gives us a hint about the meaning of ≤ in Σ.
• What is that?

4.2 Classical probability measures

A classical probability measure is a function p : Σ → [0, 1], which is normalized (p(1) = 1)
and (σ-)additive (if {αi ∈ Σ} is such that αi ≤ αj ̸=i, then p(

∨
iαi) =

∑
i p(αi)). For all
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classical states p ∈ ∆, the map α 7→ pp = (p|α) =
∑

i piαi gives a classical probability
measure.
• Check this for the finite dimensional case.
• Check that p(α ∨ β) = p(α) + p(β)− p(α ∧ β).
• How to imagine this?
• Show that if p(α) = p(β) = 1 then p(α ∧ β) = 1.

4.3 Quantum events, Hilbert lattice

Let us have L, the set of projectors to the subspaces of the d dimensional Hilbert space
H, with the elements 0 ∈ L and I ∈ L (projecting to the subspaces ∅ ⊆ H and H ⊆ H)
and

P ∧Q := Proj(Ran(P ) ∩ Ran(Q)),

P ∨Q := Proj(Span(Ran(P ) ∪ Ran(Q))),

P := Proj(Ran(P )⊥),

for all P,Q ∈ L. (On the right-hand side, Ran(P ) is the range of the projector P , which
is the subspace P projects onto, and Proj(K) is the projector of range K.)
L is obviously closed with respect to the three operations above.
• Show that P⊥ = I − P .
• Show that if PQ = QP then P ∧Q = PQ and P ∨Q = P +Q− PQ.
• Check the following properties:

P ∧Q = Q ∧ P, P ∨Q = Q ∨ P,
(P ∧Q) ∧R = P ∧ (Q ∧R), (P ∨Q) ∨R = P ∨ (Q ∨R),
P ∧ (P ∨Q) = P, P ∨ (P ∧Q) = P,

P ∧ 0 = 0, P ∨ 0 = P,

P ∧ I = P, P ∨ I = I,

P ∧ P = 0, P ∨ P = I,

P ∧Q = P ∨Q, P ∨Q = P ∧Q,

for all P,Q,R ∈ L. That is, L is an orthocomplemented bounded lattice. (Some of these
are trivial, kept for the sake of completeness.)
• Show an example illustrating that L is not distributive, that is,

P ∧ (Q ∨R) ̸= (P ∧Q) ∨ (P ∧R), P ∨ (Q ∧R) ̸= (P ∨Q) ∧ (P ∨R).

Let us have the partial order ≤ defined as P ≤ Q if and only if P ∧Q = P .
• Show that P ≤ Q if and only if Ran(P ) ⊆ Ran(Q).
• Write the events P ∈ L for which P ≤ Q holds for a given Q ∈ L.
• Write the events Q ∈ L for which P ≤ Q holds for a given P ∈ L.
• Show that PQ = QP if and only if P ≤ Q or Q ≤ P .
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4.4 Quantum probability measures

A quantum probability measure is a function q : L → [0, 1], which is normalized (q(I) =
1), (σ-)additive (if {Pi ∈ L} is such that Pi ≤ Pj ̸=i, then q(

∨
i Pi) =

∑
i q(Pi)), and

if q(P ) = q(Q) = 1 then q(P ∧ Q) = 1. For all density operators ρ ∈ D, the map
P 7→ qρ(P ) = (ρ|P ) = Tr(ρP ) gives a quantum probability measure.
• Check this for the finite dimensional case.
• Show an example for that

qρ(P ∨Q) ̸= qρ(P ) + qρ(Q)− qρ(P ∧Q).

• Why is this disturbing?
• Show that for all P,Q ∈ L such that QP ̸= PQ, one can find a ρ ∈ D such that

1 < qρ(P ) + qρ(Q)− qρ(P ∧Q).

• Why is this disturbing?

5 Bipartite systems

5.1 Classical bipartite systems

Let us have two classical bivalue observables (two bits) represented as a = (a1, a2) ∈ C2

and b = (b1, b2) ∈ C2. The composite state (joint probability distribution) of this two-bit
system is p12 ∈ ∆12 ⊂ R2 ⊗ R2, given as

(p12)i,j = p12;i,j

= P(“outcome i happened measuring a and outcome j happened measuring b”),

The reduced states (marginal distributions) p1 ∈ ∆1 ⊂ R2 and p2 ∈ ∆2 ⊂ R2 are

(p1)i = p1;i = P(“outcome i happened measuring a”),

(p2)j = p2;j = P(“outcome j happened measuring b”).

Recall, how to write p1;i and p2;j in terms of p12;i,j . The uncorrelated states are the
elementary tensors, p12 = p1 ⊗ p2, these form a two-dimensional quadratic submanifold
inside ∆12.
• Write out the system of equations describing this submanifold (in terms of p12;i,j) and
find a convenient parametrization. How can this be pictured inside the simplex ∆12?
Joint states p12 having fixed marginals p1 also form a two-dimensional submanifold
inside ∆12.
• Write out the system of equations describing this submanifold (in terms of p12;i,j) and
find a convenient parametrization. How can this be pictured inside the simplex ∆12?
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5.2 Quantum bipartite systems

Let us have the Hilbert space of a joint quantum system as H12 = H1 ⊗H2. Then the
partial trace maps are the linear maps given as

Tr1 : Lin(H12) −→ Lin(H2),

Tr2 : Lin(H12) −→ Lin(H1),

given on elementary tensor operators as

Tr1(A⊗B) = Tr(A)B, Tr2(A⊗B) = ATr(B),

with the usual trace map.
• Write the effect of the partial trace on matrix elements, that is, if

R =

d1,d2,d1,d2∑
i,j,i′,j′=1

Ri j
i′ j′ |i⟩⟨i

′| ⊗ |j⟩⟨j′|,

then write the matirx elements Tr1(R)
j
j′ and Tr2(R)

i
i′ of the operators

Tr1(R) =

d2,d2∑
j,j′=1

Tr1(R)
j
j′ |j⟩⟨j

′|, Tr2(R) =

d1,d1∑
i,i′=1

Tr2(R)
i
i′ |i⟩⟨i′|.

(We use the shorthand notation |i⟩ := |ϕi⟩ for the elements of a fixed basis.)
• How to picture this with block matrices?

5.3 2-qubit canonical form

Let us have |ψ12⟩ ∈ H12 = H1 ⊗ H2, dim(H1) = dim(H2) = 2, and the basis |ϕ1,i⟩ ⊗
|ϕ2,j⟩ ≡ |ϕ12,ij⟩ =: |ij⟩ using the usual shorthand notation, so |ψ12⟩ = ψ00|00⟩+ψ01|01⟩+
ψ10|10⟩+ ψ11|11⟩ ∈ H12 in general. Let us have

|ψ12⟩ = cos(α)|00⟩+ sin(α)|11⟩, 0 ≤ α ≤ π/2.

(α is called Schmidt angle.)
• Determine the Schmidt coefficients.
• Write out the matrix of the pure state density operator π12 = |ψ12⟩⟨ψ12| expressed in
the basis above.
• Write out the matrix of the reduced density operators ρ1 = Tr2(π12), ρ2 = Tr1(π12).
• Determine the eigenvalues of those. Determine the Schmidt angles leading to pure or
strictly mixed states. (What is the original state in those cases?)

Let us have now
|ψ12⟩ = x|00⟩+ x|01⟩+ y|10⟩ − y|11⟩.

• Determine the possible values of the coefficients x, y ∈ C.
• Determine the Schmidt coefficients.
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• Write out the matrix of the pure state density operator π12 = |ψ12⟩⟨ψ12| expressed in
the basis above.
• Write out the matrix of the reduced density operators ρ1 = Tr2(π12), ρ2 = Tr1(π12).
• Determine the eigenvalues of those. Determine the values of x, y leading to pure or
strictly mixed states. (What is the original state in those cases?)

The Bell state vectors of two qubits are given by the state vectors

|B0⟩ =
1√
2

(
|00⟩+ |11⟩

)
, |B1⟩ =

1√
2

(
|01⟩+ |10⟩

)
,

|B2⟩ =
−i√
2

(
|01⟩ − |10⟩

)
, |B3⟩ =

1√
2

(
|00⟩ − |11⟩

)
.

(14)
eq:Bellseq:Bells

(They form a basis of the two-qubit Hilbert space, also called magic basis.)
• Check that this is indeed a basis, that is, complete orthonormal system in H12.
• Determine the Schmidt coefficients.
• Write out the matrix of the pure state density operators π12 = |Bµ⟩⟨Bµ| expressed in
the basis above.
• Write out the matrix of the reduced density operators ρ1 = Tr2(π12), ρ2 = Tr1(π12).
• Determine the eigenvalues of those.
• Show that the Bell state vectors are local-unitary equivalent with each other, by
checking that |Bµ⟩ = σµ ⊗ I|B0⟩ (write out the vectors |Bµ⟩ and the matrices σµ ⊗ I).

5.4 Qubit purification

Let dimH = 2, and let us have the density operator ρ of a qubit, written in the usual
Bloch-vector form, see (9). Let us have another system (described by a suitable Hilbert
space H′), and write a pure state π ∈ P(H ⊗ H′) of the joint system, which has the
same reduced state as ρ above, ρ = TrH′(π). (Such pure states are called purifications,
or pure extensions of the original state.)
• Write all the possible purifications for the case of dim(H′) = 2. This can be done
by applying I ⊗ U to a particular purification, where U ∈ U(H′). (Hint: use the
parametrization for the unitary as follows,

U = eiϕ/2
[
a −b∗
b a∗

]
∈ U(2), 0 ≤ ϕ < 2π, a, b ∈ C és |a|2 + |b|2 = 1.

For those who do not know this: check that this is a unitary.)
• Do we get all the possible purifications (for the dim(H′) = 2 case) in this way?
• Can two different unitaries lead to the same purification?

5.5 2-qubit operators, density matrices

Let us have |ψ12⟩ ∈ H12 = H1 ⊗ H2, dim(H1) = dim(H2) = 2, The operators {σ0 ≡
I, σ1, σ2, σ3} form a basis for Lin(H1) and Lin(H2). (This led to the Bloch vector de-
scription (9) of the qubit state space earlier.) We have the natural tensor product basis

12



{σµ ⊗ σν | µ, ν = 0, 1, 2, 3} for Lin(H12). A two-qubit state can then be written as

ρ12 =
1∑

iji′j′=0

ρi j
i′ j′ |i⟩⟨i

′|⊗|j⟩⟨j′| =
3∑

µν=0

Rµνσµ⊗σν =
1

4

[
I⊗I+rσ⊗I+I⊗sσ+tσ⊗σ

]
,

where r, s ∈ R3, t ∈ R3 ⊗ R3, and we use the shorthand notation rσ =
∑3

i=1 x
iσi,

tσ ⊗ σ =
∑3

ij=1 t
ijσi ⊗ σj . We may think of this as

Rµν =
1

4


1 s

r t

 ∈ R4 ⊗ R4

as well.
• Write the reduced states ρ1 = Tr2(ρ12) and ρ2 = Tr1(ρ12) for all the three forms
above.
• How to write the coefficients Rµν for uncorrelated state (ρ12 = ρ1 ⊗ ρ2)?

Unfortunately, we cannot formulate a simple condition for the positivity ρ12 ≥ 0 in
terms of the coefficients Rµν (or r, s, t) in general. (Recall that this could be given by
the length of the Bloch vector in the case of one qubit, led to the Bloch ball.) However,
we may consider some particular cases. The Pauli diagonal states are those for which
r = 0, s = 0 and t is diagonal.

• Write the matrix ρi j
i′ j′ of Pauli-diagonal states.

• Calculate its eigenvalues.
• Give the conditions for ρ12 ≥ 0 in terms of t.
• What is the geometry of these in terms of the vector (t11, t22, t33) ∈ R3 of prameters?
• Give the conditions in terms of t for a Pauli diagonal state to be pure.

The Bell diagonal states are the mixtures of the Bell states (14), ρ =
∑3

µ=0wµ|Bµ⟩⟨Bµ|,
where wµ ≥ 0,

∑3
µ=0wµ = 1. These are parametrized by the w ∈ ∆ ⊂ R4 weights, tak-

ing place in the 3 dimensional simplex ∆.
• Calculate the eigenvalues of these states.
• Calculate also the Rµν coefficients of these states. (For this, calculate the coefficients
Rµν of the pure states πµ = |Bµ⟩⟨Bµ|.)
• What is then the geometry of the Pauli diagonal states?

6 State transformations

6.1 Classical channels

We have the classical state space ∆, (3), the linear maps M : ∆ → ∆′ (positive and sum-
preserving) are called stochastic maps (Markov maps, classical channels), or bistochastic
in the case when it maps white noise to white noise. These can be represented by
stochastic matrices, which are real d′×d matrices M , for whichMij ≥ 0 (“positive”) and
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∑d′

i=1Mij = 1 (“sum preserving”), and if moreover bistochastic then
∑d

j=1Mij = d/d′

(“noise preserving”).
The deterministic dynamics ∆ → ∆ of a system maps pure states onto pure states.

• Write the stochastic matrices M representing such mapping.
• Are they bistochastic?

The dynamics of a closed system is deterministic and also reversible.
• Write the stochastic matrices M representing such mapping.
• Are they bistochastic?
• Are reversible maps always deterministic?

A supplementing system (also called “ancilla”, described by the state q ∈ ∆2) can
be appended to the system in an uncorrelated way, that is, Mq,2 : ∆1 → ∆12, given as
Mq,2p = p⊗ q.
• Write the stochastic matrix Mq,2, and also Mq,1, given similarly.
• Is it bistochastic?

A subsystem of a composite system can be discarded, that is, M red2 : ∆12 → ∆1,
given by the state reduction as M red2(p12) = Red2(p12).
• Write the stochastic matrix M red2, and also M red1, given similarly.
• Is it bistochastic?

To a system, described by the state p ∈ ∆, a system of the same kind, described by
the state q ∈ ∆ can be mixed, that is, Mq,x : ∆ → ∆, given as Mq,xp = (1− x)p+ xq.
• Write the stochastic matrix Mq,x.
• In which case is it bistochastic?

A system can entirely be replaced with a system, described by the state q ∈ ∆ (that
is, without respect to the original state), that is, Mq : ∆ → ∆, given as Mqp = q for
all p. (This can be considered as a “perparation”.)
• Write the stochastic matrix Mq.
• which case is it bistochastic?

(If you are not fluent enough in using ⊗ and the general formalism, you can submit
this exercise calculating for bits, d = 2.)

6.2 Environmental representation of classical channels

The effect of every stochastic map can be given as the effect of an interacting ancillary
system.
• Show this, that is, show that for all M1 : ∆1 → ∆1, there exist ancillary system of
state q ∈ ∆2 and joint reversible dynamics (interaction) M12 : ∆12 → ∆12, by which
M1 = M red2M12Mq,2.

6.3 Quantum channels

We have the quantum state space D(H), (5), the linear maps Φ : D(H) → D(H′)
(completely positive and trace preserving) are called quantum stochastic maps (quantum
Markov maps, quantum channels), or bistochastic in the case when it maps white noise
to white noise. These can be represented by Kraus operators Ki : H → H′ as Φ(ρ) =
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∑k
i=1KiρK

†
i (“completely positive”) where

∑k
i=1K

†
iKi = I (“trace preserving”) and if

it is additionally bistochastic, then
∑k

i=1KiK
†
i = d/d′I (“noise preserving”).

The deterministic dynamics D → D of a system maps pure states onto pure states.
• Write the Kraus operators {Ki} leading to such maps Φ.
• Are they bistochastic?

The dynamics of a closed system is deterministic and also reversible.
• Write the Kraus operators {Ki} leading to such maps Φ.
• Are they bistochastic?
• Are reversible maps always deterministic?

A supplementing system (also called “ancilla”, described by the state ω ∈ D(H2)) can
be appended to the system in an uncorrelated way, that is, Φσ,2 : D(H1) → D(H1⊗H2),
given as Φσ,2(ρ) = ρ⊗ σ.
• Write the Kraus operators {Ki} leading to Φσ,2, and also those leading to Φσ,1, given
similarly.
• Is it bistochastic?

A subsystem of a composite system can be discarded, that is, Φred2 : D(H1 ⊗H2) →
D(H1), given by the state reduction as Φred2(ρ12) = Red2(ρ12). (So it is the partial
trace, Φred2 = Tr2.)
• Write the Kraus operators {Ki} leading to Φred2, and also those leading to Φred1,
given similarly.
• Is it bistochastic?

To a system, described by the state ρ, a system of the same kind, described by the
state σ can be mixed, that is, Φσ,x : D(H) → D(H), given as Φσ,x(ρ) = xρ+ (1− x)σ.
• Write the Kraus operators {Ki} leading to Φσ,x.
• In which case is it bistochastic?

A system can entirely be replaced with a system, described by the state σ (that is,
without respect to the original state), that is, Φσ : D(H) → D(H), given as Φσ(ρ) = σ
for all ρ.
• Write the Kraus operators {Ki} leading to Φσ.
• In which case is it bistochastic?

(If you are not fluent enough in using ⊗ and the general formalism, you can submit
this exercise calculating for qubits, d = 2. The Kraus form is not unique in general, it
is enough to find one solution.)

6.4 Qubit channels

Let us have the state of a qubit given by the density operator ρ(r) in the Bloch vector
parametrization, see (9). Let us consider the one qubit map

Φc(ρ) =
1

2

3∑
µ=0

cµσµρσ
†
µ,

where σ0 = I, and the parameters are c = (c0, c1, c2, c3) ∈ R4.
• For which values of the parameters are these channels, that is, trace preserving com-
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pletely positive (TPCP) maps? (Then these are called Pauli channels.)
• For this case, check that these are also bistochastic.
• Write also the canonical Kraus form.

Now we consider some particular cases,
c = (2, 0, 0, 0),
c = (0, 2, 0, 0), c = (0, 0, 2, 0), c = (0, 0, 0, 2),
c = (2− x, x, 0, 0), c = (2− x, 0, x, 0), c = (2− x, 0, 0, x),
c = 1/2(4− 3x, x, x, x),
c = 1/2(1 + x, 1− x, 1− x, 1 + x),
c = 1/2(1 + x, 1− x, 1 + x, 1− x),
c = 1/2(1 + x, 1− x, 1− x, 1− x).
• How to imagine these, how do these act on the Bloch ball? That is, for a ρ written in
the Bloch vector parametrization (9)

ϱ 7−→ ρ′ = Φc(ρ),

r 7−→ r′ = ?

• What are the ranges of the parameter x?
Now let us append a constant shift to the usual Pauli channels,

Φc,d(ρ) = Φc(ρ) +
1

2
dσ,

where the additional parameters are d = (d1, d2, d3) ∈ R3. It is hard to write in general
the range of the parameters (c,d), for which the map Φc,d is a channel.

Now we consider some particular cases,
c = 1/2((2− x)2, 2x− x2, 0, 0), d = (x, 0, 0),
c = 1/2((2− x)2, 0, 2x− x2, 0), d = (0, x, 0),
c = 1/2((2− x)2, 0, 0, 2x− x2), d = (0, 0, x).
• For which values of the parameters x are these channels?
• Then for which values of the parameters x are these bistochastic?
• How to imagine these, how do these act on the Bloch ball?

7 Measurements

7.1 Indirect classical (generalized) measurements

A measurement device is a set {M i} of substochastic maps, which are positive and
sum nonincreasing, such that their sum, M =

∑
iM i is sum preserving. These can be

represented by real d× d substochastic matrices M i, for which (M i)jk ≥ 0 (“positive”)

and
∑d

j=1(M i)jk ≤ 1 (“sum nonincreasing”), and
∑d

j=1(M)jk =
∑

i

∑d
j=1(M i)jk = 1

(“sum preserving”). The measurement device is projective, if M i = P i := δi ⊗ δi
†
.

The effect of every generalized measurement can be given as the effect of a projective
measurement on an interacting probe system.
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• Show this, that is, show that for all {M i}measurement devices on ∆1 there exist probe
system of state q ∈ ∆probe, projective measurement device {P i} on ∆probe, and joint
reversible dynamics (interaction)R : ∆1,probe → ∆1,probe, by whichM i = M red probe(I⊗
P i)RMq,probe.
• Give the indirect representation of a projective measurement, that is for the projective

measurement device {δi ⊗ δi
†}, write q ∈ ∆probe, {P i} and R as above, by which

δi ⊗ δi
†
= M red probe(I ⊗ P i)RMq,probe.

7.2 Qubit generalized measurement

Let us consider a joint quantum system, consisting of two subsystems. The first one
is an atom, where we consider only two energy eigenstates of the electronic system.
Its Hilbert space is HAtom = Span{|ϕAtom,0⟩ ≡ |G⟩, |ϕAtom,1⟩ ≡ |E⟩}, where the two
orthonormal vectors stand for the “ground” and “excited” states. The second one is
of one photonic mode, which either contains a photon or not. Its Hilbert space is
HPhoton = Span{|ϕPhoton,0⟩ ≡ |N⟩, |ϕPhoton,1⟩ ≡ |P⟩}, where the two orthonormal vectors
stand for the “no photon” and “photon” states. (Here I stress this labelling instead of
numerical indexing to emphasize which vector is contained by which Hilbert space in
the shorthand notation.)

In a given time interval, the atom in ground state can be excited by the photon with
probability p, getting into excited state, absorbing the photon; and in excited state it can
emit a photon with the same probability, getting into ground state. (Poisson process.)

We would like to learn the state of the atom. This could be achieved by using the
von Neumann measurement given by the orthogonal projectors {PG = |G⟩⟨G|, PE =
|E⟩⟨E|} ⊂ Lin(HAtom), however, this cannot be carried out. The only thing we can
measure is wether a photon is emitted or not, that is, the von Neumann measurement
given by the orthogonal projectors {PN = |N⟩⟨N|, PP = |P⟩⟨P|} ⊂ Lin(HPhoton) having
outcomes “no photon” and “photon” .

Before the measurement, the state of the atom is given by the density operator
ρAtom ∈ DAtom. Let the photonic mode be empty before the measurement, ρPhoton =
|N⟩⟨N| ∈ DPhoton. Let the effect of the interaction in the time interval be given by the
unitary, given by the matrix

U :


1 0 0 0
0

√
1− p

√
p 0

0 −√
p

√
1− p 0

0 0 0 1


written by the natural, product basis |G⟩ ⊗ |N⟩, |G⟩ ⊗ |P⟩, |E⟩ ⊗ |N⟩, |E⟩ ⊗ |P⟩.
• What is the meaning of the matrix elements? (Why?)
• Is it unitary?

The event “the photodetector fires during the time interval of the interaction” is
represented by the projector PP = |P⟩⟨P| ∈ Lin(HPhoton), while the event “the photode-
tector does not fire during the time interval of the interaction” is represented by the
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projector PN = |N⟩⟨N| ∈ Lin(HPhoton). Let us write the state of the atom after the time
interval of the interaction. This measurement can be given by the following completely
positive map, constructed for the outcomes “photon” and “no photon”

ΦN(ρAtom) = TrPhoton

(
(I ⊗ PN)U(ρAtom ⊗ ρPhoton)U

†(I ⊗ PN)
†
)
,

ΦP(ρAtom) = TrPhoton

(
(I ⊗ PP)U(ρAtom ⊗ ρPhoton)U

†(I ⊗ PP)
†
)
.

• Write the matrices of the operators ΦN(ρAtom),ΦP(ρAtom) ∈ Lin(HAtom) using the
standard basis above.
• Are the maps ΦN, ΦP trace nonincreasing?
Using these, the post measurement states of the atom for the outcomes are

ρAtom 7−→ ρ′Atom,N =
1

P(N|{Φi})
ΦN(ρAtom), P(N|{Φi}) = Tr

(
ΦN(ρAtom)

)
,

ρAtom 7−→ ρ′Atom,P =
1

P(P|{Φi})
ΦP(ρAtom), P(P|{Φi}) = Tr

(
ΦP(ρAtom)

)
.

• Write the matrices of these too.
• Does P(N|{Φi}) + P(P|{Φi}) = 1 hold? (If not, then something is miscalculated. . . )
• What can we infer from the outcomes (“no photon”, “photon”) to the state of the
atom (“ground”, “excited”)?
• Write also the effect of the nonselective measurement

ρAtom 7−→ ρ′Atom = P(N|{Φi})ρ′Atom,N + P(P|{Φi})ρ′Atom,P.

• Does Tr ρ′Atom = 1 hold? (If not, then something is miscalculated. . . )
The measuring device {ΦN,ΦP} can be represented by Kraus operators.

• Find (one particular set of) such Kraus operators, that is, write the matrices of the
operators KN,KP ∈ LinHAtom given in

ΦN(ρAtom) = KNρAtomK
†
N,

ΦP(ρAtom) = KPρAtomK
†
P.

(In this particular example it is enough to have only one Kraus operator for each outcome,
that is, there is no need for summing up the effects of many Kraus operators for each
outcome, as was done in the general case, presented in the lecture,

∑
j KN,jρAtomK

†
N,j .

If you haven’t been tired enough yet, you may think over that the reason for this is
that the events “no photon” and “photon” are represented by rank one projectors on
HPhoton.)

• Does K†
NKN ≤ I and K†

PKP ≤ I hold? (If not, then something is miscalculated. . . )
(For self-adjoint operators, A ≤ B is defined as 0 ≤ B −A.)

Due to the cyclic property of the trace, the output probabilities are

P(N|{Φi}) = Tr
(
ΦN(ρAtom)

)
= Tr

(
K†

NKNρAtom

)
, EN := K†

NKN,

P(P|{Φi}) = Tr
(
ΦP(ρAtom)

)
= Tr

(
K†

PKPρAtom

)
, EP := K†

PKP,
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that is, those can be obtained by the use of the positive operator valued measure (POVM)
E = {EN, EP} ⊂ LinHAtom.
• Write the matrices of these operators.
• Does EN + EV = IAtom hold? (If not, then something is miscalculated. . . )
• Write also the spectral decomposition of these operators.
These are acting on the Hilbert space HAtom, describing the atom, and they are mixtures
of the projectors describing the events referring to the atom.
• Think over the meaning of this, that is, how the different possibilities/states of the
atom contribute to the measurement of the photon number.

7.3 Induced collapse

Let us have a two-qubit system, with the Hilbert space H12 = H1 ⊗ H2, dimH1 =
dimH2 = 2. We have already seen that a two-qubit state can then be written as

ρ12 =
1

4

[
I ⊗ I + rσ ⊗ I + I ⊗ sσ + tσ ⊗ σ

]
,

where r, s ∈ R3, t ∈ R3 ⊗ R3, and we use the shorthand notation rσ =
∑3

i=1 r
iσi,

tσ ⊗ σ =
∑3

ij=1 t
ijσi ⊗ σj .

As we have seen in the lecture, performing a measurement given by the projectors
P1,± = 1

2(I ± v̂σ) (spin measurement along direction v̂ ∈ S2 ⊂ R3, ∥v̂∥2 = 1) on
subsystem 1 leads to the conditional state of subsystem 2,

ρ2 =
1

2
(I + sσ) 7−→ ρ′2,±|v̂ =

1

2
(I + s′σ),

s 7−→ s′ =
s± v̂t

1± v̂r
,

where (v̂t)j =
∑3

i=1 vitij is understood.
• Let us consider the pure state ρ12 = |ψ(η)⟩⟨ψ(η)|, where |ψ(η)⟩ =

√
1− η|01⟩ +√

η|10⟩, where 0 ≤ η ≤ 1/2, and the computation basis σ3|j⟩ = (−1)j |j⟩ is used. (We will
see later that the “strength” of entanglement in this state is a continuous, monotonically
increasing function of η.) Calculate the coefficiens r, s, t, and write the Bloch-vector s′

of the conditional state above.
• In which cases is ρ′2,±|v̂ pure? In which cases is ρ′2|v̂,± maximally mixed? (Can you

give a quick proof from general principles?) In the light of this, although it is a nonlinear
function of η, what can we say about the Bloch-vector s′ of the conditional state?

• How does s′ change if we mix some white noise to the system, that is, if we have
the initial state ρ12 = (1− w)|ψ(η)⟩⟨ψ(η)|+ w 1

2I ⊗
1
2I for 0 ≤ w ≤ 1?

8 Bell-nonlocality

8.1 On the CHSH inequality

Let us have the joint system of two qubits, with the Hilbert space H12 = H1 ⊗ H2

with dimH1 = dimH2 = 2, describing the spin degrees of freedom of two spin-1/2
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particles. The operators describing spin measurement of the three orthogonal directions
are Si =

ℏ
2σi (or S = ℏ

2σ), and the operator describing the spin measurement in direction

v̂ ∈ S2 ⊂ R3 (∥v̂∥2 = 1) is Sv̂ =
∑

i viSi (or Sv̂ = v̂S). The operators of spin
measurements of subsystems of the joint system are Sv̂⊗I and I⊗Sû, while the operator
of the spin correlation measurement is (Sv̂ ⊗ I)(I ⊗ Sû) = Sv̂ ⊗ Sû.

• Give the expectation value

⟨Sv̂ ⊗ Sû⟩ = Tr(ρ12Sv̂ ⊗ Sû)

in terms of the measurement directions v̂ and û for the pure state ρ12 = |ψ12⟩⟨ψ12|,
where |ψ12⟩ = 1√

2
(|01⟩− |10⟩) is the singlet state. What if we take the Bell states |B0⟩ =

1√
2

(
|00⟩+|11⟩

)
, |B1⟩ = 1√

2

(
|01⟩+|10⟩

)
, |B2⟩ = −i√

2

(
|01⟩−|10⟩

)
and |B3⟩ = 1√

2

(
|00⟩−|11⟩

)
?

(You don’t have to write too much for this, if you solved and understood the Bell state
exercise earlier.)

• The CHSH inequality (a variant of the Bell inequality), written for the quantum
statistics, is(

ℏ
2

)−2 (
⟨Sv̂ ⊗ Sû⟩+ ⟨Sv̂ ⊗ Sû′⟩+ ⟨Sv̂′ ⊗ Sû⟩ − ⟨Sv̂′ ⊗ Sû′⟩

)
≤ 2,

which holds if the expectation values (quantum statistics) can arise from a local hidden
variable modell. Find at least one set of measurement direction v̂, v̂′, û, û′ ∈ S2, for
which the above inequality is violated.

• (for extra point) Show that the maximal achievable value of the left-hand side is
2
√
2.

8.2 More on the CHSH inequality

The content of the previous exercise is pretty much well-known. Now we consider the
same setting, but let us weaken the assumptions a bit: can the CHSH inequality be
violated by (pure) states not maximally entangled?

• Calculate the expectation value ⟨Sv̂ ⊗ Sû⟩ for the state |ψ′(η)⟩ =
√
1− η|01⟩ −√

η|10⟩, where 0 ≤ η ≤ 1/2. (We will see later that the “strength” of entanglement is a
continuous, monotonically increasing function of η.) What if we take the corresponding
η-variants of the Bell states given above?

• For the measurement settings v̂, v̂′, û, û′ ∈ S2, obtained in the previous exercise,
find the possible values of η, for which the CHSH inequality is violated. (That is, find
the most entangled state in that one-parameter family, for which there can be given local
hidden variable description of the scenario, for that particular measurement settings.)

• (for many extra points) Show that for arbitrarily small (but nozero) η, there can
be found measurement settings for which the CHSH inequality is violated.
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