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1. Introduction 
 
RMCPOW is a general purpose Fortran code for reverse Monte Carlo (RMC) modelling of static 

and dynamic disorder in crystalline materials using powder diffraction data. Starting from 
configurations corresponding to the average crystal structure (as obtained from e.g. Rietveld methods) 
the method can be used to refine the local structure. It has been developed to overcome some of the 
disadvantages with the standard RMC methods for crystalline materials as applied in the RMCA and 
RMCX programs. These include the truncation errors related to Fourier inversion of the pair 
correlation function in RMCA and difficulties to introduce experimental resolution in both RMCA 
and RMCX, particularly affecting the important constraint on the time-average long-range order that 
is related to the Bragg scattering information. Furthermore, RMCPOW allows a proper way of 
modelling magnetic structure of localised moments in crystalline materials. This manual first 
describes the RMCPOW method, with respect to differences to the standard RMC method, and then 
goes on to describe the RMCPOW program. For a general introduction to the RMC method we 
strongly recommend reading the RMCA manual [1] and references therein. 

1.1 Changes from version 2.0 
 

• Multiple neutron and/or x-ray experiments can now be used, i.e. parameters nexp* (4.4.12) no 
longer restricted to 0 or 1. 

• Bond valence sum constraints can now be applied with multiple types of coordinating target 
atoms, correspondingly parameter input has changed. Also the formulation of the constraint 
has changed slightly, see 4.4.6 and 5.3.3. 

• Time-of-flight to Q conversion is now performed with the usual difc and difa parameters, see 
4.4.14 and 4.5. For profile=5 also the detector scattering angles is now to be given, parameter 
thdet. 

• For profiles 1 to 4 axial divergence is now approximately accounted for by peak shifts 
proportional to coth(2�), new parameter asy1, see 4.4.14 and 5.7.3. 

• <j2> magnetic form-factor term introduced as well as the reading of a mixing parameter cj2, 
see 3.2 and 4.4.15.2. Note that if form-factor parameters (rather than symbols) are given in the 
control file now only 7 parameters are requested. 

2. RMCPOW - the basic method 
 
In RMCA the model scattering is obtained by computing the pair correlation function which is then 

Fourier transformed and compared to the experimental scattering. The RMCPOW method instead 
uses a direct calculation of the scattered intensities on a mesh of points in reciprocal space. These 
intensities are subsequently reduced to a powder cross-section by appropriate integration over 
spherical shells. The mesh is chosen as the reciprocal lattice points of the model configuration cell 
(hereafter referred to as the configuration cell or cc). Obviously the configuration cell should be 
chosen with dimensions such that it is a supercell of the conventional unit cell (hereafter called unit 
cell or uc) to allow periodic boundary conditions. This also means that the reciprocal lattice points of 
the unit cell are a subset of those of the configuration cell and so the calculated scattering can be 
separated into Bragg and diffuse scattering (with respect to the unit cell size) and full use of 
experimental resolution can be applied to the computed powder cross-section. 

The total differential scattering cross-section is conventionally split into a coherent and an 
incoherent (see 3.4) contribution in such a way that the cross-section per atom for a general system of 
N particles is 
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where fj and rj are the scattering amplitude and position of particle j. For a configuration cell the 
coherent cross-section corresponding to a powder experiment is then given by [2] 
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Here Vcc is the volume of the configuration cell, ττττcc runs over the set of reciprocal lattice points for the 
configuration cell and R(Q-τcc) is the experimental resolution function. The amplitude sum at a 
reciprocal point Q is simply 
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and runs over all N particles in the configuration cell (since both thermal and static fluctuations are 
being modelled no Debye-Waller factors are present). 

For the purposes of RMCPOW we define a structure factor I(Q) as the total differential scattering 
cross-section per scattering atom. As in RMCA the agreement between the model structure factor, 
IC(Q), and the experimental IE(Q) is probed by a χ2-test (m is the number of experimental data points); 
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In the RMCA program the pair distribution function G(r) is used for intermediate results. RMCPOW 
instead uses the scattering amplitude sums and the following algorithm is used. 
 
1. Start with an initial configuration as in RMCA. Find all configuration cell reciprocal points within 

the "experimental sphere" with radius Qmax. Separate them into Bragg (if they are also points on 
the reciprocal lattice of the unit cell) and diffuse points (if they are on the configuration cell 
reciprocal lattice only). 

2. Calculate the amplitude sums for this old (o) configuration. 
3. Obtain the Bragg and diffuse contributions to the model structure factor using eq. (2) and add any 

incoherent scattering. 
4. Calculate the difference between the experimental and model structure factors, χo

2, as in eq. (4). 
5. Move one atom at random. Calculate the new (n) amplitude sums and model structure factor and 

the new χn
2. 

6. If χn
2 < χo

2 the move is accepted and the new configuration becomes the old configuration. If χn
2 > 

χo
2 then the move is accepted with probability exp(-(χn

2 - χo
2)/2). Otherwise it is rejected. 

7. Repeat from step 5. 
 

As this process is iterated χ2 will initially decrease until it reaches an equilibrium value about 
which it will fluctuate. The resulting configuration should be a three dimensional structure that is 
consistent with the experimental total structure factor within the experimental error. 
 

3. Scattering definitions 
 
The algorithm described in the previous section is specifically for modelling a single set of 

diffraction data, which could be obtained using X-rays, neutrons, or electrons. The RMC method is 
more general than this simple algorithm in that any set or sets of data which can be directly calculated 
from the structure can be modelled. It can be applied to isotopic substitution in neutron diffraction or 
equivalently to anomalous scattering in X-ray diffraction, to EXAFS and possibly to NMR data. All 
data sets can be modelled simultaneously by adding the respective χ2 values. The current version of 
the RMCPOW program however only allows modelling to one neutron experiment and/or one x-ray 
experiment. 
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For a multicomponent system where the fit is to several different total structure factors (indicated 
by index n) we have 
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For simultaneous fitting of data sets obtained by different experimental techniques the separate χ2 
values are simply summed to give one value. The relative weighting of the different data sets is 
determined by the choice of the various σ values. Clearly the required computer time increases 
significantly if multiple data sets are fitted. We give below the definitions for the various types of 
scattering that are used in RMCPOW. 
 

3.1 Neutron nuclear scattering 
 
For neutron diffraction the atomic scattering amplitudes are simply the coherent scattering lengths, 

jb , which are independent of Q and can be found in e.g. [3]. Note that the scattering lengths are 
entered in fm units whereas cross-sections are computed in barns (1 fm2 = 0.01 barns). A few 
elements/isotopes have complex scattering lengths; this case is however not yet treated by RMCPOW. 
 

3.2 Neutron magnetic scattering 
 
For magnetic neutron diffraction the atomic scattering amplitudes are the vectors 
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where µµµµj [µB] is an effective single-ion magnetic moment. γ = -1.9132 is the neutron gyromagnetic 
ratio and r0 = e2/(4πε0mec2) = 2.81 fm is the classical electron radius. In the RMCPOW program 
magnetic form-factors f m are approximated by the analytical expressions 
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for which values of the coefficients al, bl, and c can be found in [4,5]. Note that RCMPOW uses a 
classical approach to magnetic moments, i.e. all three components of the magnetic moment vector are 
considered.  µ is then the total single-ion moment, not only the ordered z component. In many cases 
(especially for 3d-elements where the orbital momentum is quenched so that the Landé factor g=2) µ2 
= g2S(S+1) is a good estimate but e.g. covalency effects can change this value. 

 

3.3 X-ray scattering 
 
For X-ray diffraction the form-factors are approximated by the analytical expressions 
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for which values of the coefficients al, bl, and c and dispersion corrections ∆f′ and ∆f″ can be found in 
[6]. With these definitions of form-factors X-ray cross-sections are obtained in electron units (the 
differential scattering cross-section in barns units is then obtained by a multiplication with r0

2 = 
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0.0790 barns). Note that the total x-ray structure factor as defined in RMCPOW is not normalised by 
any average form-factor. 

 

3.4 Incoherent scattering and average particle types 
 
Incoherent scattering, i.e. uncorrelated scattering from particles, occurs mainly because of random 

nuclear isotopic substitution for neutron scattering and inelastic Compton scattering for x-rays. For a 
system with concentration ck of element k the neutron incoherent scattering cross-section is 
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where σinc can also be found in [3]. For properly reduced experimental data this is the expected 
minimum scattering level. It is possible to subtract this contribution from IE(Q) prior to running the 
simulation. However in general it is better to allow the program to add this estimate of incoherent 
scattering to the model scattering and then refine a constant background to be subtracted from the 
experimental data since it might be affected by small normalisation errors. 

X-ray Compton scattering may be approximated in RMCPOW by interpolating the values for heavy 
atoms given in Table 3.4.4.1 in [4]. The table is given for values of a parameter w ∝ Q/Z2/3 so the 
effective number of electrons Z should be supplied for each particle type in the control data file. 

Additional incoherent scattering is introduced if two or more atom types randomly occupy some 
equivalent (sublattice) sites and can be dealt with using two different approaches in the context of 
RMCPOW modelling: Either a) the scattering amplitude for particles on a sublattice can be replaced 
by the occupational average or b) the different atomic types can be introduced explicitly by first 
generating all relevant positions and then randomising their atomic identities in due proportions. The 
first approach can also be used in the initial stage of a simulation, even if the distribution is not 
expected to be completely random, and later individual identities can be assigned. For nuclear neutron 
scattering the occupational average (denoted by <…> and taken over the occupancies cocc

kl of the atom 
types l at the sites for particles k) is simply 
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and is independent of Q. In the case of x-rays and magnetic neutron scattering the Q-dependency must 
also be taken into account. For this reason the program offers the possibility to assign occupation 
numbers (see 4.4) for a collection of atomic species for each particle type and then the average 
scattering amplitudes are computed internally. 

When average scattering amplitudes are used for Bragg scattering there is an additional incoherent 
diffuse contribution for particle type k, the Laue monotonic scattering 
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where the bar over f indicates nuclear averaging in the case of neutrons. Although this term normally 
is small it is important for the overall consistency to add this to the total structure factor. For neutron 
magnetic scattering there is also a spin orientation dependence so in this case eq. (11) should be 
multiplied by 2/3 if spins are uncorrelated (if there is short- or long-range magnetic order then this is 
still a proper estimate of the average extra magnetic scattering). If there are multiple sets of average 
types each will have its own average coherent scattering amplitude and additive incoherent 
contribution. 

The calculated scattering cross-sections are normalised by the total effective number Neff of 
scattering particles, obtained as the sum of the occupancies of each particle type times the number of 
particles of each type. Occupation assignments can be different for each experiment being modelled 
but the program checks that Neff is the same for all experiments. 
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3.5 Partial structure factors 
 
To facilitate the inspection of the scattering contributions from different atomic types an option to 

compute the partial coherent cross-sections is included in the program (parameter ijob = 1, see 
4.4.13). This is done for the initial configuration only and is not further updated since it does not 
affect the progress of the simulation and is rather time-consuming. These partials are computed 
according to eq. (2) but summing only over relevant atoms for each partial, the total sum of partials 
being equal to Icoh(Q). Note that individual partials can be negative over part of or the whole 
scattering range, only the sum of all coherent scattering must be positive definite. 
 

3.6 Analytical models for thermal disorder 
 
RMCPOW can also be run in a mode similar to simulated annealing. Fitting is still done to the 

experimental data profile directly but here thermal diffuse scattering (TDS) is dealt with using 
analytical expressions rather than explicitly introducing (thermal) displacements from equilibrium 
positions. This can be used to refine the average atomic and/or magnetic structure, still keeping a 
constraint on the shape and amount of diffuse scattering, or simply to get an estimate of what TDS 
effects would look like in some particular system. The expressions that are used neglect the details of 
the crystal symmetry but they give the correct amount of diffuse scattering. They have been obtained 
by slight generalisations of similar expressions in [7,8]. 

Two options are available, ijob = 2 or 3, for estimating the TDS. In both modes amplitude sums are 
calculated separately for each particle type and at all points τ of the configuration cell, i.e. assuming 
equality of configuration and unit cells. These modes are suitable for small configurations (perhaps 
only one primitive cell) and allows refinement of individual mean square displacements. Using the 
Debye-Waller factor for particle type k, Wk(Q) = ½Q2u2

k, with u2
k the mean square displacement 

(msd) for particles of type k, we now have for the Bragg scattering amplitudes 
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where rj are now "ideal" equilibrium positions. For ijob = 2 we assume uncorrelated, Gaussian 
distributed, displacements and so single- and multi-phonon scattering can be approximated by  
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For ijob = 3 we assume a Debye spectrum �ω (q)= kBTD q/kD (TD is the Debye temperature and kD = 
(6πN/Vcc)1/3 is the Debye wave-vector cut-off) giving correlated displacements. The msd for particle k 
with effective mass Mk is now taken to be 
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where u2
k(0) = 3�2/(4MkkBTD) is the zero-point msd. In the neighbourhood |Q-ττττ| < kD of Bragg point ττττ  

single-phonon amplitude sums will be 
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and the corresponding diffuse powder scattering term (integrated over constant Q) is 
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in the region |Q-τ| < kD for each ττττ. For scattering around ττττ = 0,  
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Since multi-phonon scattering is rather featureless it can be approximated by the expression for the 
uncorrelated case, 
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In both cases diffuse magnetic scattering (if present) is given by  
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where µk is the total magnetic moment and µkz is the average component along the ordering axis 
(which direction can be different for the individual spins of type k as given by their unit vectors). 
Magnetic Bragg scattering amplitude sums are modified analogous to eq. 12.  

For large configurations partial amplitudes becomes impractical and for these cases the ijob = 4 
option can be used which is similar to the ijob = 0 and 2 options but using fixed Debye-Waller factors. 
Also in this option the amplitude sums are calculated at each configuration r.l.p. but here the diffuse 
points in between the unit cell Bragg points are by definition thought to build up the diffuse scattering 
so only uncorrelated TDS (eq. 13) corresponding to the loss of Bragg intensity (due to the use of D-W 
factors) is added. 

Finally, going to the extreme case of amorphous structures, this situation corresponds to all r.l.p.’s 
being diffuse points. Although RMCPOW was not designed for these purposes it can sometimes 
(when sharp but non-Bragg features are present) be useful to model amorphous structures using the 
RMCPOW approach. This option is obtained with ijob = 5. 

 

4. The RMCPOW program 
 

4.1 Installing the RMCPOW files 
The current version of RMCPOW (version 1) is written as a general-purpose program for modelling 

multi-component systems using experimental diffraction data as constraints. The program is written in 
Fortran-90 and compiled under MS-Fortran Powerstation, VMS Fortran (for ALPHA-stations) and 
ABSOFT Fortran for LINUX as well as some other versions of the language. In the MS-Windows 
version some QuickWin procedures are used for running as a Windows application. In the standard 
version of the program array space, depending on the number of atoms etc, is allocated at run-time. 
Static memory versions are however also available on request. Plotting is done using PGPLOT 
routines [9]. 

If RMCPOW is downloaded as part of the WinNFLP suite of programs, then all necessary set-up 
should have been done following the installation procedure in the WinNFLP manual. The WinNFLP 
suite can be downloaded from ftp::/ftp.studsvik.uu.se/Pub/WinNFLP or http::/www.studsvik.uu.se. 
Some of the program features that involve reading values from tables are only available when 
RMCPOW is run as a part of the WinNFLP suite. The examples provided are also more interesting 
when run in this mode. Otherwise, if the RMCPOW program is downloaded as standalone from 
ftp::/ftp.studsvik.uu.se/Pub/RMCPOW then the package contains the following files: 
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 readme.txt  - release information 
 rmcpow.exe  - the executable file  
 rmcpow.pdf  - this manual in PDF format  
 nxsection.dat  - neutron scattering parameters 
 RMC_logicals.ini - environment variable definitions 
 grfont.dat  - PGPLOT fonts 
 rmcpow_mno.zip - example files for modelling MnO 
 rmcpow_bafewo.zip - example files for modelling Ba2FeWO6 
 rmcpow_agbr.zip - example files for modelling AgBr 

 
which should be extracted into a single directory,e.g. c:\nflp\rmc. 

For the plotting to work with VMS or LINUX, Xwindows have to run on the machine. Also, for 
proper plotting, the PGPLOT font and device environment variables should be defined. In Windows 
the MCGR program will attempt to read the RMC_logicals.ini file to define 

 
PGPLOT_FONT = c:\nflp\rmc\grfont.dat 
PGPLOT_DEV = /W9 

 
assuming you extracted files into c:\nflp\rmc. For LINUX version this could be done in your login file 
using the setenv command, also set the path to include your RMCPOW directory. For VMS version 
define a symbol to run RMCPOW. 
 

$ RMCPOW :== “$user$disk:[user.directory] RMCPOW.exe” 
 
This and the environment settings could be done in your login file. Both LINUX and VMS works best 
with device /xw. If PGPLOT_DEV is not defined, or set to ?, a list of selectable modes will be 
displayed at run-time. 

4.2 Running the program 
 

When RMCPOW is run it must be supplied with a name used for all its data files. The Windows 
version is simply started by clicking the program icon, or it may be started from the RMC menu using 
the WinNFLP program. An Open file window appears where the user can choose the relevant 
name.dat file and then the simulation will start. During the run menus can be accessed to save current 
data promptly or to exit the program with or without saving. Plotting of the current fitted patterns and 
the progress of χ2 can also be turned on/off. A record of the last work directory will be saved to a file 
rmcpow.ini in the directory where the exe file is stored so that easy continuation is possible next time 
the program is run. 

For all other versions it is intended that the program be run in such a way that the data file name 
can be supplied on the command line. The Linux version of the machine dependent routines allow this 
with no further ado. On VMS systems it is necessary to define a symbol as described above and then 
the program can be run. For example 

 rmcpow name 

would run the RMCPOW program with files called name with various extensions. This name is given 
to a number of files used by the program. The general program parameters are supplied in the control 
file name.dat. There must also be a file name.cfg containing the positions, or configuration, of the 
atoms. It is only necessary to calculate the full scattering amplitudes once at the beginning of the first 
run; thereafter only the change in the amplitude sums needs to be updated. To facilitate this the 
different amplitude sums are written to binary files. These files are given the names name.aqz, where 
z is n for nuclear neutron scattering, m for magnetic neutron scattering and x for x-ray scattering. At 
specified intervals and when the program starts and terminates the amplitude and configuration files 
are updated. Also, the output results (experimental and calculated structure factors) will be written to 
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name.out. Information on the parameters read from name.dat and the status of the program are written 
to name.log. Sample files are included in the examples. 

On the next run the amplitudes will be read from the relevant files. If any of the required files does 
not exist, or if there is a read error, or ijob = 1, or iexists = 0, then amplitudes will be recalculated. 
Also if any of the following parameters are being changed the amplitudes have to be recalculated 
since these parameters affect either the number of reciprocal points used or the value of the 
amplitudes sums: nq2, the maximum Q point to be fitted; qwmax, the additional Q range used to 
eliminate resolution truncation effects at Q(qwmax); any lattice parameters and any parameters 
determining the scattering amplitudes of particle types (scattering lengths, form factor parameters, 
effective magnetic moments). Changes in these parameters are not monitored by the program so the 
user has to control this manually, e.g. by setting iexists = 0. 

If ncoll > 0 saved configurations will be written to name.cfg*, with * replaced by an incremented 
number. This option is to be used for sampling independent configurations when the simulation has 
converged. 
 

4.3 The configuration files 
 

In general any parallelepiped can be used for configurations. Since a crystalline system is being 
modelled the box dimensions must be chosen to accommodate an integral number of unit cells in each 
direction, with the numbers preferably being chosen to make the configuration as cubic as possible. 
The atomic coordinates are defined in terms of the box coordinates and are normalised to limits of 
±1.0. The box coordinates are then defined in terms of the laboratory coordinates by the matrix given 
in the top of the configuration file. The values in this matrix are recalculated from the corresponding 
unit cell parameters in name.dat every time the program is run and these are then written to the new 
configuration file. For a cubic box the diagonal terms in the matrix are equal to half the box length 
(L/2) in Å. 

The numbers of different types of atoms and the order of their coordinates are given in the top of 
the configuration file. The atomic coordinates then follow in a single list. The choice of a format in 
which the system is not explicitly identified in the configuration file (other than by the title) is made 
deliberately; configurations can then be easily modified or used as starting configurations for different 
systems with a minimal amount of editing. The same format of configuration file is also used for 
molecular systems, where both coordinates and Euler angles define the molecules. For this reason 
atoms are defined as molecules with a single atomic site. An example configuration file is included in 
the package. 

For modelling magnetic structures a similar spin configuration file, name.scfg, is used. Here the 
coordinates are replaced by the unit vectors of the magnetic moments (i.e. orientations w.r.t the 
Cartesian coordinate system defined by the unit cell matrix given in name.dat) for each magnetic 
atom. The magnitudes of the moments of particular types are given as parameters in the name.dat file. 
For each magnetic atom type there have to be as many spins as there are atoms. The order (within a 
specific type) of the magnetic atoms has to be the same in the atomic and spin configuration files. 
However, non-magnetic atoms should not be included in the spin configuration file. 

 

4.4 The control data file 
 

The RMCPOW control data file, name.dat, can be thought of as being divided into various sections. 
The description that follows is given section by section. Items specified in the same block below can 
in most cases be split into multiple lines in the data file. Also a comment can be entered after the final 
parameter of each block (on the same line). Codes for refining the background, normalisation and 
experimental resolution are used such that a zero value indicates a fix parameter and values > 0 free 
parameters, possibly constrained to other parameters. An example control data file is included in the 
package. 
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4.4.1 General parameters. 
 
title character*80 A title for the run. 

ncoll,ncycles integer ncoll is the number of configurations to collect after convergence; 
ncycles is then the average number of moves per atom inbetween 
each save.  The program will stop when ncoll configurations have 
been collected. 

iprint, iplot, 
timelim, timesav 

2*integer,2*real iprint determines how often a summary will be written to the 
standard output. It will be written after every iprint moves 
generated. iprint also determines how often a full non-linear fit, 
see 5.7, will be performed, and how often a plot of the current 
results will be updated. iprint should not be too small or otherwise 
time will be wasted in continually writing to the .log file and this 
will become very large; If  iplot is 0 plotting is initially turned off. 
In the Windows version it can be turned on and controlled during 
the run using the Plot menu items and the mouse (left-click and 
drag to select region, right-click to reset).; timelim is the time the 
program should run for, in minutes; timesav is the interval at 
which the results should be saved to the output files (they are 
always saved when the program starts and ends anyway). If the 
program is left running for a very long time it is best to save the 
results every now and then, perhaps once an hour. The results 
should not be saved too often as this simply wastes time writing 
large files. 

a1,a2,a3, 
g1,g2,g3 

real*6 The unit cell lattice parameters (lengths [Å] and angles [°]) 

ca1,ca2,ca3, 
cg1,cg2,cg3 

integer*6 Codes for refining lattice parameters (fit option not yet available, 
these should be zeroes). 

isym,ncell integer*4 isym - Centering symmetry code, -8 < isym < 8: 1=P, 2=A, 3=B, 
4=C, 5=I, 6=F, 7=R (rhombohedral setting) and 8=Hexagonal, 
isym also affects choice of Cartesian coordinates, see 5.1; ncell - 
The number of intermediate cells in the configuration, along each 
direction. 

pui,denui integer*10 pui – The 9 elements of the UC to IC transformation matrix, see 
5.1; denui – The common denominator of pui. This and next line 
only read if isym < 0. 

icart integer Determines the Cartesian coordinate system if isym < 0. 

ntypes,ntypesm integer*2 ntypes – no. of particle types; ntypesm – no. of magnetic types. 

attypes integer*ntypesm For each magnetic type the particle type to be associated with. 
Only read if ntypesm > 0. 

4.4.2 Parameters for moves. 
 
delta real array The maximum move for each type of particle. Recommended 

values are in the range 0.01-0.2. A value of zero is allowable, in 
which case the program will not attempt to move those particles. 
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See section 5.2 for a description of the use of this parameter. 

deltam real array The maximum rotation move [°] for each magnetic type. Only 
read if ntypesm > 0. 

nswap,swapfrac integer,real nswap - The number of kinds of particle swap moves, see 5.2, 0 ≤ 
nswap ≤ 10; swapfrac - the fraction of generated moves that will 
be of the swap kind. 

swaptype1, 
swaptype2, 
swapcut 

2*integer,real swaptype1/swaptype2 - The first and second particle types to 
swap; swapcut - the distance from the first particle, within which 
to find the second particle. If swapcut=0 then any particle of type 
swaptype2 can be chosen. This block is repeated for each of the 
nswap types. 

nref,reffrac integer,real nref - The number of kinds of particle reference moves, see 5.2, 0 
≤ nref ≤ 10; reffrac - the fraction of generated moves that will be 
of the reference kind. 

reftype1, 
reftype2, refcut, 
deltaref 

2*integer,2*real reftype1 - The particle type to move; reftype2 - The particle type 
to move to;  refcut - the distance from the first particle, within 
which to find the second particle. If refcut=0 then any particle of 
type reftype2 can be chosen. If deltaref > 0, then it is the 
maximum move that particle 1 is displaced from the reference 
position of particle 2. This block is repeated for each of the nref 
types. 

 

4.4.3 Parameters for closest approach constraints. 
 
rcut real array The closest allowed approach of two particles. There should be a 

value for each partial g(r). There are thus n(n + 1)/2 values for a 
n-component system. As in all other parts of the program the 
partials are given in the order 1-1, 1-2, ..., 1-n, 2-2, ..., 2-n, ... n-n. 
See section 5.3.1 for a description of the use of these parameters. 

4.4.4 Parameters for co-ordination constraints (5.3.2). 
 
ncoord integer The number of co-ordination constraints, 0 ≤ ncoord ≤ 20. 
    

4.4.4.1 Parameters for each co-ordination constraint (one block per constraint). 
 
typec integer The type of the central particle. 
typen integer The type of the neighbour particles. 
rcoord 2*real The two distances between which to calculate the co-ordination 

number.  
coordno 2*integer The lower and upper bound of the desired co-ordination number.  
coordfrac real The fraction of the central particles desired to have this co-

ordination constraint. 
sigmac real Effectively a parameter weighting this constraint relative to others 

and the fit to the data. 

4.4.5 Parameters for average co-ordination constraints (5.3.2). 
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navc integer The number of average co-ordination constraints, 0 ≤ navc ≤ 20. 

4.4.5.1 Parameters for each average co-ordination constraint (one block per constraint). 
 
avctypec integer The type of the central particle. 
avctypen integer The type of the neighbour particles. 
ravc 2*real The two distances between which to calculate the co-ordination 

number.  
avcno real The desired average co-ordination number.  
sigmaavc real Effectively a parameter weighting this constraint relative to others 

and the fit to the data. 

4.4.6 Parameters for R.M.S. bond valence constraints (5.3.3). 
 
nval integer The number of average valence constraints, 0 ≤ nval ≤ 20. 

4.4.6.1 Parameters for each R.M.S. bond valence constraint (one block per constraint). 
 
valtypec integer The type of the central particle. 
nvaltypen integer No. of neighbour types. 
rval real The maximum bond distance for which to calculate the bond 

valence sum.  
valreq real The required R.M.S. of the bond valence sum.  
sigmaval real Effectively a parameter weighting this constraint relative to others 

and the fit to the data. 

4.4.6.2 Parameters for each neighbour type (one block per type). 
 
valtypen integer The type of the neighbour particles. 
ival integer Code to select bond valence expression, ival =1 � power law, ival 

=2 � exponential. 
r0val, bval real*2 Parameters for the ival expression, see 5.3.3. 
sigmaval real Effectively a parameter weighting this constraint relative to others 

and the fit to the data. 

4.4.7 Parameters for average bond valence constraints (5.3.3). 
 
naval integer The number of average valence constraints, 0 ≤ nval ≤ 20. 
  

4.4.7.1 Parameters for each average bond valence constraint (one block per constraint). 
 
avaltypec integer The type of the central particle. 
navaltypen integer No. of neighbour types. 
raval real The maximum bond distance for which to calculate the bond 

valence sum. 
avalreq real The required average bond valence sum.  
sigmaaval real Effectively a parameter weighting this constraint relative to others 

and the fit to the data. 
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4.4.7.2 Parameters for each neighbour type (one block per type). 
 
avaltypen integer The type of the neighbour particles. 
ival integer Code to select bond valence expression, ival =1 � power law, ival 

=2 � exponential. 
r0val, bval real*2 Parameters for the ival expression, see 5.3.3. 
sigmaaval real Effectively a parameter weighting this constraint relative to others 

and the fit to the data. 

4.4.8 Parameters for average magnetisation constraints (5.3.4). 
 
navm integer The number of average magnetisation constraints, 0 ≤ ntypesm. 

4.4.8.1 Parameters for each average magnetisation constraint (one block per constraint). 
 
avmtype, 
avmno, 
sigmaavm 

integer,2*real avmtype – The atomic type for which to constrain the average 
magnetisation; muav – average magnetisation constraint [µB]; 
sigmam – effectively a parameter weighting the average 
magnetisation constraint for this type relative to other constraints 
and the fit to the data. 

4.4.9 Parameters for spin co-ordination constraints (5.3.5). 
 
nsc integer The number of spin co-ordination constraints, 0 ≤ nsc ≤ 20. 

4.4.9.1 Parameters for each spin co-ordination constraint (one block per constraint). 
 
sctypec integer The type of the central particle. 
sctypen integer The type of the neighbour particles. 
rsc 2*real The two distances between which to calculate the co-ordination 

number.  
scno 2*integer The lower and upper bound of the desired co-ordination number.  
sthsc 2*real The lower and upper bound of the desired spin-spin cosines.  
scfrac real The fraction of the central particles desired to have this co-

ordination constraint. 
sigmasc real Effectively a parameter weighting this constraint relative to others 

and the fit to the data. 

4.4.10 Parameters for average spin co-ordination constraints (5.3.5). 
 
nasc integer The number of average spin co-ordination constraints, 0 ≤ nasc ≤ 

20. 

4.4.10.1 Parameters for each average spin co-ordination constraint (one block per 
constraint). 
 
asctypec integer The type of the central particle. 
asctypen integer The type of the neighbour particles. 
rasc 2*real The two distances between which to calculate the average spin-

spin co-ordination.  
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ascno real The desired average spin-spin cosines.  
sigmaasc real Effectively a parameter weighting this constraint relative to others 

and the fit to the data. 

4.4.11 Parameters for magnetic potential constraints (5.3.6). 
 
nmpot integer The number of magnetic potential constraints, 0 ≤ nmpot ≤ 20. 
Tmpot, 
sigmagpot 

2*real Tmpot - the absolute temperature [K]; sigmagpot - effectively a 
parameter weighting this constraint relative to others and the fit to 
the data. This line only read if nmpot > 0. 

4.4.11.1 Parameters for each magnetic potential constraint (one block per constraint). 
 
mpottypec integer The type of the central particle. 
mpottypen integer The type of the neighbour particles. 
Rmpot 2*real The two distances between which this magnetic potential 

constraint is defined. 
Jmpot real The magnetic exchange interaction energy [K].  

4.4.12 Parameters for number of experimental data sets 
 
nexpn,nexpc, 
nsx 

3*integer nexpn and nexpc - the number of neutron and/or x-ray 
experiment constraints; if nsx > 0 a single crystal output file is 
produced (in current version only for neutron scattering). 

h1,h2,k1,k2,l1,l2 6*integer The min and max limits of the single crystal output in units of 
configuration reciprocal basis vectors. NB: due to the reciprocal 
lattice inversion symmetry l1 ≥ 0.This line only read if nsx > 0. 

4.4.13 General parameters for experimental data sets (only read if nexpn>0 or nexpx>0) 
 
dqp,swdt 2*real dqp is the step of the internal Q binning used for reduction to 

powder cross-sections before resolution is applied; If swdt>0 
Savitsky-Golay smoothing of the diffuse scattering is performed, 
swdt then determines the width of the smoothing interval, see 
section 5.5. 

ijob,iexists 2*integer If ijob = 0 a normal RMCPOW simulation is performed. If ijob = 1 
partial structure factors are calculated for the initial configuration 
and written to the output file, see section 3.5; If ijob = 2or 3 the 
program is run with analytical estimates of thermal disorder 
scattering, see 3.6, for ijob = 2 D-W uncorrelated diffuse 
scattering is added and for ijob = 3 correlated diffuse scattering is 
added. ijob = 4 is the same as ijob = 0, but with fixed D-W factors. 
If ijob = 5 then all r.l.p.’s are treated as diffuse points, i.e. this 
option is suitable for amorphous structures; If iexists = 0 
amplitudes are recalculated each time, if iexists = 1 the programs 
attempts to read the relevant amplitude files, if anyone required 
doesn't exist the amplitudes are recalculated. 

4.4.13.1 Parameters for uncorrelated thermal models if ijob = 2 or ijob = 4. 
 
u2 real array u2 - Mean square displacements [Å2] for all particle types. 
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cu2 integer array cu2 - codes for refining cu2. If ijob = 4 then cu2 should all be 
zero. 

4.4.13.2 Parameters for correlated thermal models if ijob = 3. 
 
u2,TD,Tabs real array,real*2 u2 - Mean square displacements [Å2] for all particle types; TD - 

Debye temperature [K]; Tabs - absolute temperature [K]. 
cu2,cTD integer array, 

integer 
cu2 - codes for refining cu2; cTD - code for refining TD. 

4.4.13.3 Parameters for thermal models if  1< ijob < 5 and ntypesm > 0. 
 
muz real array muz - average "z" component [µB], see 3.6, for all magnetic types. 

cmuz integer array cmuz - codes for refining muz. 

4.4.14 Parameters repeated for each neutron experimental data set 
 
file character*80 File containing the experimental data or name for a file with 

“experimental” data generated based on the input model and 
parameters, see nx below. 

xin,xout 2*integer Determines the function type f(x) of the input and output data, xin 
(or xout) = 0 ⇔ x = Q, xin = 1 ⇔ x = 2� or xin = 2 ⇔ x = TOF. 

x1,x2,nx 2*real,integer The min and max x values in the experimental data file to be fitted. 
If x2 is larger than the max x in the data file, the last data point 
used will be the last point given in the data file; If nx = 0, data is 
read from file. If nx > 0 a new dataset is created and written to file 
with nx equidistant points from x1 to x2.  

nexcl integer No. of excluded regions, not to be fitted. 

xexcl1,xexcl2 2* integer The min and max x for each excluded region. This line is repeated 
nexcl times, i.e. only present if nexcl > 0. 

mur real mur is the macroscopic absorption, see 4.5, if mur = 0 then no 
absorption correction is applied. 

isig,sigma integer,real isig - code for determining the experimental standard errors. If 
isig=1 standard errors are read from a third column in the data file. 
If isig=2 standard errors are estimated as the square root of the 
experimental data. If isig=3 standard errors are constant =1; 
sigma - standard errors obtained as above are scaled by this value, 
effectively a parameter weighting this constraint relative to others 
and the fit to the data. 

nbpol,nbfix integer nbpol is the no of terms in a polynomial background to be 
subtracted from the data, 0 ≤ nbpol ≤ 5. nbpol -1 is then the 
polynomial degree; nbfix – no. of additional "fix" backgrounds, 
see 5.7.1, 0 ≤ nbfix ≤ 2. 

α0, α1,…, 
cα0,cα1,… 

nbpol*real, 
nbpol*integer 

αi - Initial coefficients for the polynomial background; cα - Codes 
for refining the coefficients. This line only read if nbpol > 0. 

bfixfile character*80 File containing the fix background data. Q values must be the 
same as in the experimental data file. This line only read if nbfix 
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>0, and is repeated for each fix background. 

βf1, βf2,…, 
cβf1, cβf2,… 

real,integer βfi - Initial scale factors for the fix backgrounds; cβfi - Codes for 
refining βfi. This line only read if nbfix >0. 

β,cβ real,integer β - Initial scale factor for the model scattering; cβ - Code for 
refining β. 

rwdt,qwmax, 
profile 

2*real,integer rwdt is the range of the resolution in FWHM units, normally rwdt 
> 3.5; qwmax - maximum expected Q resolution range at Q(nq2) 
[Å-1]; profile is the index of the resolution profile function, 0 < 
profile < 6, cfm. 5.7.2 for definitions. 

wave, zero, 
asy1 OR 
wave, zero, 
asy1,thmon OR 
difc,difa,zero, 
thdet 

3*real or 4*real wave – the incident wavelength; zero - the x experimental data 
offset; asy1 – axial divergence asymmetry parameter; thmon – 
the monochromator θ Bragg angle, only read if profile = 4. 
difc,difa,zero – TOF to Q conversion parameters; thdet –detector 
scattering angle. 

cwave, czero, 
casy1 OR 
cdifc,cdifa,czero 

3*integer codes for refining wave, zero and asy1 or difc,difa and zero. 
(thmon and thdet are not refinable, so no codes) 

wave2, zero2, 
wgt2  

3*real wave2 – a 2nd wavelength; zero2 – 2nd offset; wgt2 – weight of a 
2nd wavelength component, only read if profile = 3. 

cwave2, czero2, 
cwgt2 

3*integer codes for refining wave2, zero2 and wgt2, only read if profile = 
3. 

u,v,w,ig OR 
u,v,w,ig,eta OR 
u,v,w,ig,dthi OR 
a0tofn,a1tofn, 
b0tofn,b1tofn, 
s0tofn,s1tofn, 
s2tofn 

4*real or 
5*real or 
5*real or 
7*real 

Resolution FWHM parameters [degrees2]. u,...,ig – if profile = 1, 
u,...,eta – if profile = 2 or 3, u,...,dthi – if profile = 4, 
a0tofn,a1tofn,... – if profile = 5, see 5.7.2 

cu,…,cig OR 
cu,…,ceta OR 
cu,…,cdthi OR 
ca0tofn,..., 
cs2tofn 

4*integer or 
5*integer or 
5*integer or 
7*integer 

Codes for refining resolution parameters. 

wext integer if wext>0 a file with additional resolution widths is read, see 5.7.2 

wextfile character*80 File name for additional resolution widths [degrees]. Q values 
must be the same as in the experimental data file. 

4.4.15 Nuclear scattering parameters repeated for each particle type 
 
noccn integer No of atom types for this particle type. 0 ≤ noccn ≤ 5. noccn = 0 

indicates a vacancy (zero-scattering) type. 

coccn,bcoh, 
siginc or 
natsym,coccn 

3*real 
or 
character,real 

One block repeated for each of the noccn types. coccn – 
occupancy of this atom type; bcoh – coherent neutron scattering 
length [fm]; siginc – incoherent neutron cross-section [barns]; 
natsym – atomic symbol (scattering parameters read from table). 
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4.4.15.1 Parameters for magnetic neutron scattering. 
 
x2m real The maximum x for which magnetic diffuse scattering will be 

calculated. If x2m ≤ 0 no magnetic scattering is calculated. 
betam,cbetam real,integer betam – an overall scale factor for the magnetic scattering, 

relative to the model nuclear scattering; cbetam – code for 
refining betam. 

4.4.15.2 Magnetic scattering parameters repeated for each of the ntypesm magnetic 
particle types (only read if q2m > 0) 
 
noccm integer noccm – No. of magnetic types for this particle type, 0 ≤ noccm 

≤ 5. 

magsym,coccm,
mueff,cj2 
or 
coccm,mueff,cj2 

character,3*real 
 
or 
3*real 

magsym – magnetic symbol (scattering parameters read from 
table). This and next block (if no magsym) repeated for each of the 
noccm types. coccm – occupancy of this magnetic type; mueff – 
effective magnetic moment [µB]. cj2 – mixing term for the <j2> 
contribution, see 3.2. 

formm real array Magnetic form-factor parameters (a1,b1,…,a3,b3,c) for the <j0> 
contribution. Not read if there is a magsym entry on previous line 

formm2 real array Magnetic form-factor parameters (a1,b1,…,a3,b3,c) for the <j2> 
contribution. Not read if there is a magsym entry on second 
previous line or cj2 = 0. 

4.4.16 Parameters repeated for each x-ray experimental data set 
 
The same as section 4.4.14 but with the corresponding x-ray parameters, then 
 
compton integer if compton>0 Compton scattering will be added to the model x-

ray scattering, see section 3.4 

4.4.16.1 X-ray scattering parameters repeated for each particle type 
 
noccx integer No. of atom types for this particle type. 0 ≤ noccx ≤ 5. 

xatsym,coccx, 
zeff 
or 
coccx,zeff 

character,2*real 
 
or 
2*real 

xatsym – atomic symbol (scattering parameters read from table). 
This and next block (if no xatsym) repeated for each of the noccx 
types. coccx – occupancy of this atom type; zeff – effective 
number of electrons for Compton scattering. 

formx,dfp,dfpp real array X-ray form-factor parameters (a1,b1,…,a4,b4,c); dfp,dfpp - the 
real and imaginary dispersion corrections to the x-ray scattering 
form-factor. 

4.4.17 Parameters for linear constraints of non-linearly refined parameters 
 
nlc integer No. of linear constraints. 

nterms, 
ccoeff1,cindex1, 
ccoeff2,cindex2,  

integer, 
2*nterms*real 
 

nterms – no. of terms in the linear constraint; ccoeffi and cindexi 
– coefficients and parameter codes for each term. This line is 
repeated for each of the nlc constraints. See 5.7. 
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… 
 
 
 

4.5 The experimental data files 
 

The files containing the experimental data are in the DATA format as defined for the NDP series of 
programs. The number of points is given on the first line, the second line contains a title or other 
information, and the subsequent lines contain the x, I(x) or x, I(x), err(x) values in two or three 
columns, where x is momentum transfer, Q, scattering angle, 2θ or time-of-flight, TOF, as determined 
by the parameter xin, cfm. 4.4.14. Data must be given at increasing x values, but do not need to be at 
equidistant points. An example data file is included in the package. Allowing for an experimental 
zero-point shift the conversion from momentum transfer is defined by 

 ( ) zeroQ += − πλθ 4sin22 1  (20) 

for constant wavelength (CW) data, with  2θ  given in degrees, and by 

 ( ) zeroQdifaQdifcTOF +⋅+⋅= 222 ππ  (21) 

for t-o-f data, with TOF given in �s. difc can be estimated from the flight paths, diffraction angle, 
and detector  height by use of  

 ( )16sin2816.252 2
3

2
21 LLLdifc ++⋅= θ  (22) 

Note that if more than one set of diffraction data is supplied, unlike in the RMCA program, the sets 
do not need to be defined at the same x values, and they can cover different ranges (x types can also 
be dissimilar for different experiment). 

The experimental data should normally be fully corrected for absorption, multiple scattering and 
Placzek effects (in the case of neutrons) and polarisation. Data must also be normalised with respect 
to angle-dependent efficiencies etc., so that they truly (apart from a scale factor and background, see 
5.7.1) represent the differential scattering cross-section per atom in barns (neutrons) or electron units 
(x-rays), i.e. with dimensions of area. Data, which are not reduced in this way, must be modified 
accordingly since a quantitative analysis of the diffuse scattering is intended. However, in some cases 
a rough absorption correction can be sufficient for at least approximate diffuse scattering modelling. 
To facilitate this the following transmission factor has been implemented 

 ( ) ( )( ) ( )( )[ ]222 sin375.00927.0sin368.07133.1exp murmurT θθθ ++−−=  (23) 

and can be controlled by the macroscopic absorption parameter mur, cfm. 4.4.14 . 
 

4.6 Example files 
 

Three sets of example files are supplied which demonstrate the use of the program and which can 
be used for testing. Extract the compressed files into a suitable directory and follow the instructions in 
the PDF document included with each example. The examples are: 
 
mno.zip 
 
The average magnetic structure of MnO in the long-range ordered antiferromagnetic phase at 15 K 
will be determined. Investigation of the short-range magnetic order at 130 K, i.e. just above the Neel 
temperature TN=120 K can also be done 
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bafewo.zip 
 
The average magnetic structure of Ba2FeWO6 in the long-range ordered antiferromagnetic phase at 
15 K will be determined starting from a random configuration. 
 
agbr.zip 
 
The long-range and local order of crystalline AgBr will be modelled by a simultaneous fit to the 
(thermal) diffuse and Bragg scattering. Correlation of atomic displacements of atoms with small 
separation will be studied and compared to the long-range limit results. 
 
For more examples on the use of RMCPOW see [10] 
 

4.7 Other programs available 
 

There are two other Monte Carlo-based codes available at NFL. RMCA is the general program for 
modelling atomic configurations and MCGR models total or partial pair correlation functions to fit 
scattering data. There are many programs available in the NFLP suite for display and analysis of the 
results produced by RMCPOW, and for the creation and modification of configurations. Some of the 
NFLP suite programs are convenient for preparing experimental data sets in the correct format for 
input to RMCPOW. All of these programs are documented separately. 

 

5. RMCPOW - simulation details 
 

5.1 Configuration size and shape 
 
When starting from the initial configuration the amplitude sums must be calculated. This involves a 

summation of order N 2. However for each particle move it is only necessary to calculate the change in 
the amplitude sums corresponding to the moved particle, which is a summation of order N. Since the 
time for calculating the initial structure factor, and single moves, is much larger for RMCPOW than 
RMCA some considerations has to be made with regards to the size. Generally we use N > 1500, and 
have used N  = 20000. 

 The size of the configuration cell is also important because it determines the major part of RAM 

memory needed during the simulation. The reciprocal volume per used ττττcc is *
ccV  = 8π3/Vcc where Vcc 

is the volume of the configuration cell. If the maximum Q being modelled is Qmax then the number of 
configuration cell reciprocal points with Q < Qmax is 
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A typical model configuration might consist of 5000 atoms with an atomic density 0.08 Å-3 so that 
Vcc ∼ 6⋅104 Å3 (i.e. linear dimensions are ∼ 40 Å). At reactor based diffractometers Qmax ∼ 10 Å-1, 
giving Nτ  ∼ 106. Inversion symmetry of the reciprocal lattice reduces the number of points that 
actually have to be computed and stored by a factor of 2. For updating the amplitudes a copy of each 
(real and imaginary) sum is used so that the memory required for such a simulation is >16 Nτ bytes 
(assuming a single precision size of 8 bytes for reals). 
The basic entity for building a crystalline model is the unit cell. The shape or metrics of this cell is 
given by the cell edge and angle parameters or, equivalently, it's three basis vectors. The unit cell may 
be primitive or centred. In addition to simply building configurations as multiples along each basis 
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vectors we can use a generalised approach where in principle any parallelepiped, containing the same 
periodicity as the primitive cell, can be used as building blocks for the model. For this purpose we 
define an intermediate cell (IC) being a supercell of the primitive cell but not necessarily the 
conventional unit cell. The whole configuration is then constructed as multiples of IC:s in the 
traditional way. Transformation matrices conveniently describe relations between the various cells 
used and we give below the definitions used. 
 
  isym > 0 � the IT conventional unit cell (UC) is used as IC 
  isym = 1 � Primitive cell 
  isym = 2 � A centred cell 
  isym = 3 � B centred cell 
  isym = 4 � C centred cell 
  isym = 5 � I centred cell 
  isym = 6 � F centred cell 
  isym = 7 � Rhombohedral cell in hexagonal setting 
  isym = 8 � Hexagonal primitive cell 
  isym < 0 � A non-standard IC is generated from the corresponding UC by a transformation matrix 
PUI 
 
The transformation matrix PUI = (pij) is defined by the relations between the two sets of basis vectors 
ai and Ai, where i=1,2,3, for the UC and IC respectively according to 

 332211 aaaA iiii ppp ++=  (25) 

For computational purposes a common least denominator is taken out of the matrix and given 
separately. E.g., to convert a UC to its C-centred supercell we can take 

 33212211 ,, aAaaAaaA =+−=+=  (26) 

so that the common denominator is 1 and the transformation matrix is 
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UIP  (27) 

 
 i.e. (A1,A2,A3)= (a1,a2,a3) PUI. The same formalism can of course also be used to construct an IC 
smaller than the UC. E.g. to construct the rhombohedral primitive cell of a face centred cell we 
instead use 

 ( ) ( ) ( )132
1

3,322
1

2,212
1

1 aaAaaAaaA +=+=+=  (28) 

so the denominator is 2 and 
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For visualisation of a configuration it must be related to a Cartesian coordinate system. Also, spin 
calculations are easier with Cartesian coordinates. Various RMC and USEFUL programs use the 
following definitions: (Âi and xi are unit vectors of the IC basis and Cartesian systems resp.) 
  icart = 1 � Â1 = x1 , Â2 � x3 , Â22, Â33>0 , default for isym=1 to 6 
  icart = 2 � Â2 = x1 , Â3 � x3 , Â23, Â31>0 
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  icart = 3 � Â3 = x1 , Â1 � x3 , Â21, Â32>0 
  icart = 4 � Â1 = x1 , Â3 � x2 , Â22, Â33>0 , default for isym=7 to 8 
  icart = 5 � Â2 = x1 , Â1 � x2 , Â23, Â31>0 
  icart = 6 � Â3 = x1 , Â2 � x2 , Â21, Â32>0 

 

5.2 Random moves 
 
The maximum size of the random move, delta, determines the ratio of accepted to rejected moves, 

but also determines the amount that the structure may change with each move. If delta is too small 
then nearly all moves will be accepted but the structure will change little, while if it is too large then 
few moves will be accepted and the average structural change will also be small. If we attempt to 
choose delta such that the ratio of accepted to rejected moves is approximately 1:1, as is often done in 
MMC, this usually leads to a value delta < 0.1 Å. The average structural change per move is usually 
maximised for 0.05 < delta < 0.2 Å, so this range is normally used. If the packing fraction (ratio of 
excluded volume to total volume) is high, as in crystalline materials, then it is necessary to use small 
moves so that a sufficient number are accepted. The convergence of the RMCPOW procedure is 
therefore very slow. 

In many systems a tendency for long-range or local (chemical) ordering of two or more atomic 
types to occupy a particular lattice site is observed, e.g. substitution of two metallic types on a fcc 
lattice. Since it can be almost impossible to achieve such ordering from an initial random distribution 
using just ordinary displacive moves, two options to allow swap moves is given in the program. 

In the first option, “swap moves”, the identities of two atoms of different types are interchanged. If 
one of the selected atoms also carries a magnetic moment then this spin is also moved, but if both are 
magnetic only the moduli of the moments are interchanged whereas the orientations are maintained at 
the original positions. Swap moves can also be used to interchange atoms of a particular type with 
vacancies (which then are defined as a particle type with zero scattering properties and their positions 
included in the configuration). Note that vacancies do not produce any change in the model scattering 
cross-section for displacive moves. The only effective constraint on vacancy positions is then any 
closest-approach constraints so delta should be kept at zero for vacancies. 

In the second option, “reference moves”, the first atom is moved to the (reference) position of the 
second atom. If the first atom carries a magnetic moment, then this spin is also moved. Additionally, 
the first atom may be given a random displacement with respect to the reference position, as 
determined by parameter deltaref. The second atom is always maintained at its original position (and 
possibly spin orientation), thereby acting as a fix reference. Due to the character of this type of move 
the second type is naturally of the vacancy kind. This option is particularly useful when atoms show a 
fractional occupation of certain crystallographic sites, without apparent long-range order but possibly 
some short-range order.  

5.3 Constraints 
 
Other information that cannot be used directly can be made use of in the form of constraints; this 

may include NMR, EPR, Raman scattering and chemical knowledge. The most commonly used 
constraint in RMCPOW is on the closest distance of approach of two atoms. Other constraints that 
can also be used in the current version of RMCPOW are on the co-ordination number of atoms, bond 
valencies and average magnetisation of spins. 

5.3.1 Minimum distance of atom pairs 
 
For perfect data realistic values for the closest approach distances of pairs of atoms can often be 

determined from the low r cut-off in gE(r), obtained from direct Fourier transformation of the 
measured total structure factors. Because of systematic errors in the experimental data, and often 
because of the limited data range, the data would not forbid some atoms from coming very close 
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together. However we know that this is physically unrealistic so an excluded volume is defined.  For 
this reason it is usually sensible to specify allowed distances of closest approach, in other words to 
define an excluded volume. This also saves considerable time since moves which would result in 
atoms being too close together can be rejected before calculation of the change in amplitudes. For 
good data the specified closest approaches may be somewhat lower than realistic values but for poor 
data they need to be more carefully chosen. If the values are too large then this is usually apparent 
because the resulting gC(r) has a sharp cut-off instead of decreasing more gradually to zero. If they are 
too low gC(r) may have a sharp spike in the low r region. 

While this is a very simple constraint on the structure it is also very powerful, since the imposition 
of both an excluded volume and a fixed density restricts possible configurations. One could also view 
it as the imposition of a hard sphere repulsive potential. For many materials the dominant effect 
determining the structure is packing, and hence to implicitly include information on atomic sizes in 
the model (these are minimum sizes rather than, for example, ionic radii) severely limits the number 
of structures that are consistent with the data. 
 

5.3.2 Co-ordination constraints 
 
Co-ordination constraints are one of the most valuable and instructive 'tools' used in RMC methods. 

A co-ordination number Nαβ is defined as being the number of atoms of type β between two fixed 
distances of one of type α. Normally the lower fixed distance is the closest distance of approach of the 
two types of atom (or equivalently zero). In the RMCPOW program the concept of co-ordination 
constraints has been slightly generalised to allow constraints over a range of co-ordination numbers. 
If we define the proportion of atoms of type α in the configuration with a particular range of co-
ordination numbers as fRMC and the desired proportion with such a range as freq then we can add an 
additional term to χ2: 

 ( ) 222 ... cRMCreq ff σχ −+=  (30) 

Obviously multiple co-ordination constraints can be applied by adding additional terms. The 
parameter σc, in this case simply acts as a weighting of the co-ordination constraint relative to the 
data. If σc ≈ 0, e.g. 10-6, it is effectively impossible for atoms with the constrained co-ordination to 
change it; this can be used to mimic the effect of covalent bonding. In many cases hard sphere Monte 
Carlo simulation with such co-ordination constraints, that is RMC with no data, can be used to 
produce structures with suitable topology prior to fitting the data. 
The above refers to constraints on co-ordination numbers of individual (although unspecified) atoms. 
It is also possible to constrain the average coordination number, in which case a term 

 ( ) 222 ... avcreq cavc σχ −+=  (31) 

is added to the total χ2 where < c > and avcreq are the actual and desired average coordination numbers 
resp. 
 

5.3.3 Bond valence constraints 
 

Bond valence sum (BVS)  [11] calculations can be used in RMCPOW to constrain the average and 
root mean square BVS of one or more particle types. These constraints, based on a pseudo-potential 
approach, are very useful e.g. to obtain reasonable nearest neighbour environments in structures with 
high degree of disorder due to vacancies. For each BVS R.M.S. constraint a term, 

 ( )� −+=
j

valj vv 222 ... σχ  (32) 
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is added to the total χ2. Here < v > is the actual average BVS and the sum runs over all particles j of a 
type. In the case of average BVS constraints, a term 

 ( ) 222 ... avalreq vaval σχ −+=  (33) 

is added to the total χ2, where < v > and avalreq are the actual and desired average BVS’s resp. In both 
cases the individual BVS for particle j is calculated either as 

 ( )�=
i

Nj
ij RRv 0  (34) 
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where the sum runs over all bonds with Ri 
j < rval. Depending on which expression(s) that are used 

(determined by parameter ival) the relevant parameters, R0 and B or R0 and N, should be given in the 
control data file.  

5.3.4 Magnetisation constraints 
 
According to quantum mechanics the average magnetisation µz (per spin) along any axis z cannot 

exceed gS, S being the single-ion spin quantum number. For a simple ferromagnet this would be the 
expected zero-point average, and decrease with increasing temperature. Although RMCPOW uses a 
classical approach to spins, we have found that, for simple magnetic systems, we normally end up 
with magnetic configurations exhibiting approximately the expected zero-point and temperature 
dependence of the average magnetisation. Since in these cases also the diffuse magnetic scattering is 
very well modelled we believe that RMCPOW can be used as an independent tool for determining 
average magnetisations. Nevertheless it might sometimes be useful to constrain the model to some 
specific value, e.g. to zero for an antiferromagnetic structure or to agree with the temperature-
dependence obtained from susceptibility data. If the calculated modulus of the average magnetisation 
for some magnetic particles is µRMC this is effectuated by adding a term  

 ( ) 222 ... mRMCreq σµµχ −+=  (36) 

where µreq is the required magnetisation and σm is an effective weight. Each magnetic particle type can 
have its own constraint. Note that this is a constraint for the modulus of the average 3-component 
magnetization vector, in contrast to using the thermal models (5>ijob>1) where only a z component is 
considered. 

5.3.5 Spin-spin co-ordination constraints 
 
A magnetic analogue of the atomic co-ordination number is the the spin-spin cosine of neighbours. 

This number can be used in two ways in RMCPOW to constrain local magnetic environmnets. If we 
define the proportion of atoms of type α in the configuration with a particular range of (atomic) co-
ordination numbers, and each of these neighbours with the spin-spin cosine in some range, as fRMC and 
the desired proportion with such a range as freq then we can add an additional term to χ2: 

 ( ) 222 ... cRMCreq ff σχ −+=  (37) 

The average spin-spin cosine can also be constrained in analogy with average co-ordination 
numbers. 

5.3.6 Magnetic potential constraints 
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This constraint utilizes a standard MC procedure for minimising the energy of Heissenberg 
classical spins. The Hamiltonian used is then 

 ji
ij

ijJH SS�=
2
1

 (38) 

where the Si are unit vectors, so the exchange parameters Jij (Jmpot in the control file) should include 
the spin modules. 

5.4 Q spacing and range 
 
It might be considered that the formal real space resolution, given by 2π/Qmax, Qmax being the 

maximum experimental Q, severely limits the usefulness of RMCPOW for modelling to e.g. reactor 
data. Since we are not relying on a Fourier inversion of I(Q) this is however not really relevant. We 
have found that details down to at least 0.2 Å can be distinguished using the RMCPOW algorithm and 
it should be noted that we are actually fitting a physical model similar to e.g. the way Rietveld 
refinement is used. We recommend however that the Q range be extended as far as possible, at both 
ends (particularly at low Q for magnetic modelling). The Q step should be chosen appropriately with 
respect to the experimental resolution, i.e. about five points over the sharpest features of the 
experimental data. Note that the Q mesh, used internally for reducing the 3D reciprocal lattice to one 
dimension is defined at equidistant points as give by parameter dqp, cfm. 4.4.13. 

The minimum Q value that can be modelled is given by Qmin = 2π/L, where L is the longest edge of 
the configuration cell. If you try to fit to smaller Q values then the effects are unpredictable. For 
example, if a much smaller Qmin is used then this can lead to distinct density fluctuations of period 
2π/L in the configuration. Note that weak fluctuations of this period can be seen in many simulations, 
not just in RMC. 
 

5.5 Smoothing the diffuse data 
 
Due to the discrete nature of the way diffuse scattering is computed in reciprocal space it is 

necessary to smear this contribution over a corresponding linear Q extension in order to approximate 
the experimental data. The intensity of each diffuse Q point is then simply uniformly distributed over 
a range of length ∆Qav around Q. ∆Qav is taken as the approximate linear size 2π/Vcc

1/3 of a reciprocal 
cell. 

In order to further smooth the model diffuse scattering, and hence to avoid fitting the statistical 
errors, it is also possible to apply Savitsky-Golay smoothing before the experimental resolution is 
convoluted. The Q width of the smoothing interval is then determined by the parameter swdt as 
swdt⋅2π/Vuc

1/3, i.e. as the swdt fraction of the linear size of a cell of the reciprocal lattice of the unit 
cell. We have found that in general a value of swdt ≤ 0.3 is appropriate. 

 

5.6 Experimental error 
 
The RMCPOW algorithm assumes that we have only statistical errors. These can be a) read with 

the experimental data or b) estimated as proportional to the square root of the data or c) taken as 
constant. A real experimental structure factor IE(Q) will contain both statistical and systematic errors, 
but the whole procedure is not thereby invalidated. A three dimensional structure that is consistent 
with the experimental data within some measure of the error can still be produced, though this 
measure is now less well defined. 

While one might expect statistical errors to be small where IE(Q) is large, and vice-versa, in practice 
the requirement to perform container and background corrections in many experiments means that 
statistical errors are often quite uniformly distributed. For these cases it is usually simplest to assume 
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a constant value of σ at all Q, though σ may differ between different data sets. However there have 
been cases in which large values of σ have been used in particular Q ranges where it is known that 
there were errors in the data. By setting σ(Q) at an extremely large value these data points can 
effectively be ignored. From the above discussion it is clear that the precise value of σ is not known in 
any particular case; it may therefore be considered as a parameter of the simulation. 
 

5.7 Refinable parameters 
 

Experimental data will normally contain small errors in the form of multiplicative and additive 
constants. It is possible to take account of such errors within the RMCPOW algorithm. During the 
RMCPOW process, the real experimental total structure factors, IE(Q), can be considered as simple 
transformations of the structure factors actually measured, IE,m(Q): 
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where nB is the degree of a background polynomial. In addition the calculated structure factor can be 
dependent of a number of other parameters p1, p2, …, e.g. resolution parameters. The expression that 
is actually minimised in the simulation procedure is then accordingly (for the nth experiment) 
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2 ,...,, σαβχ  (40) 

The multiplicative and additive parameters can be refined using a linear least-squares fit and so can 
be done, with a minor cost of computing time, after each attempted move (atomic positions and spin 
orientations are refined by the Monte Carlo procedure and are considered as fix parameters in this 
minimisation step). The other parameters in general require a non-linear approach and are therefore 
more expensive. Full non-linear fits are therefore performed only at each iprint attempted move, and 
inbetween only linear parameters are refined. The non-linear fit is a modified version of the 
Marquardt-Levenberg algorithm based on the code in Numerical Recipes [12]. 

During the non-linear minimisation step it is possible to apply linear constraints on the various 
parameters. Using the refinement codes, cindexj, the ith constraint can be given in the general form 

 �
=

=×
pn

j
jji cindexccoeff

1
, constant  (41) 

where np is the number of refinable parameters, though only terms containing non-zero ccoeff has to 
be given. The actual values of the codes cindex are just labels and can be anything in the range 
[0,100], the value 0 however indicating a fix parameter. Two or more codes can have the value 1, 
indicating that they all correspond to free and independent parameters. No two parameters can have 
the same code > 1, as such values are reserved for constrained parameters. 
 

5.7.1 Renormalisation and background 
 

The application of linear constraints permits the refinement of normalisation factors (β) and sloping 
backgrounds (α0,…) in IE

m(Q). Optimisation of any combination of the parameters is possible. It is 
recommended, however, that the normalisation factor (β) be refined only when the best possible fit 
without changing it could be achieved. The values of the above parameters, together with the χ2 value, 
provide a sensitive test of data quality, particularly in terms of systematic errors. For an experimental 
structure factor reduced to correct absolute units [barns or electron units] β should be 1, and αi = 0. 
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In addition to a polynomial background it is also possible to read supplementary data files 
containing fix, Q-dependent backgrounds, Ifix(Q). Since such a background can be adjusted with a 
refinable scale factor, betaf, it can be used to e.g. subtract a secondary phase with known structure 
but unknown concentration. An additional term betaf × Ifix(Q) is then added in eq. 39. Such 
background data must be defined at the same Q bins as the experimental data. 

Concerning magnetic neutron scattering the effective moments, mueff, effectively determine the 
particle magnetic scattering strengths and should, similar to nuclear scattering lengths, be kept 
constant during the simulation. The application of an overall magnetic scale factor, βm, is however 
often practical in order to obtain a proper amount of model magnetic scattering. βm is here defined 
relative to the total scale factor β so the expected value is 1 (if moments do take on their nominal 
values) regardless of β. Note also that the magnetic scattering goes as mueff2 and so the nominal 
moments scale as √βm. 

5.7.2 Experimental resolution 
 
One of the most important features of the RMCPOW program is the ability to include and fit the 

experimental resolution. In the standard RMC approach, where a model g(r) is computed and Fourier 
transformed to be compared with experimental data, it is not possible to account for the resolution in a 
straightforward way. With the RMCPOW method the calculated structure factor can be separated into 
Bragg and diffuse contributions and both contributions can easily be convoluted with the 
experimental resolution. 

In principle any of the standard resolution functions in use for Bragg profile refinements could be 
applied also in the RMCPOW algorithm. The current version however only includes four versions for 
CW data and one for TOF data. The CW profiles are 

1. The Gaussian: 
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2. The pseudo-Voigt: 
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3. The splitted pseudo-Voigt, as 2. but with terms for a 2nd wavelength. 
4. A Gaussian convoluted with a rectangular distribution, as occuring on instruments with no 

or coarse Soller collimation: 
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where W=dthi⋅[2tanθ/tanθmon.-1], dthi being approx. the monochromator incident divergence and 

θmon the monochromator Bragg angle.  
Parameters determining the peak width can be refined as desired but it is recommended to keep 

them fixed at the nominal instrumental resolution and only allow variation at the end stage of a 
simulation. The expression used for the 2θ  FWHM is 

 θθθ 222 costantan IGWVUH +++=  (45) 

where parameters U, V, W and IG are given in units of degrees squared. The range (in FWHM units) 
over which each Bragg or diffuse point is calculated is determined by the parameter rwdt.  
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Finally, the sole TOF profile (so far) is 
5. the TOF profile function 1 in the GSAS manual [13]: 

 [ ]yyNTOFTOFI uu erfceerfce),( 0 +∝  (46) 

where N,u,y,v and z are dependent on TOF-TOF0 and the instrumental width parameters alp0, alp1, 
bet0, bet1, sig0, sig1 and sig2 (some parameters in the GSAS definition are neglected here). 

Note that thermal diffuse scattering in general occurs as broad peaks below the Bragg peaks. Such 
diffuse features could easily be incorporated into the Bragg peaks in traditional powder refinements, 
where diffuse scattering is not considered. The Bragg peaks would then appear to have a more 
Lorentzian shape and increasing widths with increasing temperature. Thermal parameters would also 
be affected since too much intensity is assigned to Bragg scattering. Since RMCPOW includes 
modelling of both thermal and static diffuse scattering resolution parameters should in principle not 
be affected by these considerations. From these arguments it also follows that if crystallites sizes are 
small so that there is a significant broadening then it can be difficult to distinguish thermal/static 
disorder from size effects, when using the RMCPOW method. 

Since the scattering amplitudes are not dependent on the resolution these parameters can be 
changed at any stage of a simulation. However in order to get a well-defined value of the calculated 
scattering at Qmax, the maximum Q fitted, the intensity of peaks in some range qwmax, determined by 
the resolution, outside Qmax has to be included. So that it should not be necessary to calculate new 
amplitude sums during the simulation, the maximum expected qwmax is read from name.dat rather 
than being estimated from the resolution parameters. Normally, for Qmax ≈10 Å-1, qwmax > 0.5 Å. 

As a further possibility to determine the resolution, a separate file with FWHM’s can be read by 
setting wext > 0. These widths [degrees] are then added (squared) to the Cagliotti expression (eq. 45). 
 

5.7.3 Other refinable parameters 
 
In the case of CW data wavelength and scattering angle zero-shift, parameters wave and zero, can 

be refined. Also, the asy1 parameter that approximately corrects for axial divergence is refinable. 
This parameter shifts peak positions by a factor asy1*coth(2�), over the entire 2� range. 
Correspondingly, for TOF data the difc,difa and zero parameters can be refined. 

For the ijob = 2 or 3 modes, see 3.6 and 4.4.13, it is possible to refine the mean square 
displacements, parameters u2, and average ordered components of magnetic moments, parameters 
muz. For ijob = 3 the Debye temperature TD can also be refined. Future versions of RMCPOW are 
planned to include lattice parameter refinement. 
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