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1. Introduction

RMCPOW is a general purpose Fortran code for reverse Monte Carlo (RMC) modelling of static
and dynamic disorder in crystalline materials using powder diffraction data. Starting from
configurations corresponding to the average crystal structure (as obtained from e.g. Rietveld methods)
the method can be used to refine the local structure. It has been developed to overcome some of the
disadvantages with the standard RMC methods for crystalline materials as applied in the RMCA and
RMCX programs. These include the truncation errors related to Fourier inversion of the pair
correlation function in RMCA and difficulties to introduce experimental resolution in both RMCA
and RMCX, particularly affecting the important constraint on the time-average long-range order that
is related to the Bragg scattering information. Furthermore, RMCPOW allows a proper way of
modelling magnetic structure of localised moments in crystalline materials. This manual first
describes the RMCPOW method, with respect to differences to the standard RMC method, and then
goes on to describe the RMCPOW program. For a general introduction to the RMC method we
strongly recommend reading the RMCA manual [1] and references therein.

1.1 Changes from version 2.0

e Multiple neutron and/or x-ray experiments can now be used, i.e. parameters nexp* (4.4.12) no
longer restricted to O or 1.

¢ Bond valence sum constraints can now be applied with multiple types of coordinating target
atoms, correspondingly parameter input has changed. Also the formulation of the constraint
has changed slightly, see 4.4.6 and 5.3.3.

e Time-of-flight to Q conversion is now performed with the usual difc and difa parameters, see
4.4.14 and 4.5. For profile=5 also the detector scattering angles is now to be given, parameter
thdet.

e For profiles 1 to 4 axial divergence is now approximately accounted for by peak shifts
proportional to coth(20), new parameter asy1, see 4.4.14 and 5.7.3.

®  <j2> magnetic form-factor term introduced as well as the reading of a mixing parameter Cj2,
see 3.2 and 4.4.15.2. Note that if form-factor parameters (rather than symbols) are given in the
control file now only 7 parameters are requested.

2. RMCPOW - the basic method

In RMCA the model scattering is obtained by computing the pair correlation function which is then
Fourier transformed and compared to the experimental scattering. The RMCPOW method instead
uses a direct calculation of the scattered intensities on a mesh of points in reciprocal space. These
intensities are subsequently reduced to a powder cross-section by appropriate integration over
spherical shells. The mesh is chosen as the reciprocal lattice points of the model configuration cell
(hereafter referred to as the configuration cell or cc). Obviously the configuration cell should be
chosen with dimensions such that it is a supercell of the conventional unit cell (hereafter called unit
cell or uc) to allow periodic boundary conditions. This also means that the reciprocal lattice points of
the unit cell are a subset of those of the configuration cell and so the calculated scattering can be
separated into Bragg and diffuse scattering (with respect to the unit cell size) and full use of
experimental resolution can be applied to the computed powder cross-section.

The total differential scattering cross-section is conventionally split into a coherent and an
incoherent (see 3.4) contribution in such a way that the cross-section per atom for a general system of
N particles is
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where f; and rj are the scattering amplitude and position of particle j. For a configuration cell the
coherent cross-section corresponding to a powder experiment is then given by [2]
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Here V. is the volume of the configuration cell, .. runs over the set of reciprocal lattice points for the
configuration cell and R(Q-7.) is the experimental resolution function. The amplitude sum at a
reciprocal point @Q is simply

F(Q)= Z £,(Q)e " 3)

and runs over all N particles in the configuration cell (since both thermal and static fluctuations are
being modelled no Debye-Waller factors are present).

For the purposes of RMCPOW we define a structure factor /(Q) as the total differential scattering
cross-section per scattering atom. As in RMCA the agreement between the model structure factor,
I(Q), and the experimental I“(Q) is probed by a y’-test (m is the number of experimental data points);
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In the RMCA program the pair distribution function G(r) is used for intermediate results. RMCPOW
instead uses the scattering amplitude sums and the following algorithm is used.

1. Start with an initial configuration as in RMCA. Find all configuration cell reciprocal points within
the "experimental sphere" with radius Qn.x. Separate them into Bragg (if they are also points on
the reciprocal lattice of the unit cell) and diffuse points (if they are on the configuration cell
reciprocal lattice only).

2. Calculate the amplitude sums for this old (o) configuration.

3. Obtain the Bragg and diffuse contributions to the model structure factor using eq. (2) and add any
incoherent scattering.

4. Calculate the difference between the experimental and model structure factors, xoz, as in eq. (4).

5. Move one atom at random. Calculate the new (n) amplitude sums and model structure factor and
the new "

6. If y,° < %o’ the move is accepted and the new configuration becomes the old configuration. If ,” >
%, then the move is accepted with probability exp(-(Xa” - X0 )/2). Otherwise it is rejected.

7. Repeat from step 5.

As this process is iterated % will initially decrease until it reaches an equilibrium value about
which it will fluctuate. The resulting configuration should be a three dimensional structure that is
consistent with the experimental total structure factor within the experimental error.

3. Scattering definitions

The algorithm described in the previous section is specifically for modelling a single set of
diffraction data, which could be obtained using X-rays, neutrons, or electrons. The RMC method is
more general than this simple algorithm in that any set or sets of data which can be directly calculated
from the structure can be modelled. It can be applied to isotopic substitution in neutron diffraction or
equivalently to anomalous scattering in X-ray diffraction, to EXAFS and possibly to NMR data. All
data sets can be modelled simultaneously by adding the respective X2 values. The current version of
the RMCPOW program however only allows modelling to one neutron experiment and/or one x-ray
experiment.



For a multicomponent system where the fit is to several different total structure factors (indicated
by index n) we have
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For simultaneous fitting of data sets obtained by different experimental techniques the separate x2
values are simply summed to give one value. The relative weighting of the different data sets is
determined by the choice of the various ¢ values. Clearly the required computer time increases
significantly if multiple data sets are fitted. We give below the definitions for the various types of
scattering that are used in RMCPOW.

3.1 Neutron nuclear scattering

For neutron diffraction the atomic scattering amplitudes are simply the coherent scattering lengths,
b, which are independent of Q and can be found in e.g. [3]. Note that the scattering lengths are

entered in fm units whereas cross-sections are computed in barns (1 fm* = 0.01 barns). A few
elements/isotopes have complex scattering lengths; this case is however not yet treated by RMCPOW.

3.2 Neutron magnetic scattering

For magnetic neutron diffraction the atomic scattering amplitudes are the vectors
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where g [ug] is an effective single-ion magnetic moment. y = -1.9132 is the neutron gyromagnetic
ratio and r, = e*/(4meymec’) = 2.81 fm is the classical electron radius. In the RMCPOW program
magnetic form-factors f™ are approximated by the analytical expressions

fr(Q=4rzsin0/A)=(j,)+c,,(j,) =
Zal exp(w(sinﬁ/l)l )+ ct Cjz (sin 0//1)2 (Z d] exp(«‘-’; (sing/A) )+ fj
1 1

for which values of the coefficients a;, b, and ¢ can be found in [4,5]. Note that RCMPOW uses a
classical approach to magnetic moments, i.e. all three components of the magnetic moment vector are
considered. w is then the total single-ion moment, not only the ordered z component. In many cases
(especially for 3d-elements where the orbital momentum is quenched so that the Landé factor g=2) 1
= g°S(S+1) is a good estimate but e.g. covalency effects can change this value.

(N

3.3 X-ray scattering

For X-ray diffraction the form-factors are approximated by the analytical expressions
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for which values of the coefficients aj, b;, and ¢ and dispersion corrections Af“and Af”can be found in
[6]. With these definitions of form-factors X-ray cross-sections are obtained in electron units (the
differential scattering cross-section in barns units is then obtained by a multiplication with r,* =



0.0790 barns). Note that the total x-ray structure factor as defined in RMCPOW is not normalised by
any average form-factor.

3.4 Incoherent scattering and average patrticle types

Incoherent scattering, i.e. uncorrelated scattering from particles, occurs mainly because of random
nuclear isotopic substitution for neutron scattering and inelastic Compton scattering for x-rays. For a
system with concentration ¢ of element k the neutron incoherent scattering cross-section is
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where 6" can also be found in [3]. For properly reduced experimental data this is the expected
minimum scattering level. It is possible to subtract this contribution from I“(Q) prior to running the
simulation. However in general it is better to allow the program to add this estimate of incoherent
scattering to the model scattering and then refine a constant background to be subtracted from the
experimental data since it might be affected by small normalisation errors.

X-ray Compton scattering may be approximated in RMCPOW by interpolating the values for heavy
atoms given in Table 3.4.4.1 in [4]. The table is given for values of a parameter w o< Q/Z*° so the
effective number of electrons Z should be supplied for each particle type in the control data file.

Additional incoherent scattering is introduced if two or more atom types randomly occupy some
equivalent (sublattice) sites and can be dealt with using two different approaches in the context of
RMCPOW modelling: Either a) the scattering amplitude for particles on a sublattice can be replaced
by the occupational average or b) the different atomic types can be introduced explicitly by first
generating all relevant positions and then randomising their atomic identities in due proportions. The
first approach can also be used in the initial stage of a simulation, even if the distribution is not
expected to be completely random, and later individual identities can be assigned. For nuclear neutron
scattering the occupational average (denoted by <...> and taken over the occupancies ¢”y of the atom
types [ at the sites for particles k) is simply
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and is independent of Q. In the case of x-rays and magnetic neutron scattering the Q-dependency must
also be taken into account. For this reason the program offers the possibility to assign occupation
numbers (see 4.4) for a collection of atomic species for each particle type and then the average
scattering amplitudes are computed internally.

When average scattering amplitudes are used for Bragg scattering there is an additional incoherent
diffuse contribution for particle type k, the Laue monotonic scattering
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where the bar over f indicates nuclear averaging in the case of neutrons. Although this term normally
is small it is important for the overall consistency to add this to the total structure factor. For neutron
magnetic scattering there is also a spin orientation dependence so in this case eq. (11) should be
multiplied by 2/3 if spins are uncorrelated (if there is short- or long-range magnetic order then this is
still a proper estimate of the average extra magnetic scattering). If there are multiple sets of average
types each will have its own average coherent scattering amplitude and additive incoherent
contribution.

The calculated scattering cross-sections are normalised by the total effective number N, of
scattering particles, obtained as the sum of the occupancies of each particle type times the number of
particles of each type. Occupation assignments can be different for each experiment being modelled
but the program checks that N, is the same for all experiments.
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3.5 Partial structure factors

To facilitate the inspection of the scattering contributions from different atomic types an option to
compute the partial coherent cross-sections is included in the program (parameter ijob = 1, see
4.4.13). This is done for the initial configuration only and is not further updated since it does not
affect the progress of the simulation and is rather time-consuming. These partials are computed
according to eq. (2) but summing only over relevant atoms for each partial, the total sum of partials
being equal to I(Q). Note that individual partials can be negative over part of or the whole
scattering range, only the sum of all coherent scattering must be positive definite.

3.6 Analytical models for thermal disorder

RMCPOW can also be run in a mode similar to simulated annealing. Fitting is still done to the
experimental data profile directly but here thermal diffuse scattering (TDS) is dealt with using
analytical expressions rather than explicitly introducing (thermal) displacements from equilibrium
positions. This can be used to refine the average atomic and/or magnetic structure, still keeping a
constraint on the shape and amount of diffuse scattering, or simply to get an estimate of what TDS
effects would look like in some particular system. The expressions that are used neglect the details of
the crystal symmetry but they give the correct amount of diffuse scattering. They have been obtained
by slight generalisations of similar expressions in [7,8].

Two options are available, ijob = 2 or 3, for estimating the TDS. In both modes amplitude sums are
calculated separately for each particle type and at all points T of the configuration cell, i.e. assuming
equality of configuration and unit cells. These modes are suitable for small configurations (perhaps
only one primitive cell) and allows refinement of individual mean square displacements. Using the
Debye-Waller factor for particle type k, Wi(Q) = Q%% with u’ the mean square displacement
(msd) for particles of type k, we now have for the Bragg scattering amplitudes

F(Q)=3 7,@)" " (12)

where r; are now "ideal" equilibrium positions. For ijob = 2 we assume uncorrelated, Gaussian
distributed, displacements and so single- and multi-phonon scattering can be approximated by
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For ijob = 3 we assume a Debye spectrum 7@ (q)= kzTp g/kp (T is the Debye temperature and kp =
(6nN/V,.)"” is the Debye wave-vector cut-off) giving correlated displacements. The msd for particle k
with effective mass M is now taken to be
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where ?,(0) = 3#°/(4MksTp) is the zero-point msd. In the neighbourhood 1Q-4 < k;, of Bragg point 7
single-phonon amplitude sums will be
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and the corresponding diffuse powder scattering term (integrated over constant Q) is
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Since multi-phonon scattering is rather featureless it can be approximated by the expression for the
uncorrelated case,

L, (Q) = ;Ck |fk |2 (1 - exp[— 2W, (Q)][l +2W, (Q)]) (18)

In both cases diffuse magnetic scattering (if present) is given by
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where f is the total magnetic moment and 4, is the average component along the ordering axis
(which direction can be different for the individual spins of type k as given by their unit vectors).
Magnetic Bragg scattering amplitude sums are modified analogous to eq. 12.

For large configurations partial amplitudes becomes impractical and for these cases the ijob = 4
option can be used which is similar to the ijob = 0 and 2 options but using fixed Debye-Waller factors.
Also in this option the amplitude sums are calculated at each configuration r.L.p. but here the diffuse
points in between the unit cell Bragg points are by definition thought to build up the diffuse scattering
so only uncorrelated TDS (eq. 13) corresponding to the loss of Bragg intensity (due to the use of D-W
factors) is added.

Finally, going to the extreme case of amorphous structures, this situation corresponds to all r.1.p.’s
being diffuse points. Although RMCPOW was not designed for these purposes it can sometimes
(when sharp but non-Bragg features are present) be useful to model amorphous structures using the
RMCPOW approach. This option is obtained with ijob = 5.

4. The RMCPOW program

4.1 Installing the RMCPOVW files

The current version of RMCPOW (version 1) is written as a general-purpose program for modelling
multi-component systems using experimental diffraction data as constraints. The program is written in
Fortran-90 and compiled under MS-Fortran Powerstation, VMS Fortran (for ALPHA-stations) and
ABSOFT Fortran for LINUX as well as some other versions of the language. In the MS-Windows
version some QuickWin procedures are used for running as a Windows application. In the standard
version of the program array space, depending on the number of atoms etc, is allocated at run-time.
Static memory versions are however also available on request. Plotting is done using PGPLOT
routines [9].

If RMCPOW is downloaded as part of the WinNFLP suite of programs, then all necessary set-up
should have been done following the installation procedure in the WinNFLP manual. The WinNFLP
suite can be downloaded from ftp::/ftp.studsvik.uu.se/Pub/WinNFLP or http::/www.studsvik.uu.se.
Some of the program features that involve reading values from tables are only available when
RMCPOW is run as a part of the WinNFLP suite. The examples provided are also more interesting
when run in this mode. Otherwise, if the RMCPOW program is downloaded as standalone from
ftp::/ftp.studsvik.uu.se/Pub/RMCPOW then the package contains the following files:



readme.txt - release information

rmcpow.exe - the executable file

rmcpow.pdf - this manual in PDF format
nxsection.dat - neutron scattering parameters
RMC_logicals.ini - environment variable definitions
grfont.dat - PGPLOT fonts

rmcpow_mno.zip - example files for modelling MnO
rmcpow_bafewo.zip - example files for modelling Ba,FeWOq
rmcpow_agbr.zip - example files for modelling AgBr

which should be extracted into a single directory,e.g. c:\nflp\rmc.

For the plotting to work with VMS or LINUX, Xwindows have to run on the machine. Also, for
proper plotting, the PGPLOT font and device environment variables should be defined. In Windows
the MCGR program will attempt to read the RMC_logicals.ini file to define

PGPLOT_FONT = c:\nflp\rmc\grfont.dat
PGPLOT_DEV =/W9

assuming you extracted files into c:\nflp\rmc. For LINUX version this could be done in your login file
using the setenv command, also set the path to include your RMCPOW directory. For VMS version
define a symbol to run RMCPOW.

$ RMCPOW :== “$user$disk:[user.directory] RMCPOW .exe”

This and the environment settings could be done in your login file. Both LINUX and VMS works best
with device /xw. If PGPLOT_DEY is not defined, or set to ?, a list of selectable modes will be
displayed at run-time.

4.2 Running the program

When RMCPOW is run it must be supplied with a name used for all its data files. The Windows
version is simply started by clicking the program icon, or it may be started from the RMC menu using
the WinNFLP program. An Open file window appears where the user can choose the relevant
name.dat file and then the simulation will start. During the run menus can be accessed to save current
data promptly or to exit the program with or without saving. Plotting of the current fitted patterns and
the progress of %* can also be turned on/off. A record of the last work directory will be saved to a file
rmcpow.ini in the directory where the exe file is stored so that easy continuation is possible next time
the program is run.

For all other versions it is intended that the program be run in such a way that the data file name
can be supplied on the command line. The Linux version of the machine dependent routines allow this
with no further ado. On VMS systems it is necessary to define a symbol as described above and then
the program can be run. For example

mcpow name

would run the RMCPOW program with files called name with various extensions. This name is given
to a number of files used by the program. The general program parameters are supplied in the control
file name.dat. There must also be a file name.cfg containing the positions, or configuration, of the
atoms. It is only necessary to calculate the full scattering amplitudes once at the beginning of the first
run; thereafter only the change in the amplitude sums needs to be updated. To facilitate this the
different amplitude sums are written to binary files. These files are given the names name.aqz, where
z is n for nuclear neutron scattering, m for magnetic neutron scattering and x for x-ray scattering. At
specified intervals and when the program starts and terminates the amplitude and configuration files
are updated. Also, the output results (experimental and calculated structure factors) will be written to



name.out. Information on the parameters read from name.dat and the status of the program are written
to name.log. Sample files are included in the examples.

On the next run the amplitudes will be read from the relevant files. If any of the required files does
not exist, or if there is a read error, or ijob = 1, or iexists = 0, then amplitudes will be recalculated.
Also if any of the following parameters are being changed the amplitudes have to be recalculated
since these parameters affect either the number of reciprocal points used or the value of the
amplitudes sums: Nng2, the maximum Q point to be fitted; qwmax, the additional Q range used to
eliminate resolution truncation effects at Q(Qwmax); any lattice parameters and any parameters
determining the scattering amplitudes of particle types (scattering lengths, form factor parameters,
effective magnetic moments). Changes in these parameters are not monitored by the program so the
user has to control this manually, e.g. by setting iexists = 0.

If ncoll > 0 saved configurations will be written to name.cfg* with * replaced by an incremented
number. This option is to be used for sampling independent configurations when the simulation has
converged.

4.3 The configuration files

In general any parallelepiped can be used for configurations. Since a crystalline system is being
modelled the box dimensions must be chosen to accommodate an integral number of unit cells in each
direction, with the numbers preferably being chosen to make the configuration as cubic as possible.
The atomic coordinates are defined in terms of the box coordinates and are normalised to limits of
+1.0. The box coordinates are then defined in terms of the laboratory coordinates by the matrix given
in the top of the configuration file. The values in this matrix are recalculated from the corresponding
unit cell parameters in name.dat every time the program is run and these are then written to the new
configuration file. For a cubic box the diagonal terms in the matrix are equal to half the box length
(L/2) in A.

The numbers of different types of atoms and the order of their coordinates are given in the top of
the configuration file. The atomic coordinates then follow in a single list. The choice of a format in
which the system is not explicitly identified in the configuration file (other than by the title) is made
deliberately; configurations can then be easily modified or used as starting configurations for different
systems with a minimal amount of editing. The same format of configuration file is also used for
molecular systems, where both coordinates and Euler angles define the molecules. For this reason
atoms are defined as molecules with a single atomic site. An example configuration file is included in
the package.

For modelling magnetic structures a similar spin configuration file, name.scfg, is used. Here the
coordinates are replaced by the unit vectors of the magnetic moments (i.e. orientations w.r.t the
Cartesian coordinate system defined by the unit cell matrix given in name.dat) for each magnetic
atom. The magnitudes of the moments of particular types are given as parameters in the name.dat file.
For each magnetic atom type there have to be as many spins as there are atoms. The order (within a
specific type) of the magnetic atoms has to be the same in the atomic and spin configuration files.
However, non-magnetic atoms should not be included in the spin configuration file.

4.4 The control data file

The RMCPOW control data file, name.dat, can be thought of as being divided into various sections.
The description that follows is given section by section. Items specified in the same block below can
in most cases be split into multiple lines in the data file. Also a comment can be entered after the final
parameter of each block (on the same line). Codes for refining the background, normalisation and
experimental resolution are used such that a zero value indicates a fix parameter and values > O free
parameters, possibly constrained to other parameters. An example control data file is included in the
package.



4.4.1 General parameters.

title character*80 A title for the run.

ncoll,ncycles integer ncoll is the number of configurations to collect after convergence;
ncycles is then the average number of moves per atom inbetween
each save. The program will stop when ncoll configurations have
been collected.

iprint, iplot, 2*integer,2*real | iprint determines how often a summary will be written to the

timelim, timesav

standard output. It will be written after every iprint moves
generated. iprint also determines how often a full non-linear fit,
see 5.7, will be performed, and how often a plot of the current
results will be updated. iprint should not be too small or otherwise
time will be wasted in continually writing to the .log file and this
will become very large; If iplot is O plotting is initially turned off.
In the Windows version it can be turned on and controlled during
the run using the Plot menu items and the mouse (left-click and
drag to select region, right-click to reset).; timelim is the time the
program should run for, in minutes; timesav is the interval at
which the results should be saved to the output files (they are
always saved when the program starts and ends anyway). If the
program is left running for a very long time it is best to save the
results every now and then, perhaps once an hour. The results
should not be saved too often as this simply wastes time writing
large files.

al,a2,a3, real*6 The unit cell lattice parameters (Iengths [A] and angles [°])

g1,02,03

cal,ca2,ca3, integer*6 Codes for refining lattice parameters (fit option not yet available,

cg1,cg2,cg3 these should be zeroes).

isym,ncell integer*4 isym - Centering symmetry code, -8 < isym < 8: 1=P, 2=A, 3=B,
4=C, 5=I, 6=F, 7=R (rhombohedral setting) and 8=Hexagonal,
isym also affects choice of Cartesian coordinates, see 5.1; ncell -
The number of intermediate cells in the configuration, along each
direction.

pui,denui integer*10 pui — The 9 elements of the UC to IC transformation matrix, see
5.1; denui — The common denominator of pui. This and next line
only read if isym < 0.

icart integer Determines the Cartesian coordinate system if isym < 0.

ntypes,ntypesm |integer*2 ntypes — no. of particle types; ntypesm — no. of magnetic types.

attypes integer*ntypesm | For each magnetic type the particle type to be associated with.

Only read if ntypesm > 0.

4.4.2 Parameters for moves.

delta

real array

The maximum move for each type of particle. Recommended
values are in the range 0.01-0.2. A value of zero is allowable, in
which case the program will not attempt to move those particles.
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See section 5.2 for a description of the use of this parameter.

deltam

real array

The maximum rotation move [°] for each magnetic type. Only
read if ntypesm > 0.

nswap,swapfrac

integer,real

nswap - The number of kinds of particle swap moves, see 5.2, 0 <
nswap < 10; swapfrac - the fraction of generated moves that will
be of the swap kind.

swaptype1l,
swaptype2,
swapcut

2*integer,real

swaptype1/swaptype?2 - The first and second particle types to
swap; swapcut - the distance from the first particle, within which
to find the second particle. If sSwapcut=0 then any particle of type
swaptype2 can be chosen. This block is repeated for each of the
nswap types.

nref,reffrac

integer,real

nref - The number of kinds of particle reference moves, see 5.2, 0
< nref < 10; reffrac - the fraction of generated moves that will be
of the reference kind.

reftypet,
reftype2, refcut,
deltaref

2*integer,2*real

reftype1 - The particle type to move; reftype2 - The particle type
to move to; refcut - the distance from the first particle, within
which to find the second particle. If refcut=0 then any particle of
type reftype2 can be chosen. If deltaref > 0, then it is the
maximum move that particle 1 is displaced from the reference
position of particle 2. This block is repeated for each of the nref

types.

4.4.3 Parameters for closest approach constraints.

rcut

real array

The closest allowed approach of two particles. There should be a
value for each partial g(r). There are thus n(n + 1)/2 values for a
n-component system. As in all other parts of the program the
partials are given in the order 1-1, 1-2, ..., I-n, 2-2, ..., 2-n, ... n-n.
See section 5.3.1 for a description of the use of these parameters.

4.4.4 Parameters for co-ordination constraints (5.3.2).

| ncoord

| integer

| The number of co-ordination constraints, 0 < ncoord < 20.

4.4.4.1 Parameters for each co-ordination constraint (one block per constraint).

typec integer The type of the central particle.

typen integer The type of the neighbour particles.

rcoord 2*real The two distances between which to calculate the co-ordination
number.

coordno 2*integer The lower and upper bound of the desired co-ordination number.

coordfrac real The fraction of the central particles desired to have this co-
ordination constraint.

sigmac real Effectively a parameter weighting this constraint relative to others
and the fit to the data.

4.4.5 Parameters for average co-ordination constraints (5.3.2).
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| nave

| integer

| The number of average co-ordination constraints, 0 < navc < 20.

4.4.5.1 Parameters for each average co-ordination constraint (one block per constraint).

avctypec integer The type of the central particle.

avctypen integer The type of the neighbour particles.

ravc 2*real The two distances between which to calculate the co-ordination
number.

avcno real The desired average co-ordination number.

sigmaavc real Effectively a parameter weighting this constraint relative to others
and the fit to the data.

4.4.6 Parameters for R.M.S. bond valence constraints (5.3.3).

[ nval

| integer

| The number of average valence constraints, 0 < nval < 20.

4.4.6.1 Parameters for each R.M.S. bond valence constraint (one block per constraint).

valtypec integer The type of the central particle.

nvaltypen integer No. of neighbour types.

rval real The maximum bond distance for which to calculate the bond
valence sum.

valreq real The required R.M.S. of the bond valence sum.

sigmaval real Effectively a parameter weighting this constraint relative to others
and the fit to the data.

4.4.6.2 Parameters for each neighbour type (one block per type).

valtypen integer The type of the neighbour particles.

ival integer Code to select bond valence expression, ival =1 — power law, ival
=2 — exponential.

rOval, bval real*2 Parameters for the ival expression, see 5.3.3.

sigmaval real Effectively a parameter weighting this constraint relative to others
and the fit to the data.

4.4.7 Parameters for average bond valence constraints (5.3.3).

| naval

| integer

| The number of average valence constraints, 0 < nval < 20.

4.4.7.1 Parameters for each average bond valence constraint (one block per constraint).

avaltypec integer The type of the central particle.

navaltypen integer No. of neighbour types.

raval real The maximum bond distance for which to calculate the bond
valence sum.

avalreq real The required average bond valence sum.

sigmaaval real Effectively a parameter weighting this constraint relative to others
and the fit to the data.
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4.4.7.2 Parameters for each neighbour type (one block per type).

avaltypen integer The type of the neighbour particles.

ival integer Code to select bond valence expression, ival =1 — power law, ival
=2 — exponential.

rOval, bval real*2 Parameters for the ival expression, see 5.3.3.

sigmaaval real Effectively a parameter weighting this constraint relative to others
and the fit to the data.

4.4.8 Parameters for average magnetisation constraints (5.3.4).

[ navm

| integer

| The number of average magnetisation constraints, 0 < ntypesm.

4.4.8.1 Parameters for each average magnetisation constraint (one block per constraint).

avmtype,
avmno,
sigmaavm

integer,2*real

avmtype — The atomic type for which to constrain the average
magnetisation; muav — average magnetisation constraint [Ug];
sigmam - effectively a parameter weighting the average
magnetisation constraint for this type relative to other constraints
and the fit to the data.

4.4.9 Parameters for spin co-ordination constraints (5.3.5).

[ nsc

| integer

| The number of spin co-ordination constraints, 0 < nsc < 20.

4.4.9.1 Parameters for each spin co-ordination constraint (one block per constraint).

sctypec integer The type of the central particle.

sctypen integer The type of the neighbour particles.

rsc 2*real The two distances between which to calculate the co-ordination
number.

scho 2*integer The lower and upper bound of the desired co-ordination number.

sthsc 2*real The lower and upper bound of the desired spin-spin cosines.

scfrac real The fraction of the central particles desired to have this co-
ordination constraint.

sigmasc real Effectively a parameter weighting this constraint relative to others
and the fit to the data.

4.4.10 Parameters for average spin co-ordination constraints (5.3.5).

nasc

integer

The number of average spin co-ordination constraints, 0 < nasc <
20.

4.4.10.1 Parameters for each average spin co-ordination constraint (one block per

constraint).

asctypec integer The type of the central particle.

asctypen integer The type of the neighbour particles.

rasc 2*real The two distances between which to calculate the average spin-

spin co-ordination.
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ascno real The desired average spin-spin cosines.

sigmaasc real Effectively a parameter weighting this constraint relative to others
and the fit to the data.

4.4.11 Parameters for magnetic potential constraints (5.3.6).

nmpot integer The number of magnetic potential constraints, 0 < nmpot < 20.

Tmpot, 2*real Tmpot - the absolute temperature [K]; sigmagpot - effectively a

sigmagpot parameter weighting this constraint relative to others and the fit to
the data. This line only read if nmpot > 0.

4.4.11.1 Parameters for each magnetic potential constraint (one block per constraint).

mpottypec integer The type of the central particle.

mpottypen integer The type of the neighbour particles.

Rmpot 2*real The two distances between which this magnetic potential
constraint is defined.

Jmpot real The magnetic exchange interaction energy [K].

4.4.12 Parameters for number of experimental data sets

nexpn,nexpc, 3*integer nexpn and nexpc - the number of neutron and/or x-ray

nsx experiment constraints; if NSX > 0 a single crystal output file is
produced (in current version only for neutron scattering).

h1,h2,k1,k2,11,12 | 6*integer The min and max limits of the single crystal output in units of
configuration reciprocal basis vectors. NB: due to the reciprocal
lattice inversion symmetry 11 > 0.This line only read if nsx > 0.

4.4.13 General parameters for experimental data sets (only read if nexpn>0 or nexpx>0)

dgp,swdt 2*real dgp is the step of the internal Q binning used for reduction to
powder cross-sections before resolution is applied; If swdt>0
Savitsky-Golay smoothing of the diffuse scattering is performed,
swdt then determines the width of the smoothing interval, see
section 5.5.

ijob,iexists 2*integer If ijob = 0 a normal RMCPOW simulation is performed. If ijob = 1
partial structure factors are calculated for the initial configuration
and written to the output file, see section 3.5; If ijob = 2or 3 the
program is run with analytical estimates of thermal disorder
scattering, see 3.6, for ijob = 2 D-W uncorrelated diffuse
scattering is added and for ijob = 3 correlated diffuse scattering is
added. ijob = 4 is the same as ijob = 0, but with fixed D-W factors.
If ijob = 5 then all r.1.p.’s are treated as diffuse points, i.e. this
option is suitable for amorphous structures; If iexists = 0
amplitudes are recalculated each time, if iexists = 1 the programs
attempts to read the relevant amplitude files, if anyone required
doesn't exist the amplitudes are recalculated.

4.4.13.1 Parameters for uncorrelated thermal models if ijob = 2 or ijob = 4.

| u2 |real array | u2 - Mean square displacements [A?] for all particle types.
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cu2

integer array

cu2 - codes for refining cu2. If ijob = 4 then cu2 should all be
zero.

4.4.13.2 Parameters for correlated thermal models if ijob = 3.

u2,TD,Tabs real array,real*2 | u2 - Mean square displacements [A’] for all particle types; TD -
Debye temperature [K]; Tabs - absolute temperature [K].
cu2,cTD integer array, cu2 - codes for refining cu2; cTD - code for refining TD.

integer

4.4.13.3 Parameters for thermal models if 1<ijob < 5 and ntypesm > 0.

muz

real array

"nn

muz - average "z" component [[p], see 3.6, for all magnetic types.

cmuz

integer array

cmuz - codes for refining muz.

4.4.14 Parameters repeated for each neutron experimental data set

file character*80 File containing the experimental data or name for a file with
“experimental” data generated based on the input model and
parameters, see NX below.

xin,xout 2*integer Determines the function type f(x) of the input and output data, Xin
(orxou) =0 x=0,xin=1 < x=20o0r xin=2 < x =TOF.

x1,x2,nx 2*real,integer The min and max x values in the experimental data file to be fitted.
If X2 is larger than the max x in the data file, the last data point
used will be the last point given in the data file; If nx = 0, data is
read from file. If nx > 0 a new dataset is created and written to file
with nx equidistant points from X1 to x2.

nexcl integer No. of excluded regions, not to be fitted.

xexcl1,xexcl2 2% integer The min and max x for each excluded region. This line is repeated
nexcl times, i.e. only present if nexcl > 0.

mur real mur is the macroscopic absorption, see 4.5, if mur = 0 then no
absorption correction is applied.

isig,sigma integer,real isig - code for determining the experimental standard errors. If
isig=1 standard errors are read from a third column in the data file.
If isig=2 standard errors are estimated as the square root of the
experimental data. If isig=3 standard errors are constant =1;
sigma - standard errors obtained as above are scaled by this value,
effectively a parameter weighting this constraint relative to others
and the fit to the data.

nbpol,nbfix integer nbpol is the no of terms in a polynomial background to be
subtracted from the data, 0 < nbpol < 5. nbpol -1 is then the
polynomial degree; nbfix — no. of additional "fix" backgrounds,
see 5.7.1, 0 < nbfix < 2.

a0, af,..., nbpol*real, «i - Initial coefficients for the polynomial background; cao. - Codes

co0,cal,... nbpol*integer for refining the coefficients. This line only read if nbpol > 0.

bfixfile character*80 File containing the fix background data. Q values must be the

same as in the experimental data file. This line only read if nbfix
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>0, and is repeated for each fix background.

pf1, pf2,..., real,integer Bfi - Initial scale factors for the fix backgrounds; cpfi - Codes for

cpfi, cpf2,... refining Bfi. This line only read if nbfix >0.

B,cp real,integer B - Initial scale factor for the model scattering; ¢ - Code for
refining B.

rwdt,qwmax, 2*real,integer rwdt is the range of the resolution in FWHM units, normally rwdt

profile > 3.5; gwmax - maximum expected Q resolution range at Q(ng2)
[A™]; profile is the index of the resolution profile function, 0 <
profile < 6, cfm. 5.7.2 for definitions.

wave, zero, 3*real or 4*real |wave — the incident wavelength; zero - the x experimental data

asyl OR offset; asy1 — axial divergence asymmetry parameter; thmon —

wave, zero, the monochromator 6 Bragg angle, only read if profile = 4.

asy1,thmon OR
difc,difa,zero,
thdet

difc,difa,zero — TOF to Q conversion parameters; thdet —detector
scattering angle.

cwave, czero, 3*integer codes for refining wave, zero and asy1 or difc,difa and zero.
casyl OR (thmon and thdet are not refinable, so no codes)
cdifc,cdifa,czero

wave2, zero2, 3*real wave?2 — a 2™ wavelength; zero2 — 2™ offset; wgt2 — weight of a
wgt2 2" wavelength component, only read if profile = 3.

cwave2, czero2, |3*integer codes for refining wave2, zero2 and wgt2, only read if profile =
cwgt2 3.

u,v,w,ig OR 4*real or Resolution FWHM parameters [degrees’]. U,...,ig — if profile = 1,
u,v,w,ig,eta OR |5%*real or u,...,eta —if profile = 2 or 3, u,...,dthi — if profile = 4,
u,v,w,ig,dthi OR | 5%*real or aOtofn,attofn,... —if profile = 5, see 5.7.2

altofn,altofn, | 7*real

b0Otofn,b1tofn,
sOtofn,s1tofn,
s2tofn

cu,...,cig OR 4*integer or Codes for refining resolution parameters.

cu,...,ceta OR | 5*integer or

Cu,...,cdthi OR | 5*integer or

caOtofn,..., 7*integer

cs2tofn

wext integer if wext>0 a file with additional resolution widths is read, see 5.7.2
wextfile character*80 File name for additional resolution widths [degrees]. Q values

must be the same as in the experimental data file.

4.4.15 Nuclear scattering parameters repeated for each particle type

noccn integer No of atom types for this particle type. 0 < noccn < 5. noccn =0
indicates a vacancy (zero-scattering) type.

coccn,bcoh, 3*real One block repeated for each of the noccn types. coccn —

siginc or or occupancy of this atom type; bcoh — coherent neutron scattering

natsym,coccn

character,real

length [fm]; siginc — incoherent neutron cross-section [barns];
natsym — atomic symbol (scattering parameters read from table).
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4.4.15.1 Parameters for magnetic neutron scattering.

X2m

real

The maximum x for which magnetic diffuse scattering will be
calculated. If x2m < 0 no magnetic scattering is calculated.

betam,cbetam

real,integer

betam — an overall scale factor for the magnetic scattering,
relative to the model nuclear scattering; cbetam — code for
refining betam.

4.4.15.2 Magnetic scattering parameters repeated for each of the ntypesm magnetic

particle types (only read if g2m > 0)

noccm

integer

noccm — No. of magnetic types for this particle type, 0 < noccm
<5.

magsym,coccm,

character,3*real

magsym — magnetic symbol (scattering parameters read from

mueff,cj2 table). This and next block (if no magsym) repeated for each of the

or or noccm types. COCCM — occupancy of this magnetic type; mueff —

coccm,mueff,cj2 | 3*real effective magnetic moment [Ug]. Cj2 — mixing term for the <j2>
contribution, see 3.2.

formm real array Magnetic form-factor parameters (al,bl,...,a3,b3,c) for the <j0>
contribution. Not read if there is a magsym entry on previous line

formm2 real array Magnetic form-factor parameters (al,bl,...,a3,b3,c) for the <j2>

contribution. Not read if there is a magsym entry on second
previous line or ¢j2 = 0.

4.4.16 Parameters repeated for each x-ray experimental data set

The same as section 4.4.14 but with the corresponding x-ray parameters, then

compton

integer

if compton>0 Compton scattering will be added to the model x-
ray scattering, see section 3.4

4.4.16.1 X-ray scattering parameters repeated for each particle type

NOCCX

integer

No. of atom types for this particle type. 0 < noccx < 5.

xatsym,coccx,
zeff

character,2*real

xatsym — atomic symbol (scattering parameters read from table).
This and next block (if no xatsym) repeated for each of the noccx

or or types. COCCX — occupancy of this atom type; zeff — effective
coccx,zeff 2*real number of electrons for Compton scattering.
formx,dfp,dfpp | real array X-ray form-factor parameters (al,bl,...,a4,b4,c); dfp,dfpp - the

real and imaginary dispersion corrections to the x-ray scattering
form-factor.

4.4.17 Parameters for linear constraints of non-linearly refined parameters

nlc integer No. of linear constraints.
nterms, integer, nterms — no. of terms in the linear constraint; ccoeffi and cindexi
ccoeff1,cindex1, | 2*nterms*real — coefficients and parameter codes for each term. This line is

ccoeff2,cindex2,

repeated for each of the nlc constraints. See 5.7.
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4.5 The experimental data files

The files containing the experimental data are in the DATA format as defined for the NDP series of
programs. The number of points is given on the first line, the second line contains a title or other
information, and the subsequent lines contain the x, I(x) or x, I(x), err(x) values in two or three
columns, where x is momentum transfer, Q, scattering angle, 28 or time-of-flight, TOF, as determined
by the parameter Xin, cfm. 4.4.14. Data must be given at increasing x values, but do not need to be at
equidistant points. An example data file is included in the package. Allowing for an experimental
zero-point shift the conversion from momentum transfer is defined by

20 = 2sin " (QA/47)+ zero (20)
for constant wavelength (CW) data, with 26 given in degrees, and by
TOF = difc -2 /Q +difa - 27/ Q) + zero 21)

for t-o-f data, with TOF given in ps. difc can be estimated from the flight paths, diffraction angle,
and detector height by use of

difc:252.816-2sin¢9(L1 +4L +L§/16) (22)

Note that if more than one set of diffraction data is supplied, unlike in the RMCA program, the sets
do not need to be defined at the same x values, and they can cover different ranges (x types can also
be dissimilar for different experiment).

The experimental data should normally be fully corrected for absorption, multiple scattering and
Placzek effects (in the case of neutrons) and polarisation. Data must also be normalised with respect
to angle-dependent efficiencies etc., so that they truly (apart from a scale factor and background, see
5.7.1) represent the differential scattering cross-section per atom in barns (neutrons) or electron units
(x-rays), i.e. with dimensions of area. Data, which are not reduced in this way, must be modified
accordingly since a quantitative analysis of the diffuse scattering is intended. However, in some cases
a rough absorption correction can be sufficient for at least approximate diffuse scattering modelling.
To facilitate this the following transmission factor has been implemented

7(8) = exp|- (1.7133 - 0.368sin(8) hmur + (0.0927 + 0.375sin* (@) mur®| (23

and can be controlled by the macroscopic absorption parameter mur, cfm. 4.4.14 .

4.6 Example files

Three sets of example files are supplied which demonstrate the use of the program and which can
be used for testing. Extract the compressed files into a suitable directory and follow the instructions in
the PDF document included with each example. The examples are:

mno.zip
The average magnetic structure of MnO in the long-range ordered antiferromagnetic phase at 15 K

will be determined. Investigation of the short-range magnetic order at 130 K, i.e. just above the Neel
temperature Ty=120 K can also be done
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bafewo.zip

The average magnetic structure of Ba2FeWO6 in the long-range ordered antiferromagnetic phase at
15 K will be determined starting from a random configuration.

agbr.zip

The long-range and local order of crystalline AgBr will be modelled by a simultaneous fit to the
(thermal) diffuse and Bragg scattering. Correlation of atomic displacements of atoms with small
separation will be studied and compared to the long-range limit results.

For more examples on the use of RMCPOW see [10]

4.7 Other programs available

There are two other Monte Carlo-based codes available at NFL. RMCA is the general program for
modelling atomic configurations and MCGR models total or partial pair correlation functions to fit
scattering data. There are many programs available in the NFLP suite for display and analysis of the
results produced by RMCPOW, and for the creation and modification of configurations. Some of the
NFLP suite programs are convenient for preparing experimental data sets in the correct format for
input to RMCPOW. All of these programs are documented separately.

5. RMCPOW - simulation details

5.1 Configuration size and shape

When starting from the initial configuration the amplitude sums must be calculated. This involves a
summation of order N >. However for each particle move it is only necessary to calculate the change in
the amplitude sums corresponding to the moved particle, which is a summation of order N. Since the
time for calculating the initial structure factor, and single moves, is much larger for RMCPOW than
RMCA some considerations has to be made with regards to the size. Generally we use N > 1500, and
have used N = 20000.

The size of the configuration cell is also important because it determines the major part of RAM
%
memory needed during the simulation. The reciprocal volume per used T.. is V., = 81’/V.. where V.

is the volume of the configuration cell. If the maximum Q being modelled is Q,,,, then the number of
configuration cell reciprocal points with Q < Q. 1S

47[Q jlax 3 Vcc Qtilax
N T (Qmax) = 3 / = 2
87 )V, 67

(24)

A typical model configuration might consist of 5000 atoms with an atomic density 0.08 A” so that
V..~ 6-10* Al (i.e. linear dimensions are ~ 40 10\). At reactor based diffractometers Q,,,. ~ 10 Al
giving N, ~ 10°. Inversion symmetry of the reciprocal lattice reduces the number of points that
actually have to be computed and stored by a factor of 2. For updating the amplitudes a copy of each
(real and imaginary) sum is used so that the memory required for such a simulation is >16 N, bytes
(assuming a single precision size of 8 bytes for reals).

The basic entity for building a crystalline model is the unit cell. The shape or metrics of this cell is
given by the cell edge and angle parameters or, equivalently, it's three basis vectors. The unit cell may
be primitive or centred. In addition to simply building configurations as multiples along each basis
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vectors we can use a generalised approach where in principle any parallelepiped, containing the same
periodicity as the primitive cell, can be used as building blocks for the model. For this purpose we
define an intermediate cell (IC) being a supercell of the primitive cell but not necessarily the
conventional unit cell. The whole configuration is then constructed as multiples of IC:s in the
traditional way. Transformation matrices conveniently describe relations between the various cells
used and we give below the definitions used.

isym > (0 — the IT conventional unit cell (UC) is used as IC

isym = 1 — Primitive cell

isym =2 — A centred cell

isym = 3 — B centred cell

isym =4 — C centred cell

isym =5 — I centred cell

isym = 6 — F centred cell

isym = 7 —» Rhombohedral cell in hexagonal setting

isym = 8 — Hexagonal primitive cell

i&ym < 0 — A non-standard IC is generated from the corresponding UC by a transformation matrix
P

The transformation matrix P = (pyj) 1s defined by the relations between the two sets of basis vectors
a; and A;, where i=1,2,3, for the UC and IC respectively according to

A, =pa +p,a,+pa, (25)

For computational purposes a common least denominator is taken out of the matrix and given
separately. E.g., to convert a UC to its C-centred supercell we can take

A =a+a, , A,=-a +a, , A ,=a, (26)

so that the common denominator is 1 and the transformation matrix is

1 -1 0
P = 1 1 0 (27)
0O O 1

ie. (A1, A2,A3)= (a;,a:,a;) PY. The same formalism can of course also be used to construct an IC
smaller than the UC. E.g. to construct the thombohedral primitive cell of a face centred cell we
instead use

AI:%(al+a2) , Azzé(az—ira,j) , A3:%(a3+al) (28)

so the denominator is 2 and

1
P =1 (29)
0

—_— = O
—_— O =

For visualisation of a configuration it must be related to a Cartesian coordinate system. Also, spin
calculations are easier with Cartesian coordinates. Various RMC and USEFUL programs use the
following definitions: (A; and x; are unit vectors of the IC basis and Cartesian systems resp.)

icart=1 - Al =X, Az 1x3, Azz, A33>0 , default for isym=1 to 6

icart =2 — AZ: X, A3 1 X3, Az, Ay>0
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icart =3 - A3: X, Al 1 X3, Ay, A0
icart =4 - Al =X, A3 1 Xa, Agy, Ay>0, default for isym=7 to 8
icart=5 - A2= Xi, Al 1x5, A23, A31>0
icart=6 - As;=x;,As L X», Ay, Ap>0

5.2 Random moves

The maximum size of the random move, delta, determines the ratio of accepted to rejected moves,
but also determines the amount that the structure may change with each move. If delta is too small
then nearly all moves will be accepted but the structure will change little, while if it is too large then
few moves will be accepted and the average structural change will also be small. If we attempt to
choose delta such that the ratio of accepted to rejected moves is approximately 1:1, as is often done in
MMC, this usually leads to a value delta < 0.1 A. The average structural change per move is usually
maximised for 0.05 < delta < 0.2 A, so this range is normally used. If the packing fraction (ratio of
excluded volume to total volume) is high, as in crystalline materials, then it is necessary to use small
moves so that a sufficient number are accepted. The convergence of the RMCPOW procedure is
therefore very slow.

In many systems a tendency for long-range or local (chemical) ordering of two or more atomic
types to occupy a particular lattice site is observed, e.g. substitution of two metallic types on a fcc
lattice. Since it can be almost impossible to achieve such ordering from an initial random distribution
using just ordinary displacive moves, two options to allow swap moves is given in the program.

In the first option, “swap moves”, the identities of two atoms of different types are interchanged. If
one of the selected atoms also carries a magnetic moment then this spin is also moved, but if both are
magnetic only the moduli of the moments are interchanged whereas the orientations are maintained at
the original positions. Swap moves can also be used to interchange atoms of a particular type with
vacancies (which then are defined as a particle type with zero scattering properties and their positions
included in the configuration). Note that vacancies do not produce any change in the model scattering
cross-section for displacive moves. The only effective constraint on vacancy positions is then any
closest-approach constraints so delta should be kept at zero for vacancies.

In the second option, “reference moves”, the first atom is moved to the (reference) position of the
second atom. If the first atom carries a magnetic moment, then this spin is also moved. Additionally,
the first atom may be given a random displacement with respect to the reference position, as
determined by parameter deltaref. The second atom is always maintained at its original position (and
possibly spin orientation), thereby acting as a fix reference. Due to the character of this type of move
the second type is naturally of the vacancy kind. This option is particularly useful when atoms show a
fractional occupation of certain crystallographic sites, without apparent long-range order but possibly
some short-range order.

5.3 Constraints

Other information that cannot be used directly can be made use of in the form of constraints; this
may include NMR, EPR, Raman scattering and chemical knowledge. The most commonly used
constraint in RMCPOW is on the closest distance of approach of two atoms. Other constraints that
can also be used in the current version of RMCPOW are on the co-ordination number of atoms, bond
valencies and average magnetisation of spins.

5.3.1 Minimum distance of atom pairs

For perfect data realistic values for the closest approach distances of pairs of atoms can often be
determined from the low r cut-off in gE(r), obtained from direct Fourier transformation of the
measured total structure factors. Because of systematic errors in the experimental data, and often
because of the limited data range, the data would not forbid some atoms from coming very close
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together. However we know that this is physically unrealistic so an excluded volume is defined. For
this reason it is usually sensible to specify allowed distances of closest approach, in other words to
define an excluded volume. This also saves considerable time since moves which would result in
atoms being too close together can be rejected before calculation of the change in amplitudes. For
good data the specified closest approaches may be somewhat lower than realistic values but for poor
data they need to be more carefully chosen. If the values are too large then this is usually apparent
because the resulting g°(r) has a sharp cut-off instead of decreasing more gradually to zero. If they are
too low g°(r) may have a sharp spike in the low r region.

While this is a very simple constraint on the structure it is also very powerful, since the imposition
of both an excluded volume and a fixed density restricts possible configurations. One could also view
it as the imposition of a hard sphere repulsive potential. For many materials the dominant effect
determining the structure is packing, and hence to implicitly include information on atomic sizes in
the model (these are minimum sizes rather than, for example, ionic radii) severely limits the number
of structures that are consistent with the data.

5.3.2 Co-ordination constraints

Co-ordination constraints are one of the most valuable and instructive 'tools' used in RMC methods.
A co-ordination number N4 is defined as being the number of atoms of type S between two fixed
distances of one of type a. Normally the lower fixed distance is the closest distance of approach of the
two types of atom (or equivalently zero). In the RMCPOW program the concept of co-ordination
constraints has been slightly generalised to allow constraints over a range of co-ordination numbers.
If we define the proportion of atoms of type « in the configuration with a particular range of co-
ordination numbers as frmc and the desired proportion with such a range as fiq then we can add an
additional term to x*:

2=t (fry = Foue ) 02 (30)

Obviously multiple co-ordination constraints can be applied by adding additional terms. The
parameter G, in this case simply acts as a weighting of the co-ordination constraint relative to the
data. If 6. = 0, e.g. 107, it is effectively impossible for atoms with the constrained co-ordination to
change it; this can be used to mimic the effect of covalent bonding. In many cases hard sphere Monte
Carlo simulation with such co-ordination constraints, that is RMC with no data, can be used to
produce structures with suitable topology prior to fitting the data.

The above refers to constraints on co-ordination numbers of individual (although unspecified) atoms.
It is also possible to constrain the average coordination number, in which case a term

yi=.+ avc /O'M 31D

is added to the total xz where < ¢ > and avc,,, are the actual and desired average coordination numbers
resp.

5.3.3 Bond valence constraints

Bond valence sum (BVS) [11] calculations can be used in RMCPOW to constrain the average and
root mean square BVS of one or more particle types. These constraints, based on a pseudo-potential
approach, are very useful e.g. to obtain reasonable nearest neighbour environments in structures with
high degree of disorder due to vacancies. For each BVS R.M.S. constraint a term,

-t Z / o, (32)
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is added to the total xz. Here < v > is the actual average BVS and the sum runs over all particles j of a
type. In the case of average BVS constraints, a term

2=+ (avalm —<v>)2 /O'j‘,a, (33)

is added to the total *, where < v > and aval,,, are the actual and desired average BVS’s resp. In both
cases the individual BVS for particle j is calculated either as

v, =S (R, /R (34)

i

or
_pJ
v, = Zexp(¥J (35)

where the sum runs over all bonds with R;’ < rval. Depending on which expression(s) that are used
(determined by parameter ival) the relevant parameters, Ry and B or Ry and N, should be given in the
control data file.

5.3.4 Magnetisation constraints

According to quantum mechanics the average magnetisation 4 (per spin) along any axis z cannot
exceed gS, S being the single-ion spin quantum number. For a simple ferromagnet this would be the
expected zero-point average, and decrease with increasing temperature. Although RMCPOW uses a
classical approach to spins, we have found that, for simple magnetic systems, we normally end up
with magnetic configurations exhibiting approximately the expected zero-point and temperature
dependence of the average magnetisation. Since in these cases also the diffuse magnetic scattering is
very well modelled we believe that RMCPOW can be used as an independent tool for determining
average magnetisations. Nevertheless it might sometimes be useful to constrain the model to some
specific value, e.g. to zero for an antiferromagnetic structure or to agree with the temperature-
dependence obtained from susceptibility data. If the calculated modulus of the average magnetisation
for some magnetic particles is fguc this is effectuated by adding a term

2=t Wy — eV /02 (36)

where (.., is the required magnetisation and o;, is an effective weight. Each magnetic particle type can
have its own constraint. Note that this is a constraint for the modulus of the average 3-component
magnetization vector, in contrast to using the thermal models (5>ijob>1) where only a z component is
considered.

5.3.5 Spin-spin co-ordination constraints

A magnetic analogue of the atomic co-ordination number is the the spin-spin cosine of neighbours.
This number can be used in two ways in RMCPOW to constrain local magnetic environmnets. If we
define the proportion of atoms of type « in the configuration with a particular range of (atomic) co-
ordination numbers, and each of these neighbours with the spin-spin cosine in some range, as frmc and
the desired proportion with such a range as f.q then we can add an additional term to xz:

Zz ="'+(freq _fRMC)z/cyc2 (37)

The average spin-spin cosine can also be constrained in analogy with average co-ordination
numbers.

5.3.6 Magnetic potential constraints
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This constraint utilizes a standard MC procedure for minimising the energy of Heissenberg
classical spins. The Hamiltonian used is then

H :%ZJUSiSj (38)

i

where the S; are unit vectors, so the exchange parameters Jij (Jmpot in the control file) should include
the spin modules.

5.4 Q spacing and range

It might be considered that the formal real space resolution, given by 2m/Q.x, Qumax being the
maximum experimental Q, severely limits the usefulness of RMCPOW for modelling to e.g. reactor
data. Since we are not relying on a Fourier inversion of /(Q) this is however not really relevant. We
have found that details down to at least 0.2 A can be distinguished using the RMCPOW algorithm and
it should be noted that we are actually fitting a physical model similar to e.g. the way Rietveld
refinement is used. We recommend however that the Q range be extended as far as possible, at both
ends (particularly at low Q for magnetic modelling). The Q step should be chosen appropriately with
respect to the experimental resolution, i.e. about five points over the sharpest features of the
experimental data. Note that the Q mesh, used internally for reducing the 3D reciprocal lattice to one
dimension is defined at equidistant points as give by parameter dgp, cfm. 4.4.13.

The minimum Q value that can be modelled is given by Quin = 27/L, where L is the longest edge of
the configuration cell. If you try to fit to smaller Q values then the effects are unpredictable. For
example, if a much smaller Q,;, is used then this can lead to distinct density fluctuations of period
27/L in the configuration. Note that weak fluctuations of this period can be seen in many simulations,
not just in RMC.

5.5 Smoothing the diffuse data

Due to the discrete nature of the way diffuse scattering is computed in reciprocal space it is
necessary to smear this contribution over a corresponding linear Q extension in order to approximate
the experimental data. The intensity of each diffuse Q point is then simply uniformly distributed over
a range of length AQ,, around Q. AQ,, is taken as the approximate linear size 27/V CCIB of a reciprocal
cell.

In order to further smooth the model diffuse scattering, and hence to avoid fitting the statistical
errors, it is also possible to apply Savitsky-Golay smoothing before the experimental resolution is
convoluted. The Q width of the smoothing interval is then determined by the parameter swdt as
swdt-21/V,. ">, i.e. as the swdt fraction of the linear size of a cell of the reciprocal lattice of the unit
cell. We have found that in general a value of swdt < 0.3 is appropriate.

5.6 Experimental error

The RMCPOW algorithm assumes that we have only statistical errors. These can be a) read with
the experimental data or b) estimated as proportional to the square root of the data or c) taken as
constant. A real experimental structure factor I“(Q) will contain both statistical and systematic errors,
but the whole procedure is not thereby invalidated. A three dimensional structure that is consistent
with the experimental data within some measure of the error can still be produced, though this
measure is now less well defined.

While one might expect statistical errors to be small where I“(Q) is large, and vice-versa, in practice
the requirement to perform container and background corrections in many experiments means that
statistical errors are often quite uniformly distributed. For these cases it is usually simplest to assume
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a constant value of o at all Q, though o may differ between different data sets. However there have
been cases in which large values of o have been used in particular Q ranges where it is known that
there were errors in the data. By setting o{Q) at an extremely large value these data points can
effectively be ignored. From the above discussion it is clear that the precise value of ois not known in
any particular case; it may therefore be considered as a parameter of the simulation.

5.7 Refinable parameters

Experimental data will normally contain small errors in the form of multiplicative and additive
constants. It is possible to take account of such errors within the RMCPOW algorithm. During the
RMCPOW process, the real experimental total structure factors, I(Q), can be considered as simple
transformations of the structure factors actually measured, #™(Q):

1%(0) = i[l“" (Q)—”ZB%QIJ (39)

B
where ng is the degree of a background polynomial. In addition the calculated structure factor can be
dependent of a number of other parameters pi, p,, ..., €.g. resolution parameters. The expression that

is actually minimised in the simulation procedure is then accordingly (for the nth experiment)

mﬂ

X =Z[ﬂlf (11 Py )+ Y 0!~ 157(0, )J o, () (40)

i=1

The multiplicative and additive parameters can be refined using a linear least-squares fit and so can
be done, with a minor cost of computing time, after each attempted move (atomic positions and spin
orientations are refined by the Monte Carlo procedure and are considered as fix parameters in this
minimisation step). The other parameters in general require a non-linear approach and are therefore
more expensive. Full non-linear fits are therefore performed only at each iprint attempted move, and
inbetween only linear parameters are refined. The non-linear fit is a modified version of the
Marquardt-Levenberg algorithm based on the code in Numerical Recipes [12].

During the non-linear minimisation step it is possible to apply linear constraints on the various
parameters. Using the refinement codes, cindexj, the ith constraint can be given in the general form

n,

z ccoeff; IR cindex ; = constant 41)
j=1

where np is the number of refinable parameters, though only terms containing non-zero ccoeff has to
be given. The actual values of the codes cindex are just labels and can be anything in the range
[0,100], the value O however indicating a fix parameter. Two or more codes can have the value 1,
indicating that they all correspond to free and independent parameters. No two parameters can have
the same code > 1, as such values are reserved for constrained parameters.

5.7.1 Renormalisation and background

The application of linear constraints permits the refinement of normalisation factors (f) and sloping
backgrounds (0.,...) in I%,(Q). Optimisation of any combination of the parameters is possible. It is
recommended, however, that the normalisation factor () be refined only when the best possible fit
without changing it could be achieved. The values of the above parameters, together with the ¥ value,
provide a sensitive test of data quality, particularly in terms of systematic errors. For an experimental
structure factor reduced to correct absolute units [barns or electron units] £ should be 1, and o; = 0.
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In addition to a polynomial background it is also possible to read supplementary data files
containing fix, Q-dependent backgrounds, I;(Q). Since such a background can be adjusted with a
refinable scale factor, betaf, it can be used to e.g. subtract a secondary phase with known structure
but unknown concentration. An additional term betaf x I;(Q) is then added in eq. 39. Such
background data must be defined at the same Q bins as the experimental data.

Concerning magnetic neutron scattering the effective moments, mueff, effectively determine the
particle magnetic scattering strengths and should, similar to nuclear scattering lengths, be kept
constant during the simulation. The application of an overall magnetic scale factor, fm, is however
often practical in order to obtain a proper amount of model magnetic scattering. Sm is here defined
relative to the total scale factor £ so the expected value is 1 (if moments do take on their nominal
values) regardless of S. Note also that the magnetic scattering goes as mueff* and so the nominal
moments scale as V.

5.7.2 Experimental resolution

One of the most important features of the RMCPOW program is the ability to include and fit the
experimental resolution. In the standard RMC approach, where a model g(r) is computed and Fourier
transformed to be compared with experimental data, it is not possible to account for the resolution in a
straightforward way. With the RMCPOW method the calculated structure factor can be separated into
Bragg and diffuse contributions and both contributions can easily be convoluted with the
experimental resolution.

In principle any of the standard resolution functions in use for Bragg profile refinements could be
applied also in the RMCPOW algorithm. The current version however only includes four versions for
CW data and one for TOF data. The CW profiles are

1. The Gaussian:

1 20-20,\
1(20.26,) o« —exp| —41n2 Z2—=% 42
( ) HCXP[ n ( q ) J (42)

2. The pseudo-Voigt:

2\7! )
126,26, < <2\ 1+ 4(M) + Mexp —4In 2(—2‘9 — 2‘90) 43)
H H H H

3. The splitted pseudo-Voigt, as 2. but with terms for a 2nd wavelength.
4. A Gaussian convoluted with a rectangular distribution, as occuring on instruments with no
or coarse Soller collimation:

T T e e e e | N

where W=dthi-[2tan&/tan§},,,,-1], dthi being approx. the monochromator incident divergence and
6,.., the monochromator Bragg angle.

Parameters determining the peak width can be refined as desired but it is recommended to keep
them fixed at the nominal instrumental resolution and only allow variation at the end stage of a
simulation. The expression used for the 26 FWHM is

H2:Utan20+Vtant9+W+IG/coszt9 45)

where parameters U, V, W and IG are given in units of degrees squared. The range (in FWHM units)
over which each Bragg or diffuse point is calculated is determined by the parameter rwdt.
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Finally, the sole TOF profile (so far) is
5. the TOF profile function 1 in the GSAS manual [13]:

I[(TOF ,TOF,) =< N [e"erfc y +e"erfc y] (46)

where N,u,y,v and z are dependent on TOF-TOF, and the instrumental width parameters alp0, alpl,
bet0, betl, sig0, sigl and sig2 (some parameters in the GSAS definition are neglected here).

Note that thermal diffuse scattering in general occurs as broad peaks below the Bragg peaks. Such
diffuse features could easily be incorporated into the Bragg peaks in traditional powder refinements,
where diffuse scattering is not considered. The Bragg peaks would then appear to have a more
Lorentzian shape and increasing widths with increasing temperature. Thermal parameters would also
be affected since too much intensity is assigned to Bragg scattering. Since RMCPOW includes
modelling of both thermal and static diffuse scattering resolution parameters should in principle not
be affected by these considerations. From these arguments it also follows that if crystallites sizes are
small so that there is a significant broadening then it can be difficult to distinguish thermal/static
disorder from size effects, when using the RMCPOW method.

Since the scattering amplitudes are not dependent on the resolution these parameters can be
changed at any stage of a simulation. However in order to get a well-defined value of the calculated
scattering at Qmay, the maximum Q fitted, the intensity of peaks in some range gwmax, determined by
the resolution, outside Q. has to be included. So that it should not be necessary to calculate new
amplitude sums during the simulation, the maximum expected gwmax is read from name.dat rather
than being estimated from the resolution parameters. Normally, for Qp., =10 Al gwmax > 0.5 A.

As a further possibility to determine the resolution, a separate file with FWHM’s can be read by
setting wext > 0. These widths [degrees] are then added (squared) to the Cagliotti expression (eq. 45).

5.7.3 Other refinable parameters

In the case of CW data wavelength and scattering angle zero-shift, parameters wave and zero, can
be refined. Also, the asyl1 parameter that approximately corrects for axial divergence is refinable.
This parameter shifts peak positions by a factor asyl*coth(26), over the entire 20 range.
Correspondingly, for TOF data the difc,difa and zero parameters can be refined.

For the ijob = 2 or 3 modes, see 3.6 and 4.4.13, it is possible to refine the mean square
displacements, parameters U2, and average ordered components of magnetic moments, parameters
muz. For ijob = 3 the Debye temperature TD can also be refined. Future versions of RMCPOW are
planned to include lattice parameter refinement.
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