

MCGR

Version 3.2

M A Howe, R L McGreevy and L Pusztai

Changed by P. Zetterström and A.Mellergård

October 2003

1. Introduction
MCGR is a program for determining total or partial radial distribution functions from one or more total

structure factors measured by neutron or X-ray diffraction, by an inverse method. This is basically the
Monte Carlo method developed by Alan Soper (and implemented in his program MCGOFR), with a few
modifications. The input data, output and control files are formatted in the same way as for RMC [1]
programs. Inverse methods have considerable advantages over the conventional direct methods; for instance
they avoid truncation errors and allow the estimation of errors in the radial distribution functions.

1.1. Changes from version 3.1 of MCGR
• The on-line plot option has been modified to enable Windows control. In order to conform with the

corresponding options in the RMCA and RMCPOW programs the graph and igraph parameters have
been removed. Instead a new parameter iplot is read on the same line as iprint, see section 4.1.

• Similar to RMCA version 3.11 this MCGR version also allow internal convolution of experimental data
to compensate for the real space truncation, see the RMCA manual and 4.1.

• The source code is now using F90 elements but various libraries for Windows, LINUX and VMS F90
compilers are available.

2. Principle of MCGR
The relationship between a total structure factor, F(Q), and a set of partial radial distribution functions,

gαβ(r), for an N component system may generally be written as

() ()())1(1)(
1 1
��

= =

−=
N N

i QAQQF
α β

αβαβγ

() ()())2(
sin

141 2 dr
Qr

Qr
rgrQA � −=− αβαβ π

where Aαβ (Q) are the partial structure factors. γαβ are coefficients, Q dependent for X-ray diffraction and
constant for neutron diffraction. Conventionally gαβ (r) are determined from Aαβ (Q) by Fourier transform

() () ()())3(
sin

14
2

1
1 2

3 dQ
Qr

Qr
QAQrg −=− � αβαβ π

ρπ

However if Aαβ (Q) is truncated or contains statistical errors then spurious oscillations are introduced into
gαβ (r). In addition any other errors in Aαβ are redistributed in an unknown fashion in gαβ (r). Such effects
can be particularly problematic when the partial structure factors are obtained by direct separation from a set
of total structure factors obtained by either neutron diffraction with isotopic substitution or X-ray diffraction

with anomalous scattering. In many such cases the separation matrix is ill-conditioned and errors in the total
structure factors are considerably magnified in the partial structure factors.

An alternative approach is to `generate' possible gαβ (r) by some method, and then to modify these to fit
the data, that is the total structure factor(s). Since gαβ (r) can be generated over as wide an r range as
required there will be no truncation of the Fourier transform. In addition different sets of gαβ (r) that fit the
data can be generated, and from these an average and a standard deviation can be calculated, thus giving
some idea of the errors.

In MCGR the gαβ (r) are generated by a Monte Carlo method. The sets of gαβ (r) are defined as histograms
of nr points with spacing dr. The basic algorithm is as follows:

1. Initially

() αβαβ rrrg <= 0.0

())4(0.1 αβαβ rrrg >=

where rαβ are the closest approach distances of atoms type α and�β. These distances may not be well
known in which case an underestimate should be used. (It is also possible to define gαβ (r) to be zero at other
r values.)

2. Fourier transform (equation (3)) to obtain the partial structure factors and combine to obtain the calculated
(C) total structure factor for this old (o) set of radial distribution functions

() () ()())5(1�� −=
α β

αβαβγ iiio QAQQF

3. Determine the deviation from the experimental (E) data

() ()() ())6(/
1

222 �
=

−=
m

i
ii

E
i

C
oo QQFQF σχ

where σ is an estimate of the experimental error and m is the number of Qi points. For multiple structure
factors the individual χ2 values are simply added.

4. Change one point in rgα�(r) at random, by a maximum amount ±δ. Calculate the new (n) total structure
factor(s) and the deviation from experiment

() ()() ())7(/
1

222 �
=

−=
m

i
ii

E
i

C
nn QQFQF σχ

5. If χ2

n < χ2
o the move (change in rgαβ (r)) is accepted and the new set of gαβ (r) becomes the old set. If χ2

n
> χ2

o the move is accepted with probability exp(-(χ2
n - χ2

o)/2). Otherwise it is rejected.

6. Repeat from step 2.

As this process is iterated χ2 will initially decrease until it reaches an equilibrium value about which it will
fluctuate. The resulting set of gαβ (r) should then be consistent with the experimental structure factor(s)
within the experimental error. Multiple sets can be collected and averaged.

3. MCGR details
MCGR can be used in two different ways.

(a) To fit a set of partial radial distribution functions to a set of total structure factors. In this case the
procedure is as described above. The number of total structure factors must be greater than or equal to the
number of partial radial distribution functions.

(b) To fit a single total radial distribution function, G(r), to a single total structure factor. G(r) is the direct

transform of F(Q), i.e.

())8(
sin

4)(2
�= dr

Qr
Qr

rGrQF πρ

In this case the low r part of G(r) is constrained to the value �N

α=1 �
N

β=��γαβ. Note that if F(Q) has been
normalised to be 1 at high Q then the sum of coefficients is by definition also 1. It is not strictly possible to
do this with X-ray data because of the Q dependence of the coefficients. It can be done approximately by
dividing F(Q) by �N

α=1 �
N

β=��γαβ, but G(r) will not strictly be flat at low r and a constraint should be used
with caution.

Constraints can be applied to make gαβ (r) zero and/or positive between any required r values. For
example in a covalently bonded system with clear separation between the first and second peak in gαβ (r) the
intermediate r points can be set to zero. The coordination between any required r values can be constrained
by adding an extra term to χ2,

())9(/4 2

2

22
2

1

coord

r

r
coord drrgcrC σπχ αββαβ �

�

�

�

�
�

�

�
−= �

where Cαβ is the required coordination of atoms of type β around type α and cβ is the concentration of type
β. σcoord is the weighting of the coordination constraint relative to the data and smoothing terms. This is used
if generating partial gαβ (r). If a total G(r) is generated then

())10(//4 2

2

22
2

1

coord

r

r
coord drrGcrC σγπχ αββαβ �

�

�

�

�
�

�

�
−= �

It is of course only applicable if a single peak can be identified in G(r) as being due to a particular partial

gαβ. These constraints mimic those available in RMCA, though they will not have the exactly the same
effect since MCGR operates purely on a mathematical function while RMCA operates on a physical model.

Statistical fluctuations in the generated set of gαβ (r) will not be apparent in the partial structure factors
because dr should be chosen to be much smaller than 2π/Qm. These fluctuations will become smaller when
multiple sets of gαβ (r) are collected and averaged. However there are three options to smooth them during
the fitting procedure. In options 1 and 2 this is done by adding the following terms, respectively, to χ2.

() ()[](){ } (){ })11(/exp11
, 2

min21
2

1
2 ��

=
+ >−−+=

βα
αβαβ

rn

j
jjjjj rrwrrwrgrgS

or

() () (){ } (){ })12(/exp2
, 2

min21
2

11
2 ��

=
−+ >−+=

βα
αβαβαβ

rn

j
jjjjjj rrwrrwrgrgrgS

These terms have the effect of decreasing the difference between gαβ (r) at neighbouring r points, thus

minimising statistical fluctuations. However we do not wish to smooth out any natural structure in gαβ (r).
This would be expected to be more significant at small r, so the smoothing term is weighted to be more

significant at large r where gαβ (r) would be expected to tend smoothly to unity. The parameters w1 and w2
govern the weight of the smoothing term relative to χ2 and the increase in smoothing at large r respectively.

In option 3 gαβ (r) are changed by adding or subtracting a Gaussian function centred around a randomly
chosen r point, rather than just changing the single r point. Note that this is not quite the same as defining
gαβ (r) as a sum of Gaussians. Different width Gaussians can be used in different r ranges if required;
normally the width would increase with r.

During the MCGR process, the real experimental total structure factors, FE(Q), can be considered as
simple transformations of the structure factors actually measured, FE

m(Q) since the latter may contain
systematic errors:

() ())13(/
0

bQaQFQF i
n

i
i

E
m

E
B

��
�

�
��
�

�
−= �

=

where nB is the degree of the background polynomial. The expression that is actually minimised in the
simulation procedure is then accordingly

() () ())14(/
1

2

2

0

2 � �
= =

�
�
�

�
�
�
�

�
−+=

m

i
ii

Ej
n

j
ji

C
n QQFQaQbF

B

σχ

The application of constraints permits the refinement of normalisation factor(s) (b) and sloping

backgrounds (a0, a1, a2) in FE
m(Q). This feature is particularly useful for correcting for incoherent inelastic

scattering for hydrogenous materials. Optimisation of any combination of the parameters is possible; it is
recommended, however, that the normalisation factor (parameter b) be refined only when the best possible
fit without changing it could be achieved. The values of the above parameters, together with the χ2 value,
provide a sensitive test of data quality, particularly in terms of systematic errors.

It is recommended that MCGR be used to obtain total or partial radial distribution functions before
modelling with the RMC program. In the first instance this is a valuable check on the quality of the data; if a
good fit cannot be obtained with MCGR then there is no point in using RMC. RMC can then be used
initially to fit the radial distribution functions obtained from MCGR, before fitting to the structure factors.
This saves a considerable amount of time in the modelling.

4. Use of the program
With VMS (VAX/Alpha) or LINUX the program is run interactively by typing
MCGR name

or (assuming you are logged on to the NFL VMS cluster) as a batch job by typing
RMCSUB

and typing name when prompted for the file name and MCGR when prompted for the program name.
name.dat is the name of the file containing control data and information.

The Windows version is simply started by clicking the program icon, or it may be started from the RMC

menu using the WinNFLP program. An Open file window appears where the user can choose the relevant
name.dat file and then the simulation will start. During the run menus can be accessed to save current data
promptly or to exit the program with or without saving. Plotting of the current fitted patterns and the
progress of χ2 can also be turned on/off. A record of the last work directory will be saved to a file mcgr.ini in
the directory where the exe file is stored so that easy continuation is possible next time the program is run.

The program will produce an output file name.out, an intermediate file (for use if the program is to be

restarted) name.g, files name.gsv if the radial distribution function(s) are being saved and a file name.log
containing information on the progress of the program. All output files will be in the directory given by the
parameter outfile (see table below). It is recommended that version limits are set on the VAX/Alpha to avoid
creating large numbers of files.

4.1. The format of the control data file
name.dat has a format very similar to the equivalent file for RMCA, so it is easy to edit from one file to

the other. The parameters are described in order below.

title (character*80) A title to be used in all output.

rerun (logical) If .true. then the program will continue on an earlier calculation
(the output from this earlier calculation must exist). If .false. it will start a new
calculation.

rho (real) The sample density in atoms per cubic Ångström.

partials (logical) If fitting partial gαβ (r) then set to .true.. For total G(r) set to.
false.

npar (integer) Number of partial g(r)'s to be generated. For an N component
system there are N(N+1)/2 partial structure factors/radial distribution functions
so N(N+1)/2 total structure factors are required to determine them. This means
that if the number of data sets is less than N(N+1)/2 then MCGR should only
be used to generate a single total radial distribution function for each total
structure factor and partial radial distribution functions cannot be obtained. A
separate run of MCGR is then needed for each data set. Set npar to 1 for a
total G(r).

nzc (integer) The number of zero constraints, i.e. regions in which gαβ (r) is
defined to be zero. These must be defined separately for each partial.

izpar,rz1,rz2 (integer,2*real) This line is repeated nzc times, once for each zero
constraint. izpar is the number of the partial to which the constraint applies
(they come in the order 11, 12, ... 1n, 22, 23 ... 2n etc) and rz1, rz2 are the
r values between which the constraint is applied. At least one constraint
should be applied for each partial, equivalent to the cut-off constraints in
earlier versions of MCGR and in RMCA. For example to apply a cut-off
constraint of 2.5 Å to partial 1 a constraint 1 0.0 2.5 should be used.

delta (real) The maximum change per Monte Carlo step in any basis rg(r). If
delta is large to start with, e.g. 1, then the fit will initially converge quickly but
will then take longer reach equilibrium. If delta is small, e.g. 0.01, then the fit
will initially converge more slowly but will converge better when equilibrium
is approached. Generally a small value can be used all the time, except when
g(r)'s are likely to contain very high peaks, e.g. in the case of covalent bonds.
rg(r) is modified uniformly rather than g(r) since A(Q) is the transform of the
former quantity. A value of 0.05 - 0.1 is generally suitable.

mr, rmax (integer,real) mr is an integer relating the maximum Q-value to the r-
spacing, recommended values of mr are 5 – 7. rmax is the maximum r-value
which should be used for the calculation of g(r). For most glasses and liquids
20 – 40 Å is sufficient. For crystals ∆Q is determined by the best instrumental
resolution and more than 400 Å may be required. Obviously the cpu time
required will be proportional to the number of r-values in g(r).

PS! This replaces the parameters nr and dr from earlier versions of MCGR.
The relation is dr = 2π / (mr Qmax) and nr = rmax / dr.

save (logical) Whether to save multiple sets of g
� �

(r) or G(r). This should

only be done when equilibrium has been reached.

nsave (integer) This parameter is only present if save is .true.. nsave is the
number of sets of g(r) to save when the fit to the data is considered
satisfactory. When χ2 reaches the target value(s) (parameters chisav, read
below) another 5*nacc moves will be performed and then g(r) will be saved
and the program will automatically restart from the initial (uniform) state. The
average and standard deviation of the multiple sets of g(r) can be determined
using the program GSV.

conv (logical) Whether to allow converging moves only. If .true. then only
moves that result in a decrease in χ2 will be accepted. Normally set to .false..

npc (integer) The number of positivity constraints.

ippar,rp1,rp2 (integer, 2*real) This line is repeated npc times, once for each
constraint. ippar is the number of the partial to which the constraint applies,
defined as for izpar above. rp1 and rp2 are the r values between which
the constraint is applied. Normally each partial will be constrained to be
positive for all r values and a good fit should be obtainable unless there are
significant systematic errors. However if any atoms have negative scattering
lengths then it may be necessary to let some partials be negative in some
regions. When generating a total G(r) positivity means that this is constrained
to be greater than the low r value given by -coeff (see later). Note that if
the structure factor has been normalised to 1 at high Q then coeff should also
be 1.

ncc (integer) The number of coordination constraints. The following seven
parameters are given on a single line which is repeated ncc times, once for
each constraint.

icpar,rc1,rc2 (integer, 2*real) icpar is the number of the partial to which the
constraint is applied, defined as for izpar above. rc1 and rc2 are the r
values between which the coordination is calculated.

cconc,ccoeff (2*real) cconc is the concentration of the neighbour species, ccoeff is
the value of γαβ corresponding to the particular partial gαβ (r) giving rise to the
peak in G(r) for which coordination is being calculated. ccoeff should be 1
if partial gαβ (r) are being generated. For a total G(r) ccoeff must be less than
or equal to coeff (defined later).

ccoord,csigma (2*real) ccoord is the required coordination and csigma is the
weighting of the constraint. The value of csigma should be approximately
the allowed fluctuation of the coordination in equilibrium. It should not be set
too small, particularly when generating g(r) initially, or it will be hard to
accept any moves. It is recommended that coordination constraints only be
applied after a first g(r) has been obtained and it can be checked whether the
constraint is compatible with the data.

smooth (logical) Whether to smooth the basis functions or not.

ns (integer) The type of smoothing chosen. This is only present if smooth
is .true...

w1,w2,r0 (3*real) These parameters are only present if smooth is .true. and ns is
1 or 2. w1 and w2 are weights used to control g(r) smoothing as described
in section 1, w1 being the pre-exponential term and w2 the exponential term
in equations (8) and (9). If w1 is zero then there is no smoothing and g(r) will
be statistically noisy. If it is large g(r) will be very smooth but all real sharp
features will be broader and it may not be possible to obtain a good fit to the
data. If w2 is large then the smoothing is linear in r while if it is small then
g(r) will get smoother at large r, as should naturally occur anyway. w2 should
not be set to zero. r0 is the distance rmin in equations (8) and (9).

nchanges (integer) The number of regions the basis g(r)'s are to be divided. This
parameter is only present if smooth is .true. and ns is 3.

The following line is repeated once for each region with different Gaussian width parameters, i.e.
nchanges times.

gwidth, rch (2*real) gwidth is the full width at half height of the Gaussian. rch is

the maximum r value for this particular width. If olny one width is used for all
r points then rch should be equal to rmax.

resol (logical) Whether to convolute the calculated structure factors with the
experimental resolution function before fitting to the data. If resol is .true.
Then parameters are given separately for each data set, since different data
sets may have different resolutions.

iprint, iplot (2*integer) Controls printing of information to the screen and in the log
file. The number of moves, convergence of χ2 etc. will be printed following
the first accepted move after every iprint generated moves. iprint
should be at least 1000 or the file name.log will be very large and simulation
speed slowed down. If iplot is 1 then the plotting of the fitting of F(Q)
with background, the χ2 progress, and G(r) in separate windows will be turned
on at the start of the run. The plotting will be updated during the run at each
iprint event. If iplot is 0 plotting is initially turned off. In the Windows
version it can be turned on and controlled during the run using the plot menu
items.

tlim, tsav (2*real) Time limits for saving and running. The status of the program (
name.g and name.out files) will be saved every tsav minutes. The program
will terminate and save after tlim minutes. These need to be appropriate for
the computer/ batch queue being used. Typical test runs can be made
interactively in a few minutes, with proper runs requiring up to a few hours.

ntot1,ntot2 (2*integer) The numbers of S(Q) and F(Q) data sets respectively. S(Q)
are defined as having constant coefficients, while F(Q) have Q dependent
coefficients.

The following lines are then repeated for each S(Q), i.e. ntot1 times.

filesq (character*80) The name of the data file containing the total structure

factor.

nq1,nq2 (2*integer) The indices of the first and last data points in the
experimental data file that are to be used for fitting. If nq2 is greater than the
total number of data points then the last data point to be used will be the last

data point given.

coeff (real array dimension npar) If generating partial gαβ (r) then
these are the coefficients of the partial structure factors that make up the total
structure factor, i.e. γαβ in equation (1). If generating total G(r) then there is
only one coefficient and this is the sum of the coefficients γαβ which
determines the low r value of G(r).

sigma (real) Estimate of the experimental error. It enters χ2 as defined in equation
(6). In practice sigma can typically start at 1 % (the units of sigma are the
same as those of the total structure factor so the actual value must be decided
as appropriate) and can then be reduced until either a visually satisfactory fit is
obtained or convergence stops. It is of course possible to weight different data
sets differently if some are considered less accurate.

wav,u,v,w (4*real) These parameters are only present if resol is .true.. They are the
experimental wavelength in Å and the standard u,v,w parameters used to
describe the resolution of a powder diffractometer in Rietveld refinement.

chisav (real) This parameter is only present if save is .true.. chisav is the
target χ2, i.e the χ2 below which the fit to the data is considered satisfactory.

convol (logical) Whether to convolute experimental data to compensate for the
real space truncation effect.

renorm (logical) Whether to renormalise. If .true. then the experimental total
structure factors will be automatically renormalised. This should only be done
once a reasonable fit has been obtained. If the resulting renormalisation is
large then either the original data are badly normalised or some of the
parameters in name.dat are wrong.

backgr (logical) Whether to refine the background.

nbackgr (integer) No.of terms in the polynomial background.

bcoeff (nbackgr*real) Initial coefficients of the polynomial background.

magnetic (logical) If .true. then a paramagnetic form factor found in the structure
factor file, in the same way as for X-ray form factors, will be added to the
calculated structure factor before fitting to the data.

The following lines are then repeated for each F(Q), i.e. ntot2 times.

filesq (character *80) The name of the data file containing the total structure

factor and Q dependent coefficients.

nq1,nq2 (2*integer) The indices of the first and last data points in the
experimental data files that are to be used for fitting.

sigma (real) Estimate of the experimental error.

wav,u,v,w (4*real) These parameters are only present if resol is .true.. They are the
experimental wavelength in Å and the standard u,v,w parameters used to
describe the resolution of a powder diffractometer in Rietveld refinement.

chisav (real) This parameter is only present if save is .true.. chisav is the

target χ2, i.e the χ2 below which the fit to the data is considered satisfactory.

convol (logical) Whether to convolute experimental data to compensate for the
real space truncation effect.

renorm (logical) Whether to renormalise.

offset (logical) Whether to refine the background.

nbackgr (integer) no.of terms in the polynomial background.

bcoeff (nbackgr*real) Initial coefficients of the polynomial background.

compton (logical) If .true. then Compton scattering, found in the structure factor
file in a column following the Q dependent coefficients, will be added to the
calculated structure factor before fitting to the data.

The following line should always exist.
outfile (character*80) Name of the files without extension to which the output

from MCGR should be written.

4.2. The format of experimental data files
Input structure factors for neutron data should be in the DATA format as defined for the NDP series of

programs. The first line contains the number of points, the second is available for any required descriptive
text, and then (Q, F(Q)) values follow on subsequent lines. If magnetic is .true. then a third column
contains a paramagnetic form factor which will be added to the calculated structure factor before the data are
fitted.

For X-ray data the coefficients that weight the partial structure factors to produce the total structure
factors are Q dependent and are given in columns following the F(Q) values. For a two component system
there are three partial structure factors and the coefficients are given in the order 11,12,...1n,22,23,...2n,...nn.
A file in this format can be produced from a file in the DATA format using the program XCOEFF. This has
the option to define the coefficients in one of three ways, depending on how the total structure factor is
normalised. If compton is .true. then a final column contains Compton scattering which will be added to
the calculated structure factor before the data are fitted.

Note that if more than one set of experimental data is supplied they must all be defined at the same Q
points. You only need to use a subset of these points for fitting so it is possible to use data sets that cover
different Q ranges provided that they are defined (for instance set to zero) at the Q points where data are not
available. Files that satisfy these requirements can be produced using the NDP program REBIN.

The output file has extension .OUT and the same format as .OUT files from RMC programs, that is it is
suitable for graphical display using the RMCPLOT program. Alternatively the various functions contained
in the file can be written into files in the DATA format using the program EXTRACT. If g(r)'s are being
saved (save = .true.) then files with extension .gsv are produced. Average radial distribution functions and
standard deviations can be produced from these using the program GSV.

5. Compiling and running the program.
MCGR is written in FORTRAN 90 and source code exist for Windows/DOS (PC), LINUX (PC) and

VMS (VAX/Alpha). The main program is self-contained except for some platform dependent routines for
timing, initialisation and input/output. Plotting is done using PGPLOT routines [2]. If MCGR is downloaded
as part of the WinNFLP suite of programs, then all necessary set-up would have been done following the
installation procedure in the WinNFLP manual. The WinNFLP suite can be downloaded from

ftp::/ftp.studsvik.uu.se/Pub/WinNFLP or http::/www.studsvik.uu.se. Otherwise the source code distribution
should include the following files:

readme.txt
rmca.pdf
mcgr.pdf
rmca.for
mcgr.for
fileio_ WIN/UNIX/VMS.for
rmc_ WIN/UNIX/VMS.for
RMCLIB.for
grfont.dat
Makefile_LINUX or
MAKEFILE_VMS.COM
RMC_logicals.ini

Compile the relevant Fortran files and link with appropriate PGPLOT library. Sample makefiles are included
with the source code and in appendix II for various compilers.
The executable distribution includes

readme.txt
mcgr[.exe]
rmca[.exe]
grfont.dat
RMC_logicals.ini

which should be extracted into a single directory,e.g. c:\nflp\rmc
For the plotting to work with VMS or LINUX, Xwindows have to run on the machine. Also, for proper

plotting, the PGPLOT font and device environment variables should be defined. In Windows the MCGR
program will attempt to read the RMC_logicals.ini file to define

PGPLOT_FONT = c:\nflp\rmc\grfont.dat
PGPLOT_DEV = /W9

assuming you extracted files into c:\nflp\rmc. For LINUX version the corresponding definitions could be
done in your rlogin file using the setenv command, also set the path to include your MCGR directory. For
VMS version define a symbol to run MCGR.

$ mcgr :== “$user$disk:[user.directory]mcgr.exe”

This and the environment settings could be done in your login.com file. Both LINUX and VMS works

best with device /xw. If PGPLOT_DEV is not defined or set to ? a list of selectable modes will be displayed
at run-time

Appendix I Liquid copper example

 In this example the total G(r) for liquid copper is obtained with MCGR from a fit to F(Q). In this
example a PC was used.

INPUT: cu_mcgr.dat (parameter file)

Liquid copper (test MCGR control file)
.false. ! rerun
0.0721 ! density
.false. ! generate partials
1 ! no of partials
1 ! no of zero constr.
1 0. 1.8 ! izpar, rz1, rz2
0.05 ! delta
7 50. ! mr, rmax
.false. ! save
.false. ! converge only
1 ! no of positivity constr.
1 0. 15. ! ippar, rp1, rp2
0 ! no of coord. constr.
.true. ! smoothing
3 ! nsmooth
1 ! nchanges
0.3 50.1 ! gau_sig, r_change
.false. ! resolution
1000 1 ! printing, plotting on
10 5 ! time limits
1 0 ! no of data sets
c:\directory\cusq.dat
1 1000 ! data points to fit
1. ! constant to subtract
1.0 ! coeff
0.01 ! sigma
.false. ! convolute
.false. ! renormalise
.true. ! offset
1 ! no. of background terms
0.0 ! initial coefficient
.false. ! magnetic
c:\directory\cusq

INPUT: cusq.dat (Neutron diffraction data F(Q))

 90
 Q S(Q)
 0.1 0.032
 0.2 0.032
 0.3 0.032
 0.4 0.032
 0.5 0.033
 0.6 0.033
 0.7 0.034
 0.8 0.035
 0.9 0.037
 1.0 0.040
 1.1 0.045
 1.2 0.050
 1.3 0.056
 . .
 . .
 . .
 8.4 1.081
 8.5 1.074
 8.6 1.064
 8.7 1.051
 8.8 1.037
 8.9 1.022
 9.0 1.006

OUTPUT: cusq.out (contains G(r), FC(Q), FE(Q) and Background(Q). This can be plotted with the
program RMCPLOT). See figure 1.

OUTPUT: cusq.g (contains G(r)). See figure 2.

Figure 1 MCGR fit to the structure factor of liquid Copper.

Figure 2 G(r) for liquid Copper produced by MCGR.

0 2 4 6 8 10
-1.0

-0.5

0.0

0.5

1.0

1.5
Liquid Cu

 FE(Q)

 FC(Q)
 Background

F(
Q

)

Q / Å-1

0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

1.5

G
(r

)

r / Å

Appendix II Sample makefiles

Windows

LINUX (ABSOFT F90 compiler)

SYSTEM= $(shell uname -s)

ifeq ($(SYSTEM),Linux)
L1:= -lpgplot -L/usr/pgplot
L2:= -lX11 -L/usr/X11/lib -lm
L3:= -B108 -YEXT_NAMES="LCS" -lm -YCOM_NAMES="LCS"
L4:= -lg2c
L5:= -O -B108 -YEXT_NAMES="LCS" -lm -YCOM_NAMES="LCS"
endif

all: RMCA.o MCGR.o fileio_UNIX.o RMC_UNIX.o RMCLIB.o mcgr rmca

rmca: fileio_UNIX.o RMC_UNIX.o RMCLIB.o RMCA.o
 f90 -o rmca -l U77 fileio_UNIX.o RMC_UNIX.o RMCLIB.o RMCA.o ${L1} ${L2}
${L3} ${L4}

RMCA.o: RMCA.for
 f90 -c MCGR.for ${L3}

mcgr: fileio_UNIX.o RMC_UNIX.o RMCLIB.o MCGR.o
 f90 -o mcgr -l U77 fileio_UNIX.o RMC_UNIX.o RMCLIB.o MCGR.o ${L1} ${L2}
${L3} ${L4}

MCGR.o: MCGR.for
 f90 -c MCGR.for ${L3}

fileio_UNIX.o: fileio_UNIX.for
 f90 -c fileio_UNIX.for ${L3}

RMC_UNIX.o: RMC_UNIX.for
 f90 -c RMC_UNIX.for ${L3}

RMCLIB.o: RMCLIB.for
 f90 -c RMCLIB.for ${L3}

clean:
 rm -f *.o *.mod

VMS

$
$ L1="PGPLOT_DIR:GRPSHR.OLB/LIB"
$
$! Determine target(s)
$ target="''p1'"
$ if target.eqs.""
$ then
$ target="all"
$ else
$ goto 'target'
$ endif
$
$ all:
$

$ fileio_VMS:
$ for fileio_VMS.for
$ library/create fileio_VMS fileio_VMS
$ if target.nes."all" then exit
$
$ RMC_VMS:
$ for RMC_VMS.for
$ library/create RMC_VMS RMC_VMS
$ if target.nes."all" then exit
$
$ RMCLIB:
$ for RMCLIB.for
$ library/create RMCLIB RMCLIB
$ if target.nes."all" then exit
$
$ rmca:
$ for rmca
$ link/nouser/executable=rmca -
 rmca,RMC_VMS/lib,RMCLIB/lib,'L1'
$ if target.nes."all" then exit
$
$ mcgr:
$ for mcgr
$ link/nouser/executable=mcgr -
 mcgr,RMC_VMS/lib,RMCLIB/lib,'L1'
$ if target.nes."all" then exit
$
$! Clean only if not "all"
$ exit
$
$ clean:
$ delete/noconfirm *.obj;*,*.olb;*,*.f90$mod;*
$ exit

REFERENCES

[1] RMCA Version 3, R.L. McGreevy, M.A. Howe and J.D.Wicks, (1993), available at http::/www.studsvik.uu.se
[2] PGPLOT Copyright © 1983-2001 by the California Institute of Technology. http://astro.caltech.edu/~tjp/

