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Abstract. In this paper we investigate simultaneously two non-relativistic scattering prob- 
lems from a unifying point of view, namely: ( a )  scattering of light by a free electron; and 
( b )  scattering of electrons by a screened Coulomb potential. In  both cases the electrons 
involved in the scattering process are embedded in an intense microwave field F( t )  and 
in a strong homogeneous magnetic field B. Therefore these particles have to be described 
by exact field-dressed states. On the other hand, the hasic scattering processes ( a )  and 
( b )  will be treated to lowest order of perturbation theory. In particular we shall investigate 
the non-linear processes induced by the strong external fields in the classical limit of highly 
excited quantum states. In this case we shall be able to derive compact analytic expressions 
for the transition amplitudes and cross sections. 

1. Introduction 

The investigation of laser-induced and laser-assisted scattering processes has been of 
great interest during the past twenty years (Ehlotzky 1985). Inverse bremsstrahlung 
has been considered as one of the important processes involved in the heating of fusion 
plasmas by laser radiation (Seely 1974a, b, Ferrante 1985). The problem of electron 
motion and scattering in a strong radiation pulse and in a homogeneous magnetic field 
involves some additional complications concerning the proper formulation of the 
boundary conditions (Faisal 1982, Zarcone et a1 1983). 

In our recent work, we have therefore decided to first investigate the problem of 
non-relativistic Compton scattering in the combined strong external fields mentioned 
above, since this problem apparently allows for a corresponding classical treatment 
(Varr6 et a1 1984, Varr6 and Ehlotzky 1984). In the present paper we shall continue 
our research by demonstrating the existence of a close analogy between Compton 
scattering and electron scattering in the combined external fields, in particular with 
regard to the evaluation of the matrix elements of these processes and the consideration 
of the proper classical limits. 

We shall study in the following sections the scattering of light by a free electron 
of mass M and charge - e  which is simultaneously embedded in an intense microwave 
field F ( t )  and in a strong homogeneous magnetic field B. At the same time we shall 
consider the scattering of the electrons by a screened Coulomb potential in the presence 
of the same external field configuration. The particular choice of the external fields 
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will be specified in § 2. There we shall also write down the interaction Hamiltonians 
for Compton scattering and electron scattering respectively. Describing the ingoing 
and outgoing electrons by exact field-dressed states we shall moreover write down in 
this section the corresponding scattering matrix elements to lowest order of perturbation 
theory. The next section will be devoted to the discussion and the detailed evaluation 
of these matrix elements and, in particular, the similarities between Compton scattering 
and electron scattering will be pointed out. In § 4 we shall finally calculate the 
differential scattering rates and  cross sections of these two processes and we shall 
consider in particular the non-linear effects induced by the external fields in the classical 
limit of highly excited quantum states. We shall conclude our work with a short 
discussion of our main results in § 5. 

2. The scattering matrix elements 

For the following considerations we shall assume that the microwave is right-hand 
circularly polarised and that the wave propagates in the direction of the magnetic field 
B = BZz where gz is a unit vector along the z axis. The low frequency of the microwave 
permits us to represent this wave in the dipole approximation by the vector potential 
A , ( t ) .  For the homogeneous magnetic field we shall adopt the vector potential in the 
symmetric gauge form $B x x. Thus we shall represent the combined external fields by 
the vector potential 

A‘”‘ = ;B x x + A,( t )  

= [ - i B y + ( e F / w )  cos w t , $ B x + ( e F / w )  sin wt, 01. (1) 

In  the following we shall describe the two non-relativistic scattering processes to 
the lowest order of perturbation theory. The basic set of electron states will be given 
by the exact solutions of the Schrodinger equation for the external fields equation (1). 
This means that we perform perturbation theory in the Furry picture. 

2.1. Compton scattering 

We begin our investigations with the consideration of Compton scattering since this 
turns out to be the simpler process. As in our foregoing work (Varr6 and Ehlotzky 
1984) we shall assume that the frequency w of the microwave and  the cyclotron 
frequency w ,  = eB/ Mc are much smaller than the frequency R of the scattered light. 
In  this case the dominant contribution to the amplitude of Compton scattering is 
determined by the ‘seagull diagram’ of figure 1 (see, for example, Sakurai 1975). This 
diagram corresponds to the A‘ A part of the non-relativistic interaction Hamiltonian 
and  its contribution can be represented by the following effective interaction potential 
(Varr6 and Ehlotzky 1984) 

2&c2 
(0’0) 1’2 

W = r,- ( E ‘ E ) exp[i( K - K ‘ ) x  - i( 0 - 0’) t ] .  

In  this expression the frequencies, wavevectors and  polarisations of the ingoing and  
scattered Compton light are denoted by SZ, K, E and R’, K ’ ,  E ’  respectively and ro is 
the classical electron radius. In  figure 1 the double lines represent the exact field-dressed 
states of the ingoing and  outgoing electron. 
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Figure 1. 'Seagull diagram' of non-relativistic Figure 2. Diagram of non-relativistic electron scat- 
Cornpton scattering of laser light by an electron tering by a screened Coulomb potential V in lowest 
embedded simultaneously in a constant order Born approximation. The double lines indicate 
homogeneous magnetic field B and a microwave field the states of the ingoing and outgoing electron which 
F. The electron may be considered instantaneously are 'dressed' by the combined action of the external 
at rest so that the other two diagrams of Compton fields B and F. 
scattering contribute very little in particular for the 
consideration of the classical limit. The double lines 
indicate the 'dressed' ingoing and outgoing electron 
states. 

2.2. Electron scattering 

Turning now to the process of electron scattering we shall consider as interaction 
Hamiltonian a screened Coulomb potential of the form V( r )  = (A/  r )  exp( -ar)  where 
A is an amplitude to be specified later and a-' is the screening length. It will be 
convenient for our discussions later on to decompose V( P) into its Fourier components. 
This yields a superposition of static plane waves of wavevectors k = (kL,  k,) and we 
obtain 

exp[i( k ,  . x, + k,z)] 
a2+kk:+kT 

V = [ 4 7 i . A / ( 2 ~ ) ~ ]  (3) 

Here we have introduced k ,  = (k,, k,) and x, = (x, y )  as two-dimensional vectors in a 
plane perpendicular to &. The diagram which corresponds to the lowest order Born 
approximation of the electron scattering amplitude is shown in figure 2 where the 
double lines again indicate the field-dressed particle states. 

The scattering processes ( a )  and ( b )  which are represented by figures 1 and 2 
respectively are then described by the matrix elements 

where in the case of Compton scattering the effective interaction Hamiltonian H'= W 
as given by equation (2) and for electron scattering we have H' = V which is represented 
by equation (3). 

With reference to perturbation theory in the Furry picture the initial and final states 
I+) in equation (4) are solutions of the Schrodinger equation for an electron in the 
external fields, equation ( l ) ,  and therefore 

( 2 M ) - ' [ p * + ( e / ~ ) A " " ' ] ~ 1 + )  = ifid,/$). (5a)  
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The exact solutions of this equation (Varr6 and Ehlotzky 1984) can be labelled by the 
three quantum numbers 1, m and pz. The continuous parameter pz represents the linear 
momentum of the free electron motion along the z direction with energy p1/2M. 1 
and m are the discrete radial and magnetic quantum numbers respectively which 
characterise the simultaneous transverse motion (perpendicular to &) of the electron. 
These solutions I$)  of equation (5a)  can be written down in the following form 

I + ) =  IPz)DI@) (5b) 

(zl PJ = (2&)-l" expI(i/h)[p,z - ( p 1 / 2 ~ ) t I )  (5c) 

where 

and 

D = exp[i(a/h)(p^ sin w t  - Mw,q  ̂ cos wt)] 
(5d) 

$=p^x -$Mw,ji M ~ , ;  = By + ;M@$ 

In the unitary operator 0, given by equation (5d),  the amplitude a of the classical 
electron motion in the microwave appears as the essential parameter. This is defined 
by (Varr6 et a1 1984) 

[q^, p^] = ih. 

a = (eF/  Mwc)(w/Aw)A A w = w - o , # O  A = c/w. ( 6 )  

The modulus la1 of this amplitude is essentially determined by the dimensionless 
intensity parameter of the microwave p2 = (eF/Mwc)2 and the detuning lAwl= lw -w,I 
between the microwave and cyclotron frequencies. 

According to equation ( 5 b )  the solutions I$) are found from the solutions I@) by 
means of the unitary transformation equation (5d).  The states I@), however, are the 
ordinary stationary Landau states which are given in cylindrical coordinates ( p ,  p) by 
(Landau and Lifshitz 1977) 

= Qlm exp(-iElmt/h) (7a)  

where the L\"I are associated Laguerre polynomials (Gradshteyn and Ryzhik 1980) and 

5 =  YP2 y = (eB/2hc) = (MwC/2h). (7b) 

Correspondingly, the discrete energy eigenvalues El, of the transverse electron motion 
(Landau levels) are known to be 

Elm = hw,[ 1 t $ ( m  + /ml+  l)] 

1 = 0 , 1 , 2 , , . .  m=0,*1,*2 , . . . .  

2.3. Matrix elements of Compton scattering 

For the simpler case of Compton scattering we have shown in our previous paper 
(Varr6 and Ehlotzky 1984) that the matrix element equation (4) can be decomposed 
into an infinite sum of matrix elements for various incoherent non-linear scattering 
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processes of different frequencies R’ = R,, of the emitted Compton radiation, namely 

n=--00 

where 

2 d C 2  
t$’= ro(a,a)l ,2(&’* e ) J n ( Q L a )  exp[i(8+.rr)n]{l’m’l exp(iQ, P,)llm). ( s a )  

In equation (8) we have introduced the parameters of total energy E = 
hR + El,, + p i / 2 M  before and correspondingly E’ after the scattering event and we 
have denoted the z component of the total linear momentum of the system by 
P, = pz + h K ,  and P i  = p i  + h K :  for the initial and final states respectively. Moreover, 
there appear in equation ( s a )  the ordinary Bessel functions Jn of the order n and the 
transverse part of the momentum transfer hQ, is determined by 

( 8 b )  

For the transverse part of the position operator we have written in equation (sa) ,  
2, = (?,y^).  The transition matrix elements $‘) of equation ( s a )  are essentially deter- 
mined by the form factors (l‘m’l exp(iQL - 2,jlm) evaluated between two different 
Landau states IZm), equation (7a ) .  

If the longitudinal component pz of the electron momentum is zero initially, the 
frequencies of scattered radiation can be well approximated by the formula 

Q, = ( K ,  - K : ,  K y  - K I )  = QI(cos 8, sin e ) .  

2.4. Matrix elements of electron scattering 

We now turn to the problem of electron scattering in the presence of the external field 
configuration equation (1). The evaluation of the corresponding matrix element, 
equation (4), with H’ given by equation (3) can be carried out along the same lines 
as for Compton scattering and we again obtain an infinite sum of matrix elements for 
the different incoherent scattering processes. This yields 

+m 
TgC’ = - 2 ~ i  1 6 ( E  + nhw - E‘)  Mx) 

n=-m 

with 

(k,a) exp[in(x + ~r)]{l’m’l exp(ik, - i,lZm), (loa) 

In the last equation the longitudinal momentum transfer hq = p i  -pz has been 
introduced and for the integration over the transverse momenta h k ,  we have defined 
polar coordinates by putting k, = k,(cos x, sin x). As in the case of Compton scattering 
we have also introduced in equation (10) the total energy E = El, +p2,/2M of the 
electron before and correspondingly E‘ after the scattering event. All other quantities 
appearing in equation (loa) have been defined before. 



3400 S Varro' and I; Ehlotzky 

By considering the matrix elements of equations ( s a )  and ( l o a )  we realise that 
apart from the k, integration in equation (loa) the matrix elements of Compton 
scattering and electron scattering have a very similar structure and this circumstance 
permits us to carry out a parallel analysis of these two scattering processes. However, 
it becomes immediately clear that the matrix elements of Compton scattering can be 
more easily handled than those of electron scattering. 

3. Evaluation of the matrix elements 

In order to analyse in detail the structure of the scattering amplitudes we must first 
explicitly evaluate the matrix elements of the form (l'm'l exp(ik, * .i?l)l/m) which appear 
in equations (8a)  and IlOaj. By taking into account the representation of the Landau 
states equations (7a, b )  we obtain after integration over the azimuth cp 

where 

with 

(1 lc )  p = m ' - m  b = .,,-I/' 

In the following we shall not consider all possible combinations of the quantum 
numbers 1,l' and m, m' but we shall concentrate on the special choice m', m > 0 and 
m ' - m  =p>O. This choice is not essential for the analysis to be carried out below 
but it is of particular interest for the consideration of the classical limit which will be 
investigated later on. 

As it turns out, it is convenient for the treatment of Compton scattering as well as 
of electron scattering to first evaluate an explicit expression for the integral I ( k , )  as 
defined by equation ( l l b ) .  By means of the Rodrigues formula which defines the 
associated Laguerre polynomials we can easily prove that 

L;" (x') = [ ( I + m ) !/ I !]( - 1 ) m ~ - 2  "'LTT~ ( x2) (12a) 

and therefore I (k , )  can be brought to the form 

I (  k,) = 2[( I + m ) ! /  I ! ] (  -1)'" dx exp( -x2)xp"L;J1'(x2)L;~,'(x2)J, (k,bx). (12b)  i: 
Although an explicit analytic expression for this integral can be found in Gradshteyn 

and Ryzhik (1980), one can show that the formula (7.422.2) presented by these authors 
i~ incorrect. This can be easily demonstrated by considering the integral equation 
(12b) as the Hankel transform of the function exp(-x2)xp+1'2L;J1'(x2)L;t"(x2). If we 
use the above formula of Gradshteyn and Ryzhik then the inverse transform of the 
image function does not coincide with the original function as it should do. Therefore 
the transformation formula of Gradshteyn and Ryzhik mentioned above cannot be the 
proper one. In the course of our calculations we have found the correct Hankel 
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transformation according to which I (  k,) is given by 

I (  k,) = (- l)"+'[( I + m )  !/ l ! ]ppLI .A  ( p 2 ) L f ! ! , (  p')  exp( - -p2)  (13) 
where 

p = k,b/2 A = 1'- 1. 

These results will permit us to investigate Compton scattering and electron scattering 
below in more detail. 

3.1. Compton scattering 

By means of the explicit expression, equations (13) and (13a), for I (k , )  we are able 
to write down the amplitudes for Compton scattering t:) in closed form on account 
of equations (8a)  and ( l l a ,  b) .  These amplitudes can then be used to evaluate by 
standard methods the corresponding transition probabilities and differential cross 
sections. After summation and averaging over the polarisations of the scattered light 
these calculations yield the following cross section formulae 

where duTh denotes the differential cross section of ordinary Thomson scattering. 
Moreover we have introduced the notation 

According to equation (13a) we have to put here p = Q,b/2 where Q, represents the 
modulus of the transverse part of the momentum transfer which has been introduced 
in equation (8b) .  Q,  depends weakly on n and v = - ( p  + A )  via the scattered frequen- 
cies Sz,, defined by equation (9). 

3.2. Electron scattering 

The treatment of the electron scattering problem is much more complicated. If we 
insert the matrix elements, equations (1 1 a, b ) ,  into equation (loa) and then perform 
the integration over ,y we obtain for the matrix elements A42) of electron scattering 
the expression 

x Ly ' (x2)L;"(x2)Jp(k,bx) .  

The Kroenecker factor S, ,  at the beginning of this formula expresses the conservation 
of angular momentum during electron scattering and this is a direct consequence of 
the cylindrical symmetry of the scattering potential equation (3). Since the angular 
momentum of the microwave photons is h we obtain on account of the emission (or 
absorption) of n such photons a corresponding increase (or decrease) of the electron's 
angular momentum by the amount nh = h( m' - m )  = hp,  (see equation (1 1 a ) ) .  This 
conclusion does not hold for Compton scattering since in that case the effective 
interaction potential equation ( 2 )  has no cylindrical symmetry. 
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By means of equations (15), (12b), (13) and (14a) we can now write down the 
transition amplitudes in the form 

It appears very unlikely, if not impossible, to find in the general case of this exact 
expression for M$)  a simple and closed analytic formula as we were able to derive 
in § 3.1 for Compton scattering. In the latter case there was no additional integration 
to be carried out in equation (16). However, the integral of equation (16) can be 
evaluated if we treat the transverse motion of the electron in the classical limit. This 
will be shown in the next section. 

Before considering the classical limit, however, we should like to indicate another 
approach to the evaluation of the double integral on the right-hand side of equation 
(15). Here we first do the integration with respect to k,. We obtain (Gradshteyn and 
Ryzhik 1980, formula 6.541.1) 

x lom dx exp(-x2)x”+m+1 LY’( x’) Lr”( x2) 

X [ O( U - bx)K,( a(  cy2 + q2)”2)I,( b( a 2  + q’)l/’x) 

+ O( bx - u ) I ,  ( U (  a’+ q2))‘/’)K,( b( a’ + q2)’12x)] 

where 0 denotes the Heaviside step function while I, and K ,  represent modified 
Bessel and Hankel functions respectively. In our present paper we shall not pursue 
this way of evaluation of the matrix elements M $ )  any further. We have only written 
down equation (17) in order to correct an error which crept in during our first 
investigation of the electron scattering problem (Bergou et a1 1982, formula 3.23.a). 

4. Considerations of the classical limit 

In order to analyse the exact results for Compton scattering and for electron scattering 
as expressed by equations (14), (14a) and (16) respectively, we shall first make some 
remarks on the ‘classical meaning’ of the quantum numbers which characterise the 
transverse motion of an electron in a homogeneous magnetic field. Since classically 
an electron can never have a negative component of angular momentum in the 
magnetic-field configuration considered, we shall take m > 0. For large positive values, 
the principal quantum number 1 + m determines the classical radius of gyration pc via 
the relation (Johnson and Lippman 1949) 

b2(1+ m )  = p: b’ = y-’ = 2h/ Mw,. (18a) 

On the other hand, the radial position of the centre of electron gyration (the guiding 
centre) po is determined by the radial quantum number 1 and the corresponding relation 
reads 

b21 = p i .  (18b? 

This classical interpretation of the quantum numbers 1 + m and 1 can also be justified 
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by investigating the properties of coherent superpositions of Landau states of the 
transverse electron motion (Varr6 1984). From equations (18a, 6) we conclude that 
po = p,[Z/( 1 + m)]"'. If, therefore, we consider the classical limit which corresponds 
to highly excited quantum states ( I  + m + CO) then for the energy of these states we 
shall have hw,(l+ m )  = Mv:/2 and this energy has to be kept in the limit at a fixed 
value. Consequently, pc also has a fixed value and we abtain for po the condition 

In this equation the value of E depends on how we take the limit. 
As has been shown in our foregoing paper (Varr6 and Ehlotzky 1984) the classical 

differential cross section formulae for modified Thomson scattering in the external 
background fields equation ( l ) ,  which we have derived earlier (Varr6 et a1 1984), can 
be recovered from equations (14) and (14a) if from the very beginning we take I '  = I = 0. 
This last condition corresponds to completely neglecting the transverse quantum recoil 
during the scattering process. In general this recoil will lead to a change of the radial 
position of the guiding centre. 

For a classical electron the z-component of the canonical angular momentum 
L , = ( x ~ p ) ~  and of the kinetic angular momentum L:'"= M ( x x u ) ,  can only be 
constants of motion simultaneously if the centre of gyration coincides with the origin 
of the reference frame. In the quantum mechanical problem, on the othfr hand, the 
states ilm) are eigenstates of the canonical angular momentum operator L, and at the 
same time these states correspond to a certain radial position of the centre of gyration 
which is determined by the radial quantum number 1. This shows that the classical 
correspondence can be maintained by either considering states with 1 = 0 or by putting 
E = 0 in the quantum mechanical cross section formulae after the limit 1 + 00 has been 
taken, keeping A = 1'- 1 to a fixed value. 

In the following we shall therefore approach the classical limit in our two scattering 
problems by considering the Hilb-type asymptotic formula of the associated Laguerre 
polynomials (ErdCly 1953). According to the Hilb formula the functions I,,A which 
are defined by equation (14a) can be written as 

I[,* = ~ , ( 2 p ~ * )  + o(ir3l4) (20a) 
and 

If+,,,+ = Jv(2p(  I +  m)"*) + O ( (  1+ m)-3/4) .  

4.1. Classical limit of Compton scattering 

If we introduce in equation (14) the relations equations (18a, b )  and the asymptotic 
formulae equations (20a, 6)  and if we then let 1 + m + CO and 1 + CO while keeping v 
and A to fixed values at the same time, then the differential cross sections for modified 
Compton scattering can be brought to the form 

dun" = d%LL/f l ) JZn(  Q1a )J3 QdJ2, ( Q l P O )  (21) 

where all the parameters Q1, a, pc and po which appear on the right-hand side of this 
equation have a well defined classical meaning. However, the last factor, J:(Q,po), 
in equation (21) cannot be of classical origin. It accounts for the quantum recoil 
effects. This is so, even though the argument of this Bessel function contains po as a 
classical macroscopic quantity, however, the change of its value is determined by the 



3404 S Varro’ and F Ehlotzky 

finite index A which expresses the fact that during the scattering process po varies on 
the quantum scale. It may be surprising that the cross sections of modified Compton 
scattering depend on the positions of the ccntre of gyration of the scatterer. However, 
this can easily be understood if we remember that the quantum number 1 determines 
the radial distance of the guiding centre from the origin but it does not specify its 
azimuthal position on the circumference of the circle of radius pa. In  other words, the 
state i lm)  describes a smeared out charge distribution of disc-like shape for which the 
total radius is po+pc.  Consequently it appears natural that po shows up  in the recoil 
term. If we sum over A, which means summing over all recoil factors we get back to 
the classical formula (Varr6 et a1 1984, Varr6 and Ehlotzky 1984) 

da: = daTh(finu/fi)JZn(Ql ~ ) J ” Y Q ~ P ~ ) .  (22) 

On the other hand, if we keep in mind that according to equation (19) we have pa = pc&, 
then, by putting E = 0, we obtain for the last Bessel function in equation (21), JA (0) = 
and we therefore recover once more the classical result. 

4.2. Classical limit of electron scattering 

Let us now turn to the problem of electron scattering. Here we shall again use the 
Hilb-type formulae equations (20~2, 6) and we shall take into account the definitions 
equations (18a, b ) .  Then the matrix elements M$’) of equation (16) can be written in 
the form 

Using the formula (6.541.1) of Gradshteyn and  Ryzhik (1980) we can explicitly perform 
the integration on the right-hand side of equation (23) to obtain the following closed- 
form expression for the matrix elements 

M;) = a,, ( - 1 ) ” (A/ A T )  

(24) 
q * ) ” * ) I n + A (  pc(a2+ q2)1’2)IA( P 0 ( a 2 +  q2)l’*) YKn(‘ I n  (!‘I( + q2) ’ / ’ )  Kn+A ( P c (  + q 2 ) ” * ) 1 A  (PO( a2  + q2)1’2) 

where the upper part of this formula holds for la1 > pc+po and the lower part for 
la1 <pc -po .  Moreover, I,, and K ,  denote respectively modified Bessel and Hankel 
functions of the order n. 

From the matrix elements, equation (24), we obtain for the relative number of 
reactions during the scattering process (i.e. the number of scattered particles over the 
number of incoming particles) R the formula 

= [ ( ~ ~ ) * / v : u , ] ( M ~ ’ J * =  (4A2/h2v:v,) 

KZ,( la I( a2 1- q2)1’2) (p,( a2+ q*)I’*)J;  (Po( a* + q y )  
I’, ( / a  I( a * + qz)1’2)K:+ ( P c (  cy2 + q2)  1’2) 1; (PO( c y 2  + q2)1’2) 

tal > P C +  Po 

la! < P C -  Po. 
( 2 5 )  

Here we have introduced v, = / p , / / M  and U: = / p : / / M .  The frequency of transitions 
w , , ~  as the number of scattering processes per unit time is then given by 

wn3A = C z ~ R n , A  (26) 

where C,, is the flux of ingoing particles. If C,, is equal to unity then Rn,A is just the 
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transition probability per unit time (transition rate). We should also point out that in 
our final results equations (24 )  and (25 )  the parameter (a1 appears which is the modulus 
of the parameter a defined by equation (6). Moreover, we have to keep in mind that 
on account of the energy conservation relation, expressed by the 6 function in equation 
(IO), the momentum transfer hq will depend on n and A. 

Finally we consider electron scattering in the classical ‘transverse recoil-free’ limit. 
Then the transition probabilities equation ( 2 5 )  reduce to simpler expressions on account 
of the relation Z,(O) = for po = pc& with E = 0. In order to discuss this special case 
somewhat further we shall specify the constant A in the scattering potential equation 
(3) by putting A = Ze2 and we shall assume that 1Ao1< w, w,. 

The validity of the Born approximation which has been used in equation ( 4 )  rests 
on the condition Ze2 /hc<< pz where pz = v,/c. By means of the energy conservation 
relation for our scattering process we can express the momentum transfer hq, = 
h( n A w /  fiz) where ijz = (U, + v : ) /2 .  Taking into account our above conditions for p, 
and / A w /  we can easily show that we must require 

and therefore in this case the relative number of reactions R, can be expressed in the 
form 

We now remember the simple physical meaning of the parameter la\ which appears 
in the arguments of the Bessel and Hankel functions of equation (28) and which has 
been defined in equation ( 6 ) .  This parameter was found to be the amplitude of that 
component of the electron’s transverse motion in the external field equation (1) which 
corresponds to the oscillation with the microwave frequency W .  The total transverse 
motion of the electron is then given by the superposition of this quivering motion and 
the electron’s cyclotron motion along a circle of radius pc. 

Finally, we can get an even simpler expression for R, if we assume that the 
characteristic lengths la1 and pc are much larger than the screening length a-’ of the 
scattering potential, equation (3). This condition can be satisfied within a wide range 
of parameter values of the external field, equation (1). In this case we can deduce 
from equation (28 )  the simplified formula 

Rn = ( z e 2 / h c ) ’ ( 2 / ~ ’ ) ( l a  lapca exp( -Ipc - I a1 / a )  ( 2 9 )  
with (ala, p c a  >> 1, n. This result follows from the asymptotic expansions for I ,  and 
K ,  for large values of the arguments. lpc - / a /  1 represents the radial distance of the 
nearest points of encounter of the electron’s trajectory with the scattering centre. 
Therefore it is intuitively clear that for values lpc - Jalj  much larger than the screening 
length a-’ the effect of the scatterer can be neglected. This fact is also born out by 
equation ( 2 9 )  since according to this formula the number of reactions becomes exponen- 
tially small. 

5. Conclusions 

In the foregoing sections we have made a parallel investigation of the scattering of 
light by a free electron (non-relativistic Compton scattering), represented by the 
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diagram of figure 1, and of electron scattering by a static screened Coulomb potential, 
shown in figure 2, in the simultaneous presence of an external field configuration 
equation (1) composed of a circularly polarised microwave and a homogeneous 
magnetic field. In the classical limit, in particular, which is extensively discussed in 
0 4, these two scattering processes and the non-linear effects induced by the external 
fields are very closely related to each other and for both cases closed analytic expression 
can be derived for the scattering probabilities and cross sections which are given by 
equations (22) and (28) respectively. These results confirm our conjectures which we 
have made in our previous work (Varr6 et a1 1984) according to which the solution 
of the light scattering problem paves the way for the corresponding treatment of 
electron scattering. This is particularly true for the consideration of the classical limit. 
Our more general formulae, equations (21) and (25), can be discussed for a wide range 
of parameter values for a, a, p o  po ,  n, v and h which will be done in more detail in 
a forthcoming publication. 

References 

Bergou J, Ehlotzky F and Varr6 S 1982 Phys. Rev. A 26 470 
Ehlotzky F 1985 Can. J. Phys. in press 
Erdtly A (ed) 1953 Higher Transcendental Functions vol 2 (New York: McGraw-Hill) I 10.15 
Faisal F H M 1982 J. Phys. B: At. Mol. Phys. 15 L739 
Ferrante G 1985 Physics of Ionized Gases ed M M Popovic (Berlin: Springer) 
Gradshteyn I S and Ryzhik I M 1980 Tables oflntegrals, Series and Products (New York: Academic) 
Johnson M H and Lippmann B A 1949 Phys. Rev. 76 828 
Landau L D and Lifshitz E M 1977 Quantum Mechanics (London: Pergamon) 
Sakurai J J 1975 Advanced Quantum Mechanics (Reading, MA: Addison-Wesley) 
Seely J F 1974a Laser Interaction and Related Plasma Phenomena vol3B, ed H J Schwarz and H Hora (New 

- 1974b Phys. Rev. A 10 1863 
Varr6 S 1984 J. Phys. A :  Math. Gen. 17 1631 
Varr6 S and Ehlotzky F 1984 J. Phys. B: At. Mol. Phys. 17 L759 
Varr6 S, Ehlotzky F and Bergou J 1984 J. Phys. B: At. Mol. Phys. 17 483 
Zarkone M, McDowell M R C and Faisal F H M 1983 J. Phys. B: At. Mol. Phys. 16 4005 

York: Plenum) 


