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Abstract

It has been shown that in the scattered radiation, generated by an ultrashort laser pulse impinging on a metal nano-layer,
non-oscillatory wakefields appears with a definite sign. The magnitude of these wakefields is proportional to the incoming
field strength, and the definite sign of them is governed by the cosine of the carrier-envelope phase difference of the
incoming pulse. When we let such a Wakefield excite the electrons of a secondary target (say an electron beam, a
metal surface or a gas jet), we can obtain 100 percent modulation in the electron signal in a given direction. This
scheme can serve as a basis for the construction of a robust linear carrier-envelope phase difference meter. At
relativistic laser intensities, the target is considered as a plasma layer in vacuum produced from a thin foil by a
prepulse, which is followed by the main high-intensity laser pulse. The nonlinearities stemming from the relativistic
kinematics lead to the appearance of higher-order harmonics in the scattered spectra. In general, the harmonic peaks
are downshifted due to the presence of an intensity-dependent factor. This phenomenon is analogous to the famous
intensity-dependent frequency shift in the nonlinear Thomson scattering on a single electron. In our analysis, an
attention has also been paid to the role of the carrier-envelope phase difference of the incoming few-cycle laser pulse.
It is also shown that the spectrum has a long tail where the heights of the peaks vary practically within one order of
magnitude forming a quasi-continuum. Fourier synthesizing the components from this plateau region attosecond pulses
has obtained.

Keywords: Carrier-envelope phase difference; Few-cycle laser pulses; High-harmonic generation; Relativistic laser-
plasma interactions

1. INTRODUCTION

The study of the interaction of intense few-cycle laser pulses
with matter has brought a new, important branch of investi-
gations in nonlinear optics, as Brabec and Krausz (2000)
emphasized in their review paper. The effect of the absolute
phase (the carrier-envelope phase difference, in short:
“absolute phase” or “CE phase”) on the nonlinear response
of atoms and of solids interacting with a very short, few-cycle
strong laser pulse has recently drawn considerable attention,
and has initiated a wide-spreading theoretical and experimen-
tal research. For instance, Paulus et al. (2001) have detected
an anticorrelation in the shot-to-shot analysis of the photo-
electron yield of ionization measured by two opposing

detectors. This effect comes from the random variation of
the CE phase (hence the direction and the magnitude of the
electric field of the laser) from one pulse to the other. Such
extreme short pulses can be used to monitor the details of
photoelectron dynamics (Hentschel et al., 2001) or atomic
inner-shell relaxation processes, like the Auger effect
(Drescher et al., 2002). Concerning theory, the CE phase-
dependence of the spatial asymmetry in photoionization
has been investigated by Chelkowski and Bandrauk (2002),
and by Milošević et al. (2002, 2003). In the meantime, the
problem of the stabilization and control of the CE phase in
the few-cycle laser pulse trains has been achieved by
Baltuška et al. (2003), and by Witte et al. (2004).
However, the question remains; what is the absolute value
of these stabilized initial phases? That is, why is it important
to search for ultrashort pulse laser-matter interactions, whose
response functions are sensitive to the value of the absolute
phase. On the basis of a simulation, using the time-dependent
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density functional approach, Lemell et al. (2003) predicted
the CE phase-dependence of the photoelectron yield in
case of the surface photoelectric effect of metals in the
optical tunnel regime. Apolonskiy et al. (2004) and Dombi
et al. (2004) have reported the measurement of this effect,
but the absolute phase-dependence had a considerably
smaller modulation (CE phase-sensitivity) in their exper-
iment than predicted by the simulation. Fortier et al. (2004)
has recently demonstrated the CE phase effect in quantum
interference of injected photocurrents in semiconductors. In
the multiphoton regime, Nakajima and Watanabe (2006)
have found theoretically CE phase effects in the bound
state population of a Cs atom excited by nearly single-cycle
pulses. Quite recently, Irvine et al. (2006) reported exper-
imental results on the influence of the CE phase on the pon-
deromotive surface plasma electron acceleration.

At this point, we would like to note that there is a wide-
spread opinion among researchers investigating the CE
phase effects that these effects appear exclusively in non-
linear processes. In fact, as Fearn and Lamb (1991) have
shown, the sine or the cosine character of the laser pulse
makes a difference in the linear photoionization dynamics,
if one takes into account the counter-rotating term in the
interaction. As they wrote in Section 4 of their paper “This
suggests that . . . the time delay [of the electron signal]
could be used to measure the phase of the field.” Ristow
(2004) has recently considered a simple illustration of the
linear CE phase effect in the case of a harmonic oscillator.

At relativistic incoming laser intensities, Lichters et al.
(1996) have considered the high-harmonic production on
plasma surfaces analytically based on their famous oscillat-
ing mirror model. The model introduced in the present
paper differs considerably from this approach, because we
have taken into account the radiation reaction on the
plasma layer. We note that recently there has been much
labor put into the classical simulations of various processes
(generation of coherent X-rays, laser acceleration of elec-
trons) in laser-plasma interaction (Pukhov &
Meyer-ter-Vehn, 2003; Kiselev et al., 2004; Quèrè et al.,
2006; Tsakiris et al., 2006). Moreover, the first experimental
results by Hidding et al. (2006) appeared on the generation of
quasi-monoenergetic electron bunch by strong laser fields.
Eliezer et al. (2005) have reported on the production by fem-
tosecond laser pulses of crystal nanoparticles for aluminum
and nanotubes, and for carbon on a transparent
heat-insulating glass substrate. Kanapathipillai (2006) have
worked out a nonlinear oscillator model to describe the non-
linear absorption of ultrashort laser pulses by clusters.
Sherlock et al. (2006) have shown by the numerical study
of the Vlasov-Fokker-Planck equation that it is necessary
to take into account, the collisional heat transport into the
target in order to model the absorption rate of laser pulses
of 100 fs duration, and of intensities about 1015 W/cm2 at
the front of the target surface. According to the theoretical
studies on the interaction of a short laser pulse with metals
performed by Anwar et al. (2006), the laser-induced electric

field inside the target is responsible for an induction of the
current density, which causes, after all, electronic heat con-
duction. Laser-induced acceleration and manipulation of
high-energy charged particle beams are still subjects of
extensive theoretical and experimental research. For instance,
Lifschitz et al. (2006) have recently proposed a new scheme
for a compact GeV laser plasma accelerator. According to the
simulations performed by these authors, their method would
yield the production of high quality, monoenergetic, and
sub-50 fs electron bunches at the GeV energy level. Willi
et al. (2007) have proposed a novel technique for focusing
and energy selection of high-current MeV proton beams. In
their scheme, the transient electrostatic field induced by an
ultrashort laser pulse is responsible for the “micro-lensing,”
i.e., for the focusing and for the selection of a narrow band
out of the broadband poly-energetic spectrum of protons gen-
erated from a separate laser-irradiated thin foil target.

Coming back to the problem of the “absolute phase” (CE
phase) effects, we would like to note that, according to the
theoretical analyses carried out recently, these effects show
up only in the case of laser pulses whose duration is defi-
nitely smaller than about 10 optical cycles (i.e., 26 fs for a
Ti:Sa laser). That is why we now concentrate mostly on the
interaction of few-cycle laser pulses with matter. To our
knowledge, there have been no classical considerations so
far published, where the CE phase effects in the relativistic
regime would have been analyzed. The present paper may
be considered as a contribution to the study of this particular
aspect.

We have seen above, that in the theoretical works exclu-
sively nonlinear quantum processes (photoionization,
surface photoelectric effect) have been considered in the non-
relativistic regime. In the present paper, we describe the
reflection and transmission of a few-cycle laser pulse on a
thin metal layer, and a plasma layer represented by a
surface current density of free electrons. Our analysis here,
as in our earlier study (Varró, 2004), is based completely
on classical electrodynamics and mechanics, in the frame
of which we solve the system of coupled Maxwell-Lorentz
equations of the incoming, and scattered radiation and the
surface current representing the metallic or plasma electrons.

In Section 2, we present the basic equations describing our
model, and present the exact analytic solution to the scatter-
ing problem in the nonrelativistic regime. Here we briefly
analyze the exact solutions in the frequency domain. We
also discuss the temporal behavior of the reflected signal,
and show that a pulse-decompression and “freezing-in” of
the radiation field may happen, yielding to the appearance
of a quasi-static wakefield in the scattered signal. In
Section 3, we derive the relativistic equation of motion
(EOM) for the surface current density of the electrons,
which are considered the active charges in a thin plasma
layer. It will turn out that the complete solution of the scatter-
ing problem can be reduced to the solution of a first order
ordinary inhomogeneous differential equation. An approxi-
mate analytic solution to this equation will be given, which
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is valid for moderately relativistic incoming laser intensities.
Based on these solutions, the spectrum of the reflected radi-
ation field containing higher-harmonics will be calculated. It
will be shown that these spectra are considerably dependent
on the CE phase difference from the incoming few-cycle
laser pulse. In Section 4, a brief summary closes our paper.

2. THE APPEARANCE OF WAKEFIELDS IN
THE SCATTERED SIGNAL IN THE
NON-RELATIVISTIC REGIME

The idea to study the system under discussion appeared to us
by reading a paper by Sommerfeld (1915), in which he ana-
lyzed the temporal distortion of X-ray pulses of arbitrary
shape, and duration impinging perpendicularly on a surface
current being in a vacuum. In our earlier work (Varró,
2004), we generalized this model in the following sense.
On the one hand, we allowed oblique incidence of the incom-
ing radiation field, and on the other hand, we assumed that
the surface current distribution (which represents a thin
metal layer) is embedded between two semi-infinite dielec-
trics with two different indices of refraction. In the present
paper, we shall give the relativistic generalization of the
EOM of the surface current, in addition, which was not inves-
tigated by Sommerfeld. This latter approach will be derived
in Section 3, where we shall consider the interaction of a
plasma layer with laser pulses of relativistic intensities.
In the present section, we shall consider only the non-
relativistic dynamics of the surface current.

2.1. The basic equations of the model and the exact
analytic solutions in the frequency domain

The model to be used in this paper, we have already studied
(Varró, 2004). For completeness of the present paper, let us
first briefly summarize the basic notations and equations,
which can also be found in this reference. We take the coor-
dinate system: such that the first dielectric with index of
refraction n1 fills the region z . l2/2, this is called Region
1. In Region 2, we placed the thin metal layer of thickness
l2 perpendicular to the z-axis, and defined by the relation
2l2/2 , z , þ l2/2. In Region 3, z , 2l2/2 is assumed
to be filled by the second dielectric having the index of
refraction n3. The thickness l2 is assumed to be much
smaller then the average skin depth of the incoming radiation.
The target defined this way can be imagined as a thin metal
layer evaporated, for instance, on a glass substrate. This
layer, in fact, is represented by a sheet of electrons bound to
Region 2 and moving freely in the x-y plane. In case of per-
pendicular incidence, the light would come from the positive
z-direction, and it would be transmitted in the negative z-direc-
tion into Region 3. The plane of incidence is defined as the y-z
plane and the initial~k-vector is assumed to make an angle u1

with the z-axis. In case of an s-polarized incoming transverse
electric (TE) wave, the components of the electric field and the
magnetic induction read (Ex, 0, 0) and (0, By, Bz), respectively.

They satisfy the Maxwell equations

@yBz � @zBy ¼ @0eEx; @zEx

¼ �@0By;�@yEx ¼ �@0Bz; (1)

where 1 ¼ n2 is the dielectric constant and n is the index of
refraction. If we make the replacements 1Ex! 2Bx, Bz!
Ez and By! Ey then we have the field components of a
p-polarized TM wave (0, Ey, Ez) and (Bx, 0, 0), and we get
the following equations

@zBx ¼ @01Ey;�@yBx ¼ @01Ez; @yEz

� @zEy ¼ �@0Bx: (2)

In the followings, we will consider only the latter case,
namely the scattering of a p-polarized TM radiation field.
From Eq. (2) we deduce that Bx satisfies the wave equation
and in Region 1, we take it as a superposition of the incoming
plane wave pulse F and an unknown reflected plane wave f1

Bx1 ¼ F � f1 ¼ F½t � n1(y sin u1 � z cos u1)=c�
� f1½t � n1(y sin u1 þ z cos u1)=c�: (3)

From Eq. (2) we can express the components Ey and Ez of the
electric field strength by taking into account Eq. (3)

Ey1 ¼ ( cos u1=n1)(F þ f1); Ez1 ¼ ( sin u1=n1)(F � f1): (4)

In Region 3, the general form of the magnetic induction Bx3

is the, by now unknown, refracted wave g3

Bx3 ¼ g3 ¼ g3½t � n3(y sin u3 � z cos u3)=c�: (5)

The corresponding components of the electric field strength
are expressed from the above equation with the help of the
first two equations of Eq. (2)

Ey3 ¼ ( cos u3=n3)g3;Ez3 ¼ ( sin u3=n3)g3: (6)

In Region 2, the relevant Maxwell equations with the current
density~j read

@zBx ¼ (4p=c)jy2 þ @01Ey; @yEz � @zEy ¼ �@0Bx: (7)

By integrating the two equations in Eq. (7) with respect to z
from 2l2/2 to þl2/2 and taking the limit l2! 0, we obtain
the boundary conditions for the field components

½Bx1 � Bx3�z¼0 ¼ (4p=c)Ky2; ½Ey1 � Ey3�z¼0 ¼ 0; (8)

where Ky2 is the y-component of the surface current in
Region 2. This surface current can be expressed in terms of
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the local velocity of the electrons in the metal layer

Ky2 ¼ e(ddy=dt)l2ne; (4p=2c)Ky2 ¼ (m=e)G(ddy=dt); (9)

G ; 2p(e2=mc)l2ne;G ¼ (vp=v0)2(pl2=l0)v0;k ; G=v0

¼ p(vp=v0)2(l2=l0); (10)

where for later convenience, we have introduced v0, l0 ¼

2pc/v0, the carrier frequency and the central wavelength
of the incoming light pulse, and ne, vp ¼

p
4pnee

2 /m
denote the density of electrons, and the corresponding
plasma frequency in the metal layer, respectively. In
Eq. (9), dy denotes the local displacement of the electrons
in the metal layer for which we later write down the
Lorentz equation (Newton equation in the non-relativistic
regime) in the presence of the complete electric field. We
remark that in reality, the thickness l2 is, of course, not infi-
nitesimally small, rather, it has a finite value that is anyway
assumed smaller then the skin depth dskin ¼ c/

p
vp

2 2 v0
2.

In order to have a feeling for the size of the parameters
coming into our analysis, let us take some illustrative
examples. For instance, for ne ¼ 1022/cm3, dskin ¼ l0/14,
and for ne ¼ 1023/cm3, dskin ¼ l0/47, where we have taken
l0 ¼ 800 nm and v0 ¼ 2.36 � 1015 s21 for a Ti : Sa laser.
For the damping parameter G in the first case, if we take
l2 ¼ l0/400 ¼ 2 nm, we have k ; G/v0 ¼ 1/20. In the
second case, for the same thickness l2 ¼ l0/400 ¼ 2 nm
we have k ; G/v0 ¼ 0.18.

From Eq. (8) with the help of Eq. (9), we can express f1
and g3 in terms of dy

0
(t 0)

f1(t0) ¼ (1=(c1 þ c3))½(c3 � c1)F(t0)

� 2c3(m=e)Gd0y(t0)�; (11)

g3(t0) ¼ (2c1=(c1 þ c3))½F(t0)� (m=e)Gd0y(t0)�; (12)

where the prime on dy denotes the derivative with respect to
the retarded time t 0 ¼ t 2 yn1sin u1/c which is equal to t 2

yn3sinu3/c, securing Snell’s law of refraction n1sinu1 ¼

n3sinu3 to hold. In Eqs. (11) and (12), we have introduced
the notations c1 ¼ cosu1/n1, c3 ¼ cosu3/n3. We would like
to emphasize that Eqs. (11) and (12) are valid in complete
generality, that is, they hold for both non-relativistic and rela-
tivistic kinematics of the local electron displacement dy (t 0).
For an interaction with a TM wave, this displacement is
uniform (along lines of constant x-values) in the direction
perpendicular to the plane of incidence (the y-z plane), so it
does not depend on the x-coordinate. As the incoming
wave impinges on the surface at Region 2, its (plane) wave
fronts sweep this surface creating a superluminar polarization
wave, described by the local displacement dy (t 0) of the elec-
trons. Because of the continuity of Ey, Eq. (8) in the Newton
equation for the displacement of the electrons in the surface
current, we can use for instance the force term Ey1 ¼ c1 (F þ

f1) according to Eq. (4), and neglect the magnetic induction.
By considering Eq. (11) we have

d00y (t0) ¼ b½(e=m)F(t0)� Gd0y(t0)�; (13)

b ; 2c1c3=(c1 þ c3); c1 ; cos u1=n1;

c3 ; cos u3=n3 ¼ (1=n2
3)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

3 � n2
1(1� cos2 u1)

q
: (14)

In obtaining the last formula in Eq. (14), we have used
Snell’s law of refraction mentioned above. For definiteness,
we impose the initial conditions on the electron displacement
dy(21) ¼ 0 and dy

0
(21) ¼ 0. Owing to Eqs. (11) and (12),

the solution to Eq. (13) gives at the same time the complete
solution to the scattering problem. We see that the EOM for
the local displacement dy(t 0) contains a damping term with a
damping parameter bG, where G has been defined in Eq. (10).
This latter constant is proportional to the squared plasma
frequency and the thickness of the electron layer. The appear-
ance of the damping term is a manifestation of the radiation
reaction coming formally from the boundary conditions in
the present description. Since G is proportional to the electron
density, this effect is due to the collective response of the
electrons to the action of the complete (not only the incom-
ing) radiation field, which on the other hand reacts back to
the electrons. In the present description, it is not possible
to divide into steps these “consecutive” effects, as in the
usual treatments of the radiation back-reaction. Eq. (13)
can be solved exactly for an arbitrary incoming field F(t).
Calculating the Fourier transforms of Eqs. (11), (12), and
(13), we can give an exact solution to the scattering
problem in the frequency domain, namely

~f 1(v) ¼ �
~F(v)

bG� iv
bGþ c3 � c1

c3 þ c1
iv

� �

¼ �
~F(v)

bk� iv
bkþ c3 � c1

c3 þ c1
iv

� �
; (15)

~g3(v) ¼ � 2c1

c1 þ c3

iv~F(v)
bG� iv

¼ � 2c1

c1 þ c3

in~F(v)
bk� in

; (16)

where we are using the dimensionless quantities k and n

given by the definitions

k ; G=v0; v ; v=v0; (17)

in addition, the geometrical factor b was defined in Eq. (14).
It can be proved that the Fourier components of the reflected
and the transmitted fluxes (to be calculated from Eqs. (15)
and (16) satisfy the following sum rule

c1j~f 1(v)j2 þ c3j~g3(v)j2 ¼ c1j~F(v)j2: (18)
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By now we have not specified the explicit form of the
incoming field. Let us assume that it is a Gaussian quasi-
monochromatic field with a carrier frequency v0 having the
CE phase w,

F(t) ¼ F0 exp (�t2=2t2) cos (v0t þ w); (19)

where t ¼ tL/2 with tL being the full temporal width of the
pulse’s intensity. The Fourier transform of the incoming
pulse given by Eq. (19) reads

~F(v) ;
ð1

�1

dtF(t)eivt

¼ F0t(p=2)1=2 exp½�t2(v2 þ v2
0)=2�

� (eiwe�vv0t
2 þ e�iweþvv0t

2
); (20)

and its modulus squared is the following p-periodic function
of the CE phase

j~F(v)j2 ¼ 2fF0t(p=2)1=2 exp½�t2(v2 þ v2
0)=2�g2

� ( cosh 2t2vv0 þ cos 2w):
(21)

From Eq. (21), it is immediately seen that for any linear exci-
tation process (whose response function is proportional with
the incoming intensity), the frequency dependence of the
modulation function (“visibility” or “contrast function”) of
the response function is given by the expression

M(v) ¼ Imax(v)� Imin(v)
Imax(v)þ Imin(v)

¼ j
~Fmax(v)j2 � j~Fmin(v)j2

j~Fmax(v)j2 þ j~Fmin(v)j2

¼ 1
cosh 2t2vv0

;

(22)

where Imax,min(v) may mean both the maximum (minimum)
values of the reflected flux c1jf̃1(v)j2 and the refracted flux
c3j~g3(v)j2 at a particular frequency v, as we vary the CE
phase. This means that as we vary the CE phase between
zero and p, the modulation depth is given by Eq. (22). It is
clear that if v0t is very large (which is the case of many-cycle
pulses), then the modulation function is practically zero. On
the other hand, when v0t is not large (which is the case of
few-cycle pulses), then for small frequencies (vt � 1), we
can have a modulation close to 100%. From Eqs. (15),
(16), and (21), one obtains that the modulation of both
the reflected and the transmitted signal is given by 1/
cosh2t2vv0 at a particular frequency. On the other hand,
neither of the reflection coefficient nor the transmission coef-
ficient depends on the CE phase in the linear regime. It is
clear that if the response function contains a resonance at a
small frequency (vt � 1), then there is a better chance to

observe the mentioned linear CE-phase-dependence at that
particular resonance frequency.

At this point, let us note that Eqs. (15) and (16) are more
general than the original relations, Eqs. (11), (12), and (13),
written in the time domain, where the indices of refractions
n1 and n3 have been taken as mere constants. The optional
dispersion can be taken into account in Eqs. (15) and (16)
by putting by hand a frequency dependence into n1 and n3.
In the present paper, we are not dealing with this aspect of
the problem. Our description is approximate to the real scat-
tering process in an other respect, too, namely it relies on the
plane-wave model of the incoming, reflected and the
refracted field. This is a standard approximation, which is
used in the textbooks throughout. Eqs. (15) and (16) can
be superimposed for an assembly of incoming plane waves
of different propagation direction, and this description
would be suitable to handle the scattering of a beam with a
limited transverse extension. In the present paper, we are
not dealing with this aspect of the scattering problem,
either. Thus, our results are suitable to describe the scattering
of unfocused beams.

2.2. The appearance of frozen-in wakefields in the
scattered signal

As one sees from Eqs. (15) and (16), both the reflected and
the refracted Fourier components have a pole at v ¼ 2ibG,
which means that in the time domain, a functional depen-
dence of the form / exp(2bGt) is expected with a decay
time T/2pbk, where b and k were defined in Eqs. (14) and
(17), respectively, and T ¼ 2p/v0 is the central period of
the incoming field. This can easily be shown by integrating
the ordinary first order differential Eq. (13) for the local vel-
ocity dy

0
(t
0
), which determines through Eq. (11) and (12) the

scattered fields,

d0y(t0) ¼ e�bGt0
ðt0
�1

du½b(e=m)F(u)�eþbGu: (23)

The integral in Eq. (23) can be easily evaluated for any usual
functional form of the incoming field. From Eq. (11) and (23)
the complete reflected field can be obtained,

f1(t0) ¼ c3 � c1

c3 þ c1
F(t0)� 2pb2k exp½�2pbk(t0=T)�

�
ðt0
�1

d(u=T)F(u) exp½þ2pbk(u=T)�; (24)

where now in Region 1, the retarded time reads

t0 ¼ t � n1(y sin u1 þ z cos u1)=c: (25)

For a model pulse of a sin2 envelope of finite support (which
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has been widely used in numerical simulations), the integral
can be calculated analytically. Henceforth, in our illustrative
numerical examples, we will use the Gaussian pulse defined
in Eq. (19).

Before entering into some numerical examples of the tem-
poral behavior for the scattered field, let us make some
general remarks. It is clear that if the pulse duration of the
incoming field F(t) is much smaller than the characteristic
time 1/bG ¼ T/2pbk of the exponential factor, then F(t)
cuts off a small region in the integration interval in
Eq. (23) because of the relative smoothness of the exponen-
tial function. This means that the upper limit of the integral
can be extended up to infinity within a reasonable approxi-
mation. Hence, the asymptotic behavior of the velocity
dy
0
(t 0) can certainly be well represented by the approximate

formula

d0y(t0) � e�bGt0
ðþ1

�1

du½b(e=m)F(u)�eþbGu

¼ e�bGt0b(e=m)~F(�ibG); (26)

where ~F(2ibG) denotes the Fourier transform of the incom-
ing field. By considering Eq. (20), we obtain from Eq. (24)

d0y(t0) � e�bGt0b(e=m)(F0t
ffiffiffiffiffiffi
2p
p

) exp½�(v2
0t

2=2)

� (1� b2k2)� cos (wþ v2
0t

2bk); (27)

d0y(t0)=c � �(bv0t
ffiffiffiffiffiffi
2p
p

) exp½�(v2
0t

2=2)

� (1� b2k2)� � m exp �2pbk
t0

T

� �

� cos (wþ v2
0t

2bk); (28)

where we have introduced the usual intensity parameter m by
the definition

m ;
eF0

mcv0
¼ 10�9

ffiffi
I
p
=E ph; m2 ¼ 10�18Il2: (29)

In the numerical expressions in Eq. (27), I denotes the mean
intensity of the pulse measured in W/cm2, Eph is the mean
photon energy in eV-s, and l denotes the central wavelength
of the pulse measured in microns (we have not displayed the
numerical prefactors of order unity). According to Eq. (28),
the polarization current and (due to Eq. (11) the scattered
field itself contains a wakefield, which is a frozen-in non-
oscillatory quasi-static field propagating in the direction (0,
sinu1 cosu1) after leaving the metal layer. The decay time of
this wakefield is given by T/2pbk, which can be much
larger than an optical period, as is shown in Figure 1, where
we have taken k ¼ 1/20. Since we are dealing just with few-
cycle incoming pulses, this means that the wakefield is still
present after the main pulse has passed. Moreover, from

Eq. (24) it can be seen, that at the Brewster angle of incidence
(c1 ¼ c3! u � 568 if n1 ¼ 1, n3 ¼ 1.5) only the wakefield is
propagating in that particular direction. It is remarkable, that,
as can be seen from Eqs. (26)–(28), the amplitude of the
wakefield is proportional with the cosine of the CE phase w.
Thus, for instance, by varying the CE phase, the sign of the
quasi-static wakefield can be reversed. In Figure 2, an illustra-
tive example is shown for the temporal behavior of the
reflected signal at Brewster angle of incidence for an incoming
one-cycle Ti: Sa laser pulse.

In Figure 2, it is seen that the magnitude of the electric
field of the wakefield is roughly one tenth of the normalized

Fig. 1. Shows (based on Eq. (23a)) the temporal behavior of the electric field
strength of the reflected signal (thin line), at the Brewster angle (�568), stem-
ming from a one-cycle (tL ¼ T ) incoming Ti:Sa laser pulse (thick line). The
indices of refraction in region 1 and 3 were taken n1 ¼ 1, n3 ¼ 1.5, respect-
ively, and the thickness of the metal layer was set to be 2 nm (�40 atomic
layer). We have taken for the free electron density ne ¼ 1022 cm23. The elec-
tric field strength is normalized to F0/60, where F0 is the peak electric field
of the incoming cosine pulse (w ¼ 0).

Fig. 2. Shows (based on Eq. (23a)) the temporal behavior of the electric field
strength of the reflected signal, at the Brewster angle (�568), stemming from
a one-cycle (tL ¼ T) incoming Ti:Sa laser pulse. The indices of refraction in
region 1 and 3 were taken n1 ¼ 1, n3 ¼ 1.5, respectively, and the thickness of
the metal layer was set to be 2 nm (�40 atomic layer). We have taken for the
free electron density ne ¼ 1022 cm23. The electric field strength is normal-
ized to F0/60, where F0 is the peak electric field of the incoming -cosine
pulse (w ¼2p).
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field strength (F0/60), thus its absolute value is about 600
times smaller than the peak field strength of the incoming-
cosine pulse. The peak electric field strength F0 of a laser
field can be calculated from the laser intensity I0 according
to the following formula

½F0=(V=cm)� ¼ 27:46� ½I0=(W=cm2)�1=2: (30)

Thus, for an incoming laser of intensity I0 � 1012W/cm2, the
amplitude of the frozen-in wakefield in the reflected signal is
approximately 50000 V/cm, which is quite a large value for
a quasi-static field. As we have already mentioned above, the
amplitude and sign for this wakefield can be varied by chan-
ging the CE phase of the incoming pulse. The idea naturally
emerges, that when we let such a wakefield excite the elec-
trons of a secondary target—say an electron beam, a
second metal plate or a gas jet—we may obtain 100
percent modulation depth in the electron signal (acceleration,
tunnel-ionization) in a given direction, even for a relatively
low intensity-incoming field. This scheme can perhaps
serve as a basis for the construction of a robust linear
CE phase difference meter. At the end of the present
section, we would like to emphasize that the generation of
the wakefield discussed above is a linear process, since the
amplitude of the wakefield is simply proportional with
the amplitude of the incoming field. This means that for
the observation of the effect considered here, one does not
need to apply extremely high laser intensities.

3. HIGH-HARMONIC GENERATION ON A PLASMA
LAYER IN THE RELATIVISTIC REGIME

In the present Section, we shall first derive the relativistic EOM
for the surface current density of the electrons, which are con-
sidered as the active charges in a thin plasma layer. It will turn
out that the complete solution for the scattering problem can be
reduced to the solution for a first order ordinary inhomogeneous
differential equation. We shall give an approximate analytic sol-
ution to this equation, valid for moderately, relativistic incom-
ing laser intensities (where m , 1). Based on these solutions,
we shall calculate the spectrum of the reflected radiation field.

3.1. Relativistic EOM of the surface current
density of the electrons

Henceforth, in the EOM for the surface current Ky2 (Eq. (9)),
we use Bx3, Ey3, and Ez3, Eqs. (5) and (6), and take into
account Eq. (12). Moreover, we specialize our system to be
a plasma layer in a vacuum (hence n1 ¼ n3 ¼ 1! u1 ¼

u3 ¼ u). If we take into account retardation, i.e., relativistic
effects, the argument of the field strengths will be given in
the layer as

h ; t � (yþ dy) sin u� (zþ dz) cos u
c

� �
z¼0

: (31)

The local displacements dy and dz in the layer will depend on
the retarded time t 0 ¼ t 2 ysinu/c. In fact, these displace-
ments represent a polarization wave in the layer propagating
in the positive y-direction with the velocity c/sinu. This is
due to the assumed oblique incidence of the incoming
field, i.e., the wave front of the incoming field sweeps
the layer with such a velocity. The fields to be used in
the EOM of the electron displacements can be expressed
as ~E ¼~1g3 and ~B¼ g3(1, 0, 0) ¼~n �~E , where ~1 ¼ (0,
cosu, sinu) is the polarization vector, and ~n ¼ (0, sinu,
2cosu) is the unit propagation vector. The true retarded
time parameter is given from Eq. (31) as h ¼ t0 2~n .~d/c
where ~d ¼ (0, dy, dz). Introducing the velocity ~y ¼ d~d/dt

0

and the associated relativistic factor g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=c2

p
,

we can define the proper time element dt ¼ dt
0
/g.

Moreover we define the four-position dm ¼ fct
0
, ~dg and the

four-velocity um ¼ ddm/dt ¼ fu0, ~u g. In this way, the
following set of relativistic equations derives for the four-
velocity associated to the electron displacements in the
plasma layer

m(d~u=dt) ¼ (e=c)(u0~E þ~u�~B); and

m(du0=dt) ¼ (e=c)~u �~E: (32)

We stress that in Eq. (15), the field strengths depend on the
true retarded time parameter h ¼ t 0 2~n �~d/c at the position
of the electrons, where t 0 ¼ t 2 ysinu/c is the uniform
retarded time over the plasma layer. We note that, because
of the assumed geometry of the scattering, the electrons
move collectively in phase along the lines parallel to the
x-axis. The second of the two equations in Eq. (32) expresses
the relativistic work theorem. From the two equations in
Eq. (32) there can be derived the important relations

u0 �~n �~u ¼ ca ¼ const:; (33)

and, as a consequence, on the other hand

cdh=dt ¼ d

dt
½ct0 �~n �~d (t0)� ¼ u0 �~n �~u ¼ ca;

dh=dt ¼ a ¼ g(1�~n �~y=c); (34)

where a is a constant depending on the initial local velocity.
This means that the derivatives with respect to the proper
time are proportional to the derivatives with respect to the
argument of the field strengths, d/dt ¼ ad/dh, where the
constant a depends only on the initial conditions. As is
seen from the last relation in Eq. (34), for a particle initially
at rest this constant is a ¼ 1. According to the relation
d/dt ¼ ad/dh just shown, the EOM in Eq. (32) can be
brought to the form

d2~d

dh2
¼ e

ma
~E þ~n 1

c

d~d

dh
�~E

 !" #
; (35)
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where, as we saw before ~E ¼~1g3, and according to Eq. (12)

g3 ¼ F � (m=e)G(a=g)(ddy=dh): (36)

Now let us make the following decomposition of the displa-
cement~d,

d? ¼~1 �~d ¼ dy cos uþ dz sin u;

dk ¼~n �~d ¼ dy sin u� dz cos u; (37)

that is

dy ¼ d? cos uþ dk sin u;

dz ¼ d? sin u� dk cos u: (38)

With the help of this decomposition and by integration with
respect to h, it can be seen from Eq. (35) that

ddk=dh ¼ 1
2c
½(dd?=dh)2 � (dd?=dh)2

0�: (39)

Henceforth, we will take the initial value (dd?/dh)0 ¼ 0,
which corresponds to a ¼ 1. In this way we obtain,

ddy=dh ¼ (dd?=dh) cos uþ (1=2c)(dd?=dh)2 sin u: (40)

Hence, if we solve the EOM for dd?/dh, we can express ddy

/dh through which, according to Eq. (36), the transmitted
field can be calculated. Similarly, because of Eq. (11), the
reflected field can also be determined. Combining Eqs.
(36) and (24)—after some lengthy but straightforward
algebra—we obtain the following closed equation for d?

d2d?
dh2

¼ e

m
F(h)

� G
(dd?=dh) cos uþ ½(dd?=dh)2=2c� sin uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (dd?=dh)2=c2 þ (dd?=dh)4=4c4
p : (41)

In case of perpendicular incidence (u ¼ 0), according to
Eq. (21), we directly obtain an equation for dy (from which
we have to express the scattered fields)

d2dy

dh2
¼ e

m
F(h)� G

(ddy=dh)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (ddy=dh)2=c2 þ (ddy=dh)4=4c4

q : (42)

We note that both Eq. (41) and Eq. (42), in fact, are first-order
differential equations for dd?/dh.

3.2. High-harmonic generation on a plasma layer in
the moderate relativistic regime

By now, the form of the incoming pulse F(h) has not been
specified; it can be of arbitrary shape. As is seen from

Eqs. (11) and (12), both the reflected and the transmitted
signal contain the unknown term ddy/dt 0. Due to Eqs. (41),
or (42), if we know ddy/dh, then the Fourier components
of this unknown quantity ddy/dt

0
can be expressed as

ddy

dt0
(v) ¼

ðþ1

�1

dh
ddy

dh
expfiv½hþ dk(h)=c�g; (43)

where we have taken into account the relation h ¼ t 0 2~n �~d/
c ¼ t 0 2 d||/c. In this way, the solution of the scattering
problem is reduced to the solution of the (non-linear) ordin-
ary differential equation (Eq. (41)) (or, in case of perpendicu-
lar incidence, Eq. (42)). In the present section, we consider
moderately, relativistic motions in the plasma layer; hence,
we approximate the square root by unity and neglect the
second term in the nominator in Eq. (42). The resulting
equation for dd?/dh yields

d2d?
dh2

¼ e

m
F(h)� (G cos u)

dd?
dh

; (44)

which formally coincides with Newton equation (Eq. (13)),
suitable for the non-relativistic description.

Henceforth, for simplicity, we denote h by t. Assuming an
impinging Gaussian pulse

F(t) ¼ F0 exp (�t2=2t2) cos (v0t þ w) (45)

of amplitude F0, carrier frequency v0, pulse width t ¼ tL/2
(where tL is the width of the intensity), and of carrier-
envelope phase difference w, Eq. (44) can be approximately
solved, yielding

dd?=dt � (eF0=mv0) 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G2 cos2 u=v2

0

q�� �

� exp (�t2=2t2) sin (v0t þ wþ a); (46)

where the additional phase a is defined by the relation

sina ¼ (G=v0) cos uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (G=v0)2 cos2 u

p : (47)

The phase term d|| ¼~n �~d appearing in the exponential in Eq.
(43) can be calculated from Eq. (46) by using Eq. (39) to yield

djj=c � 1
2

eF0

mcv0

� �2 1
1þ (G=v0) cos2 u

� 1
2

ðt
�1

dx exp (�x2=t2)

8<
:

� 1
4v0

exp (�t2=t2) sin½2(v0t þ wþ a)�
�
: (48)

According to Eq. (40), based on Eq. (46), ddy/dt can be
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approximately expressed as

ddy=cdt � 2b cos u exp (�t2=2t2) sin (v0t þ wþ a)

þ b2 sin u exp (�t2=t2)f1� cos½2(v0t þ wþ a)�g; (49)

where we have introduced the dimensionless parameter

b ;
1
2

eF0

mcv0

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (G=v0)2 cos2 u
p

¼ m

2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (G=v0)2 cos2 u
p ; (50)

where m ; eF0/mcv0 is the dimensionless intensity par-
ameter (which has already been defined in Eq. (32))
usually appearing in strong field phenomena.

The main problem in calculating the scattered (e.g., the
reflected) spectrum is the presence of the time integral in
Eq. (48), which is—according to Eq. (43)—is present in
the exponential of the Fourier integral. In order to get rid
of this difficulty, we approximate this time integral in the
following manner

ðt
�1

dx exp (�x2=t2)

�
0; �1 	 t 	 �t ffiffiffiffi

p
p

=2

t
ffiffiffiffi
p
p

=2þ t; �t ffiffiffiffi
p
p

=2 	 t 	 t
ffiffiffiffi
p
p

=2

t
ffiffiffiffi
p
p

; t
ffiffiffiffi
p
p

=2 	 t 	 þ1

8><
>:

9>=
>;: (51)

We have numerically checked that the right hand side of
Eq. (51) quite reasonably approximates the integral on the
left hand side. We also note that for t!1 (which corre-
sponds to a very long laser pulse), only the second range
gives a contribution. Accordingly, we split the time integral
in Eq. (43) into three parts

ddy

dt0
(v) ¼

ð
dt

ddy(t)
dt

expfiv½t þ djj(t)=c�g

�
ð�t ffiffiffipp =2

�1

dtB(t)eivt

þ eib2t
ffiffiffi
p
p

v=2
ðþt ffiffiffipp =2

�t
ffiffiffi
p
p

=2

dtB(t)ei(1þb2)vt

þ eib2t
ffiffiffi
p
p

v

ðþ1

þt
ffiffiffi
p
p

=2

dtB(t)eivt; (52)

where

B(t) �
X

n

Jn(b2v=2v0)f2b cos u

� ½e�i(2n�1)(wþa)e�(nþ1=2)t2=t2
e�i(2n�1)v0t

� e�i(2nþ1)(wþa)e�(nþ1=2)t2=t2
e�i(2nþ1)v0t�=2i

þ b2 sin u½2e�i2n(wþa)e�(nþ1)t2=t2
e�i2nv0t

� e�i(2n�2)(wþa)e�(nþ1)t2=t2
e�i(2n�2)v0t

� e�i(2nþ2)(wþa)e�(nþ1)t2=t2
e�i(2nþ2)v0t�=2g: (53)

In obtaining Eq. (53), we have used the Jacobi-Anger
formula, the generating formula for the Bessel functions,
e2izsinc ¼

P
nJn(z)e2inc, moreover we have made the

approximation Jn[(b2v/2v0)e2t2

/t2] � Jn(b2v/2v0)e2nt2

/
t2, which means that—concerning the time dependence—
we keep only the leading term in the power expansion of
the Bessel functions Jn. This is a reasonable approximation
at moderately relativistic intensities (m , 1). Within these
approximations, the integrals in Eq. (52) can be calculated
by using the formulae 3.322.1-2 of Gradshteyn and Ryzhik
(1980)). We shall not list these lengthy formulae in the
present paper.

We have checked that for relatively long pulses, say, for a
10-cycle pulse, at a relativistic intensity 2 � 1019 W/cm2,
only the second term in Eq. (52) contributes considerably
to the spectrum whose maxima correspond to the intensity-
dependent frequency-shifted harmonics of frequencies
vn ¼ nv0/(1 þ b2), where b was defined in Eq. (50). We
have found that the spectrum has a very sharp cut-off deter-
mined by the critical index depending here on the factor b2/2
in the argument of the Bessel function. We can borrow a
formula for this critical index nc from the theory of synchro-
tron radiation (see Jackson, 1962)); nc ¼ 3/(1 2 b4/4)3/2,
whose numerical value is approximately 78 in the case of
458 angle of incidence. The critical normalized frequency
becomes nc ¼ vc/v0 ¼ nc/(1 þ b2) �28 which is in agree-
ment with what we have seen from our numerical calcu-
lations. Of course, for this estimate, we have to assume that
b2/2 , 1, namely that the mentioned factor in the argument
of the Bessel function is close to, but smaller than one.

To show the spectra for short, 2-cycle pulses, we assume
the electron density ne ¼ 1021 cm23 and thickness l2 ¼ l/
100 ¼ 8 nm for the plasma layer as above, but we take a
“moderate” intensity, namely 2 � 1018 W/cm2, so one
order of magnitude smaller as it was in the previous
example. Then we obtain vn ¼ (vn/v0) ¼ n/(1 þ b2) ¼
f0.84, 1.68, 2.51, 3.35g for the first four harmonics n ¼ 1,
2, 3, 4, where the parameter b defined in Eq. (50) is pro-
portional with the usual intensity parameter m ¼ 1029I1/2l.

In Figure 3, we see a typical spectrum of the reflected
signal at almost grazing incidence, where the third harmonic
dominates. In the next example, we illustrate in Figure 4 that
the maximum value of the fourth harmonic strongly depends
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on the CE phase difference w, the modulation (which is
defined as M ¼ (Imax 2 Imin)/(Imax þ Imin)) is about 20%.
We have checked this modulation M for the other spectral
ranges, and found that it varies from very small values to
25% for the parameters used in obtaining Figure 4. For the
integrated spectrum, the value of M is very small, by a
couple of percents.

The presence of the plateau shown in Figure 5, suggests
that the Fourier synthesis of this part of the spectrum
results in the appearance of attosecond pulses, as was first
proposed by Farkas and Tóth (1992). Note that the spacing
of the individual peaks in the plateau region is much
smaller than the central frequency, thus this plateau is
almost a quasi-continuum. The result of the Fourier synthesis
is shown in Figure 6, where we see a part of an attosecond
pulse train in the reflected signal. The widths of the individ-
ual pulses are about one tenth of the optical cycle of the
incoming laser pulse, i.e., they have duration of about
250 attoseconds. Of course, when we synthesize the
Fourier components from a wider frequency window, we
receive even shorter individual pulses.

4. SUMMARY

In the present paper, we have described the reflection and
transmission of a few-cycle laser pulse on a thin metal
layer, and on a plasma layer represented by a surface
current density of free electrons. Our analysis here, as in
our earlier study (Varró, 2004), is based completely on clas-
sical electrodynamics and mechanics, in the frame of which
we solve the system of coupled Maxwell-Lorentz equations
of the incoming, and scattered radiation and the surface
current. In the first case, the target can be produced, for
instance, by evaporating an aluminum layer on a glass

plate. In the second case, we can thick of a plasma layer gen-
erated from a thin foil in vacuum by a prepulse, which is fol-
lowed by the main high-intensity laser pulse.

In Section 2, we presented the basic equations describing
our model, and presented the exact analytic solution of the
scattering problem in the nonrelativistic regime. Here we
have briefly analyzed the exact solutions in the frequency
domain. In discussing the temporal behavior of the reflected
signal, we found a pulse-decompression and “freezing-in” of
the radiation field, yielding to the appearance of a quasi-static
Wakefield in the scattered signal. The characteristic time of
these wakefield’s is inversely proportional to the squared

Fig. 5. Shows the reflected spectrum of a 2-cycle laser pulse impinging on a
plasma layer of thickness l/100 and of electron density 1021/cm3 at 45
degrees of incidence of a Ti:Sa laser of intensity 2 � 1018 W/cm2. The nor-
malized frequency is defined as n ; v/v0 where v0 is the carrier frequency
of the laser pulse. It is seen that the spectrum has a long tail where the heights
of the peaks vary practically within one order of magnitude in the frequency
range considered.

Fig. 4. Shows that the reflected intensity at n ; v/v0 ¼ 3.5 (at about the
position of the fourth harmonic peak) strongly depends on the carrier-
envelope phase difference w, with a modulation about 20%. This signal
has been calculated for a 2-cycle laser pulse impinging on a plasma layer
of thickness l/100 and 1021/cm3 at 70 degrees of incidence of a Ti:Sa
laser of intensity 2 � 1018 W/cm2. The absolute maximum value of the
curve corresponds to 1/80, measured in the incoming intensity.

Fig. 3. Shows the reflected spectrum of a 2-cycle laser pulse impinging on a
plasma layer of thickness l/100 and 1021/cm3 at 70 degrees of incidence
(almost at “grazing incidence”) of a Ti:Sa laser of intensity 2 � 1018 W/
cm2. The normalized frequency is defined as n ; v/v0 where v0 is the
carrier frequency of the laser pulse. In the figure, it is clearly shown that
the harmonic peaks are downshifted due to the intensity-dependent factor
discussed in the text before.
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plasma frequency and to the thickness of the electron layer.
This characteristic time can be much larger than the central
period of the incoming laser pulse; hence, it can be much
larger then the pulse duration of the original few-cycle
pulse. In the numerical example we have taken, the amplitude
of the frozen-in Wakefield in the reflected signal is approxi-
mately 50000 V/cm, which is quite a large value for a quasi-
static field. The amplitude and sign of these Wakefield’s can
be varied by changing the CE phase of the incoming pulse.
We have pointed out that these Wakefield’s can perhaps
serve as a basis for the construction of a robust linear carrier-
envelope phase difference meter.

In Section 3, we derived the relativistic EOM for the
surface current density of the electrons, which are considered
as the active charges in a thin plasma layer. It turned out that
the complete solution of the scattering problem can be
reduced to the solution of a first order ordinary (nonlinear)
inhomogeneous differential equation. An approximate ana-
lytic solution to this equation has been given, which is
valid for moderately relativistic incoming laser intensities.
Based on these solutions, the spectrum of the reflected radi-
ation field containing higher-harmonics has been calculated,
and we have seen some illustrative numerical examples sum-
marized in Figures 3 to 6. A main characteristic of these
spectra is the intensity-dependent frequency downshift of
the harmonic peaks. This effect is an analogue of the well-
known intensity dependent frequency shift in the nonlinear
Thomson scattering on a single electron. For longer pulses,
we have found a sharp cut-off in the harmonic spectra,
whose position can be well estimated from the theory of syn-
chrotron radiation. It has also been shown that the spectra
considerably depend on the CE phase of the incoming few-
cycle laser pulse. In certain regions of the reflected spectra,
we have found about 20% of modulation (visibility) by
varying the CE phase difference. In general, the high-
harmonic spectra have a plateau, and the Fourier components

of this quasi-continuum are locked in phase. Consequently,
by synthesizing this part of the spectrum, we have obtained
attosecond pulses in the reflected signal. The widths of the
individual pulses, coming from a frequency window taken
in our numerical example, were about one-tenth of the
optical cycle.
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MILOŠEVIĆ, D.B., PAULUS, G.G. & BECKER, W. (2002).
Phase-dependent effects of a few-cycle laser pulse. Phys. Rev.
Lett. 89, 15300 (1–4).
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