RMC

  RMC References

The links and bibliography references below form a very subjective selection.

Unfortunately, the Studsvik web sites are not available any more as the facility was closed done. ISIS has an RMC-related web site, but as far as I know it does not contain collected references of RMC.

Suggestions for additional websites or papers are warmly welcome!

Links to RMC-related websites:

·         Pages on Fluoride glass Structures by Armel le bail.

·         Dave Keen's home page

·         RMCProfile

 

RMC publications:

 

The method (initial description and recent reviews)

·         McGreevy, R.L., Pusztai, L. (1988) Reverse Monte Carlo simulation: a new technique for the determination of disordered structures, Molec. Simul. 1, 359- 367.

·         Pusztai, L. (1998) Structural modelling using the reverse Monte Carlo technique: Application to amorphous semiconductors J. Non-Cryst. Sol. 227-230, 88-95

·         McGreevy, R.L. (2001) Reverse Monte Carlo modelling, J. Phys.: Cond. Matter 13, R877-R913.

·         Evrard, G., Pusztai, L. (2005) Reverse Monte Carlo modeling of the structure of disordered materials with RMC++: a new implementation of the algorithm in C++. J. Phys.: Cond. Matter. 17, S1-S13.

·         Gereben, O., Jóvári, P., Temleitner, L., Pusztai, L. (2007) A new version of the RMC++ Reverse Monte Carlo programme, aimed at investigating the structure of covalent glasses, Journal of Optoelectronics and Advanced Materials, 9, 3021-3027.

·         Gereben O., Pusztai, L. (2011) Extension of the invariant environment refinement technique + reverse Monte Carlo method of structural modelling for interpreting experimental structure factors: The cases of amorphous silicon, phosphorus, and liquid argon; J. Chem. Phys., 135, 084111.

·         Gereben O., Pusztai, L. (2012): RMC_POT, a computer code for Reverse Monte Carlo modeling the structure of disordered systems containing molecules of arbitrary complexity; J. of Comp. Chem. 33, 2285-2291, DOI: 10.1002/jcc.23058.

Some ´theoretical´ considerations

·         Howe, M.A., McGreevy, R.L. (1991) Determination of three body correlations in liquids by RMC modelling of diffraction data. I. Theoretical tests, Phys. Chem. Liq. 24, 1-12.

·         Pusztai, L., Gereben, O., Baranyai, A. (1994) Some remarks on the measured structure factor, Physica Scripta, T57, 69-71.

·         Gereben, O., Pusztai, L. (2014) Understanding the structure of molecular liquids via combinations of molecular dynamics simulations and Reverse Monte Carlo modeling: Handling information deficiency, J. Non-Cryst. Solids 407, 213–219, http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.047

Fixed neighbours contraints

·         Pusztai, L., McGreevy, R.L. (1997) RMC: introduction of a new type of constraint for molecular systems and network glasses, Studsvik NFL Annual Report for 1996, OTH :21.

·         Jóvári, P., Mészáros, Gy., Pusztai, L., Sváb, E. (2001) The structure of liquid tetrachlorides CCl4, SiCl4, GeCl4, TiCl4, VCl4 and SnCl4, J. Chem. Phys. 114, 8082-8090.

Studies of specific systems

·         McGreevy, R.L., Pusztai, L. (1990) The structure of molten salts, Proc. Roy. Soc. London A 430, 241-260.

·         Howe, M.A., McGreevy, R.L., Pusztai, L., Borzsák, I. (1993) Determination of 3 body correlations in simple liquids by RMC modelling of diffraction data. 2. Elemental liquids, Phys. Chem. Liq. 25, 205-241.

·         Gereben, O. and L Pusztai, L. (1994) Structure of amorphous semiconductors: Reverse Monte Carlo studies on a-C, a-Si and a-Ge, Phys. Rev. B, 50, 14136- 14143.

·         Pusztai, L., McGreevy, R.L. (1997) The structure of liquid CCl4, Mol. Phys. 90, 533-540.

·         Pusztai, L. (1999) On the partial pair correlation functions of liquid water, Phys. Rev. B 60, 11851-11854.

·         Jóvári, P., Kaban, I., Steiner, J., Beuneu, B., Schöps, A., Webb, A. (2008) Local order in amorphous Ge2Sb2Te5 and GeSb2Te4 Phys. Rev. B 77, 035202 https://doi.org/10.1103/PhysRevB.77.035202

·         Vrhovsek , A., Gereben, O., Pothoczki, Sz., Tomsic, M., Jamnik, A., Kohara, S., Pusztai, L., (2010) The approach towards understanding the structure of complex molecular systems: the case of lower aliphatic alcohols, J. Phys: Condens. Matter 22, 404214/1-9.

·         Mile, V., Gereben, O., Kohara, S., Pusztai, L. (2010) On the structure of aqueous cesium bromide solutions: diffraction experiments, molecular dynamics simulations and Reverse Monte Carlo modeling, J. Mol. Liq. 157, pp. 36-42.   

·         Vrhovšek, A., Gereben, O., Jamnik, A., Pusztai, L. (2011) Hydrogen Bonding and Molecular Aggregates in Liquid Methanol, Ethanol and Propanol, J. Phys. Chem B;  115, 13473-13488.

·         Gereben, O., Kohara, S., Pusztai, L. (2012) The liquid structure of some food aromas: Joint X-ray diffraction, all-atom Molecular Dynamics and reverse Monte Carlo investigations of dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide; J. Mol. Liq., 169, 63-73.

·         Gereben, O., Pusztai, L. (2012) : Molecular Conformations and the Liquid Structure in Bis(methylthio)methane and Diethyl Sulfide: Diffraction Experiments vs. Molecular Dynamics Simulations: J. Phys. Chem. B 116, 9114-9121.

·         Mile, V., Gereben, O., Kohara, S., Pusztai, L. (2012): On the structure of aqueous cesium fluoride and cesium iodide solutions: diffraction experiment, molecular dynamics simulations and reverse Monte Carlo modeling; J. Phys. Chem. B 116, 9758−9767.

·         Pethes, I., Jóvári, P., Michalik, S., Wagner, T., Prokop, V., Kaban, I., Száraz, D., Hannon, A., Krbal, M. (2023) Short range order and topology of binary Ge-S glasses J. Alloys Compds. 936, 168170 https://doi.org/10.1016/j.jallcom.2022.168170

RMC with potential

·         Gereben, O., Pusztai, L.: (2012) RMC_POT, a computer code for Reverse Monte Carlo modeling the structure of disordered systems containing molecules of arbitrary complexity; J. of Comp. Chem. 33, 2285-2291, DOI: 10.1002/jcc.23058.

·         Gereben, O., Pusztai, L.: (2012) Molecular Conformations and the Liquid Structure in Bis(methylthio)methane and Diethyl Sulfide: Diffraction Experiments vs. Molecular Dynamics simulations: J. Phys. Chem. B 116, 9114-9121.

·         Gereben, O., Pusztai, L.: (2013)  Conformational analysis of bis(methylthio)methane and diethyl sulfide molecules in the liquid phase: reverse Monte Carlo studies using classical interatomic potential functions; J. Phys. Condens. Matter 25, 454201.

·         Gereben, O., Pusztai, L.: (2013) The liquid structure of tetrachloroethene: Molecular dynamics simulations and reverse Monte Carlo modeling with interatomic potentials; J. Chem Phys, 139, 164509.DOI: 10.1063/1.4826320.

RMC with non-periodic boundary condition

·         Gereben, O., Petkov, V.: (2013) Reverse Monte Carlo study of spherical sample under non-periodic boundary conditions: the structure of Ru nanoparticles based on x-ray diffraction data; J. Phys. Condens. Matter 25, 454211

RMC on powder diffraction data

 

Top of page


Last modified 04/02/2023 by Orsolya Gereben

(comments welcome!)